1
|
Boada M, Wirobski G. Human-directed sociability in the domestic dog: A Tinbergian approach. Neurosci Biobehav Rev 2025; 168:105947. [PMID: 39571667 DOI: 10.1016/j.neubiorev.2024.105947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 11/05/2024] [Accepted: 11/15/2024] [Indexed: 11/30/2024]
Abstract
The motivation to interact with humans is central to dogs' domestication process. This review aims to provide a curated overview of the current knowledge about dogs' human-directed sociability using Tinbergen's four questions as a guiding framework. Firstly, we explore its evolutionary history, discussing wolf-dog differences in the socialization period, fear response, sociability, and attachment to elucidate the effect of domestication. Secondly, we address its ontogeny, highlighting the importance of early life experiences, examining findings on different dog populations to discern the effect of adult life experiences, and reporting changes across the lifespan. Thirdly, we analyse the adaptive value of the dog-human relationship, considering the effects of human association on different dog populations. Fourthly, we elaborate on the mechanisms involved in the dog-human relationship, discussing underlying cognitive and genetic processes and findings on the neurophysiological effects of interacting with humans. Finally, we identify issues and remaining questions that deserve more scrutiny and suggest innovative approaches that could be explored to improve our understanding of dogs' human-directed sociability.
Collapse
Affiliation(s)
- Mónica Boada
- Grupo UCM de Psicobiología Social, Evolutiva y Comparada, Departamento de Psicobiología, Facultad de Psicología, Campus de Somosaguas, Universidad Complutense de Madrid, Madrid 28223, Spain.
| | - Gwendolyn Wirobski
- Comparative Cognition Group, Université de Neuchâtel, Faculty of Sciences, Avenue de Bellevaux 51, Neuchâtel 2000, Switzerland.
| |
Collapse
|
2
|
Gnanadesikan GE, Bray EE, Cook EN, Levy KM, Douglas LELC, Kennedy BS, Tecot SR, MacLean EL. Basal plasma oxytocin & fecal cortisol concentrations are highly heritable and associated with individual differences in behavior & cognition in dog puppies. Horm Behav 2024; 165:105612. [PMID: 39116461 DOI: 10.1016/j.yhbeh.2024.105612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/15/2024] [Accepted: 07/25/2024] [Indexed: 08/10/2024]
Abstract
Oxytocin and cortisol are hormones that can influence cognition and behavior, but the relationships between endogenous concentrations and individual differences in cognitive and behavioral phenotypes remain poorly understood. Across mammals, oxytocin has important roles in diverse social behaviors, and in dogs, it has been implicated in human-oriented behaviors such as social gaze and point-following. Cortisol, an end-product of the hypothalamic-pituitary-adrenal (HPA) axis, is often studied in relation to temperament and emotional reactivity, but it is also known to modulate executive functions. In this study, we measured basal fecal cortisol (n = 247) and plasma oxytocin (n = 249) in dog puppies from a pedigreed population (Canine Companions ®). We collected cognitive and behavioral data from these subjects (n = 247), including measures of human-oriented social cognition, memory, inhibitory control, perceptual discriminations, and temperament. Oxytocin concentrations were estimated to be very highly heritable (h2 = 0.90-0.99) and cortisol concentrations were estimated to be moderately-highly heritable (h2 = 0.43-0.47). Bayesian mixed models controlling for relatedness revealed that oxytocin concentrations were positively associated with spatial working memory and displayed a negative quadratic relationship with behavioral laterality, but no credible associations were seen for social measures. Cortisol concentrations exhibited a negative linear relationship with performance on an inhibitory control task and a negative quadratic relationship with bold behavioral reactions to a novel object. Collectively, our results suggest that individual differences in oxytocin and cortisol concentrations are under strong genetic control in dogs and are associated with phenotypic variation in aspects of temperament, behavioral laterality, and executive function.
Collapse
Affiliation(s)
- Gitanjali E Gnanadesikan
- School of Anthropology, University of Arizona, Tucson, AZ 85721, USA; Laboratory for the Evolutionary Endocrinology of Primates, University of Arizona, Tucson, AZ 85721, USA; Cognitive Science Program, University of Arizona, Tucson, AZ 85721, USA; Department of Anthropology, Emory University, Atlanta, GA 30322, USA.
| | - Emily E Bray
- School of Anthropology, University of Arizona, Tucson, AZ 85721, USA; Canine Companions for Independence, Santa Rosa, CA 95402, USA; College of Veterinary Medicine, University of Arizona, Tucson, AZ 85721, USA; Psychology Department, University of Arizona, Tucson, AZ 85721, USA
| | - Erica N Cook
- School of Anthropology, University of Arizona, Tucson, AZ 85721, USA; Laboratory for the Evolutionary Endocrinology of Primates, University of Arizona, Tucson, AZ 85721, USA
| | - Kerinne M Levy
- Canine Companions for Independence, Santa Rosa, CA 95402, USA
| | | | | | - Stacey R Tecot
- School of Anthropology, University of Arizona, Tucson, AZ 85721, USA; Laboratory for the Evolutionary Endocrinology of Primates, University of Arizona, Tucson, AZ 85721, USA
| | - Evan L MacLean
- School of Anthropology, University of Arizona, Tucson, AZ 85721, USA; Cognitive Science Program, University of Arizona, Tucson, AZ 85721, USA; College of Veterinary Medicine, University of Arizona, Tucson, AZ 85721, USA; Psychology Department, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
3
|
Somppi S, Törnqvist H, Koskela A, Vehkaoja A, Tiira K, Väätäjä H, Surakka V, Vainio O, Kujala MV. Dog-Owner Relationship, Owner Interpretations and Dog Personality Are Connected with the Emotional Reactivity of Dogs. Animals (Basel) 2022; 12:1338. [PMID: 35681804 PMCID: PMC9179432 DOI: 10.3390/ani12111338] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/22/2022] [Accepted: 05/23/2022] [Indexed: 11/16/2022] Open
Abstract
We evaluated the effect of the dog-owner relationship on dogs' emotional reactivity, quantified with heart rate variability (HRV), behavioral changes, physical activity and dog owner interpretations. Twenty nine adult dogs encountered five different emotional situations (i.e., stroking, a feeding toy, separation from the owner, reunion with the owner, a sudden appearance of a novel object). The results showed that both negative and positive situations provoked signs of heightened arousal in dogs. During negative situations, owners' ratings about the heightened emotional arousal correlated with lower HRV, higher physical activity and more behaviors that typically index arousal and fear. The three factors of The Monash Dog-Owner Relationship Scale (MDORS) were reflected in the dogs' heart rate variability and behaviors: the Emotional Closeness factor was related to increased HRV (p = 0.009), suggesting this aspect is associated with the secure base effect, and the Shared Activities factor showed a trend toward lower HRV (p = 0.067) along with more owner-directed behaviors reflecting attachment related arousal. In contrast, the Perceived Costs factor was related to higher HRV (p = 0.009) along with less fear and less owner-directed behaviors, which may reflect the dog's more independent personality. In conclusion, dogs' emotional reactivity and the dog-owner relationship modulate each other, depending on the aspect of the relationship and dogs' individual responsivity.
Collapse
Affiliation(s)
- Sanni Somppi
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, P.O. Box 57, FI-00014 Helsinki, Finland; (H.T.); (A.K.); (K.T.); (O.V.); (M.V.K.)
- Department of Psychology, Faculty of Education and Psychology, University of Jyväskylä, P.O. Box 35, FI-40014 Jyväskylä, Finland
| | - Heini Törnqvist
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, P.O. Box 57, FI-00014 Helsinki, Finland; (H.T.); (A.K.); (K.T.); (O.V.); (M.V.K.)
- Department of Psychology, Faculty of Education and Psychology, University of Jyväskylä, P.O. Box 35, FI-40014 Jyväskylä, Finland
| | - Aija Koskela
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, P.O. Box 57, FI-00014 Helsinki, Finland; (H.T.); (A.K.); (K.T.); (O.V.); (M.V.K.)
| | - Antti Vehkaoja
- Faculty of Medicine and Health Technology, Tampere University, P.O. Box 692, FI-33101 Tampere, Finland;
| | - Katriina Tiira
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, P.O. Box 57, FI-00014 Helsinki, Finland; (H.T.); (A.K.); (K.T.); (O.V.); (M.V.K.)
| | - Heli Väätäjä
- Research Group for Emotions, Sociality, and Computing, Faculty of Information Technology and Communication Sciences, Tampere University, P.O. Box 100, FI-33014 Tampere, Finland;
- Master School, Lapland University of Applied Sciences, Jokiväylä 11 B, FI-96300 Rovaniemi, Finland;
| | - Veikko Surakka
- Master School, Lapland University of Applied Sciences, Jokiväylä 11 B, FI-96300 Rovaniemi, Finland;
| | - Outi Vainio
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, P.O. Box 57, FI-00014 Helsinki, Finland; (H.T.); (A.K.); (K.T.); (O.V.); (M.V.K.)
| | - Miiamaaria V. Kujala
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, P.O. Box 57, FI-00014 Helsinki, Finland; (H.T.); (A.K.); (K.T.); (O.V.); (M.V.K.)
- Department of Psychology, Faculty of Education and Psychology, University of Jyväskylä, P.O. Box 35, FI-40014 Jyväskylä, Finland
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, P.O. Box 12200, FI-00076 Aalto, Finland
| |
Collapse
|
4
|
Wang P, Wang SC, Liu X, Jia S, Wang X, Li T, Yu J, Parpura V, Wang YF. Neural Functions of Hypothalamic Oxytocin and its Regulation. ASN Neuro 2022; 14:17590914221100706. [PMID: 35593066 PMCID: PMC9125079 DOI: 10.1177/17590914221100706] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 03/17/2022] [Accepted: 04/27/2022] [Indexed: 12/26/2022] Open
Abstract
Oxytocin (OT), a nonapeptide, has a variety of functions. Despite extensive studies on OT over past decades, our understanding of its neural functions and their regulation remains incomplete. OT is mainly produced in OT neurons in the supraoptic nucleus (SON), paraventricular nucleus (PVN) and accessory nuclei between the SON and PVN. OT exerts neuromodulatory effects in the brain and spinal cord. While magnocellular OT neurons in the SON and PVN mainly innervate the pituitary and forebrain regions, and parvocellular OT neurons in the PVN innervate brainstem and spinal cord, the two sets of OT neurons have close interactions histologically and functionally. OT expression occurs at early life to promote mental and physical development, while its subsequent decrease in expression in later life stage accompanies aging and diseases. Adaptive changes in this OT system, however, take place under different conditions and upon the maturation of OT release machinery. OT can modulate social recognition and behaviors, learning and memory, emotion, reward, and other higher brain functions. OT also regulates eating and drinking, sleep and wakefulness, nociception and analgesia, sexual behavior, parturition, lactation and other instinctive behaviors. OT regulates the autonomic nervous system, and somatic and specialized senses. Notably, OT can have different modulatory effects on the same function under different conditions. Such divergence may derive from different neural connections, OT receptor gene dimorphism and methylation, and complex interactions with other hormones. In this review, brain functions of OT and their underlying neural mechanisms as well as the perspectives of their clinical usage are presented.
Collapse
Affiliation(s)
- Ping Wang
- Department of Genetics, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Stephani C. Wang
- Division of Cardiology, Department of Medicine, University of California-Irvine, Irvine, California, USA
| | - Xiaoyu Liu
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Shuwei Jia
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Xiaoran Wang
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Tong Li
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
- Neuroscience Laboratory for Translational Medicine, School of Mental Health, Qiqihar Medical University, Qiqihar, China
| | - Jiawei Yu
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
- Kerqin District Maternity & Child Healthcare Hospital, Tongliao, Inner Mongolia, China
| | - Vladimir Parpura
- Department of Neurobiology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Yu-Feng Wang
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| |
Collapse
|
5
|
Damberg S, Frömbling L. "Furry tales": pet ownership's influence on subjective well-being during Covid-19 times. QUALITY & QUANTITY 2021; 56:3645-3664. [PMID: 34955563 PMCID: PMC8693845 DOI: 10.1007/s11135-021-01303-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 10/21/2021] [Accepted: 12/15/2021] [Indexed: 11/10/2022]
Abstract
The social distancing required during Covid-19 times tended to make people feel lonelier than usual. Those with pets might, however, have experienced this less, because pets are known for fostering their owners’ subjective well-being. Building on a recently published structural equation model, our study enhances the understanding of subjective well-being by including the construct social distancing during Covid-19 times. In order to answer our research question—How does human-pet relationship need support influence subjective well-being by considering social isolation during Covid-19 times?—we build on the basic needs theory, assuming that humans as well as their pets have an inherent need of autonomy, relatedness, and competence. Using a multivariate data analysis method, namely partial least squares structural equation modeling (PLS-SEM), we establish a path model and examine the relationship between human-pet relationship need support and subjective well-being by including psychological distress and social isolation during Covid-19 times as mediators. We operationalize subjective well-being as a three-dimensional construct consisting of positive affect, happiness, and life satisfaction. In a sample of 215 pet owners in the USA, supporting their need increases subjective well-being, and decreases the psychological distress and loneliness caused by social isolation during Covid-19 times. Furthermore, psychological distress decreases subjective well-being, whereas perceived loneliness during Covid-19 times does not. Our main contributions are to not only enhance our knowledge on the importance of human-pet relationships in critical times, but also to provide policy makers with insights into what influences people’s subjective well-being, which is closely related to their psychological health.
Collapse
Affiliation(s)
- Svenja Damberg
- Institute of Human Resource Management and Organizations (W-9), Hamburg University of Technology (TUHH), Am Schwarzenberg-Campus 4(D), 21073 Hamburg, Germany
| | - Lena Frömbling
- Institute of Human Resource Management and Organizations (W-9), Hamburg University of Technology (TUHH), Am Schwarzenberg-Campus 4(D), 21073 Hamburg, Germany
| |
Collapse
|
6
|
Ogi A, Naef V, Santorelli FM, Mariti C, Gazzano A. Oxytocin Receptor Gene Polymorphism in Lactating Dogs. Animals (Basel) 2021; 11:ani11113099. [PMID: 34827831 PMCID: PMC8614403 DOI: 10.3390/ani11113099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 01/29/2023] Open
Abstract
Simple Summary Oxytocin is commonly known for its role in mammalian bonding. Several studies have proved that polymorphisms of the oxytocin receptor gene are related to complex social behaviors in humans, but studies on the possible correlation between canine social behavior and oxytocin are mainly focused on the human–dog bond, and there are no data on the possible correlation between oxytocin receptor gene polymorphism and the maternal behavior of this species. Since mother–litter interactions could have a severe impact in determining later behavior in domestic dogs, the aim of this work was to investigate the possible correlation between salivary oxytocin, maternal care and the one known single-nucleotide polymorphism (rs8679684) located in the untranslated regulatory region of the oxytocin receptor gene in 19 lactating Labrador Retriever dogs. A significant correlation between oxytocin receptor gene polymorphism, peripheral oxytocin and maternal behavior in dogs was found. This implies that a more functional oxytocinergic system would lead to better mothering in dogs. Abstract Genetic variations in the oxytocinergic system, known to regulate social behavior throughout the evolution of mammals, are believed to account for differences in mammalian social behavior. Particularly, polymorphic variants of the oxytocin receptor (OXTR) gene have been associated with behavioral variations in both humans and dogs. In this study, we offered evidence of the correlation between levels of salivary oxytocin (sOXT), maternal behavior and a single-nucleotide gene variant in OXTR (rs8679684) in nineteen lactating Labrador Retriever dogs. Carriers of at least one copy of the minor A allele showed higher levels of sOXT and maternal care in comparison with the homozygous T allele carriers. Considering the relevance of mother care in newborn development, these findings could help us to better understand the possible impact of variants in the OXTR gene in selecting dams.
Collapse
Affiliation(s)
- Asahi Ogi
- Department of Veterinary Sciences, University of Pisa, 56124 Pisa, Italy; (C.M.); (A.G.)
- Neurobiology and Molecular Medicine, IRCCS Stella Maris, 56128 Calambrone, Italy; (V.N.); (F.M.S.)
- Correspondence:
| | - Valentina Naef
- Neurobiology and Molecular Medicine, IRCCS Stella Maris, 56128 Calambrone, Italy; (V.N.); (F.M.S.)
| | - Filippo Maria Santorelli
- Neurobiology and Molecular Medicine, IRCCS Stella Maris, 56128 Calambrone, Italy; (V.N.); (F.M.S.)
| | - Chiara Mariti
- Department of Veterinary Sciences, University of Pisa, 56124 Pisa, Italy; (C.M.); (A.G.)
| | - Angelo Gazzano
- Department of Veterinary Sciences, University of Pisa, 56124 Pisa, Italy; (C.M.); (A.G.)
| |
Collapse
|