1
|
Schindler F, Fragner L, Herpell JB, Berger A, Brenner M, Tischler S, Bellaire A, Schönenberger J, Li W, Sun X, Schinnerl J, Brecker L, Weckwerth W. Dissecting Metabolism of Leaf Nodules in Ardisia crenata and Psychotria punctata. Front Mol Biosci 2021; 8:683671. [PMID: 34395523 PMCID: PMC8362603 DOI: 10.3389/fmolb.2021.683671] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 06/29/2021] [Indexed: 11/13/2022] Open
Abstract
Root-microbe interaction and its specialized root nodule structures and functions are well studied. In contrast, leaf nodules harboring microbial endophytes in special glandular leaf structures have only recently gained increased interest as plant-microbe phyllosphere interactions. Here, we applied a comprehensive metabolomics platform in combination with natural product isolation and characterization to dissect leaf and leaf nodule metabolism and functions in Ardisia crenata (Primulaceae) and Psychotria punctata (Rubiaceae). The results indicate that abiotic stress resilience plays an important part within the leaf nodule symbiosis of both species. Both species showed metabolic signatures of enhanced nitrogen assimilation/dissimilation pattern and increased polyamine levels in nodules compared to leaf lamina tissue potentially involved in senescence processes and photosynthesis. Multiple links to cytokinin and REDOX-active pathways were found. Our results further demonstrate that secondary metabolite production by endophytes is a key feature of this symbiotic system. Multiple anhydromuropeptides (AhMP) and their derivatives were identified as highly characteristic biomarkers for nodulation within both species. A novel epicatechin derivative was structurally elucidated with NMR and shown to be enriched within the leaf nodules of A. crenata. This enrichment within nodulated tissues was also observed for catechin and other flavonoids indicating that flavonoid metabolism may play an important role for leaf nodule symbiosis of A. crenata. In contrast, pavettamine was only detected in P. punctata and showed no nodule specific enrichment but a developmental effect. Further natural products were detected, including three putative unknown depsipeptide structures in A. crenata leaf nodules. The analysis presents a first metabolomics reference data set for the intimate interaction of microbes and plants in leaf nodules, reveals novel metabolic processes of plant-microbe interaction as well as the potential of natural product discovery in these systems.
Collapse
Affiliation(s)
- Florian Schindler
- Molecular Systems Biology (MOSYS), Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| | - Lena Fragner
- Molecular Systems Biology (MOSYS), Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria.,Vienna Metabolomics Center (VIME), University of Vienna, Vienna, Austria
| | - Johannes B Herpell
- Molecular Systems Biology (MOSYS), Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| | - Andreas Berger
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | - Martin Brenner
- Molecular Systems Biology (MOSYS), Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria.,Vienna Metabolomics Center (VIME), University of Vienna, Vienna, Austria.,Department of Pharmaceutical Sciences/Pharmacognosy, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Sonja Tischler
- Molecular Systems Biology (MOSYS), Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria.,Vienna Metabolomics Center (VIME), University of Vienna, Vienna, Austria
| | - Anke Bellaire
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | - Jürg Schönenberger
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | - Weimin Li
- Molecular Systems Biology (MOSYS), Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| | - Xiaoliang Sun
- Vienna Metabolomics Center (VIME), University of Vienna, Vienna, Austria
| | - Johann Schinnerl
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | - Lothar Brecker
- Department of Organic Chemistry, University of Vienna, Vienna, Austria
| | - Wolfram Weckwerth
- Molecular Systems Biology (MOSYS), Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria.,Vienna Metabolomics Center (VIME), University of Vienna, Vienna, Austria
| |
Collapse
|
2
|
Verstraete B, Janssens S, Rønsted N. Non-nodulated bacterial leaf symbiosis promotes the evolutionary success of its host plants in the coffee family (Rubiaceae). Mol Phylogenet Evol 2017; 113:161-168. [PMID: 28552505 DOI: 10.1016/j.ympev.2017.05.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 05/23/2017] [Accepted: 05/23/2017] [Indexed: 11/15/2022]
Affiliation(s)
- Brecht Verstraete
- Natural History Museum of Denmark, University of Copenhagen, Sølvgade 83S, 1307 Copenhagen, Denmark.
| | | | - Nina Rønsted
- Natural History Museum of Denmark, University of Copenhagen, Sølvgade 83S, 1307 Copenhagen, Denmark.
| |
Collapse
|
3
|
Van Elst D, Nuyens S, van Wyk B, Verstraete B, Dessein S, Prinsen E. Distribution of the cardiotoxin pavettamine in the coffee family (Rubiaceae) and its significance for gousiekte, a fatal poisoning of ruminants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2013; 67:15-9. [PMID: 23535187 DOI: 10.1016/j.plaphy.2013.02.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Accepted: 02/26/2013] [Indexed: 05/02/2023]
Abstract
Gousiekte, a cardiac syndrome of ruminants in southern Africa, is caused by the ingestion of plants containing the polyamine pavettamine. All the six known gousiekte-causing plants are members of the Rubiaceae or coffee family and house endosymbiotic Burkholderia bacteria in their leaves. It was therefore hypothesized that these bacteria could be involved in the production of the toxin. The pavettamine level in the leaves of 82 taxa from 14 genera was determined. Included in the analyses were various nodulated and non-nodulated members of the Rubiaceae. This led to the discovery of other pavettamine producing Rubiaceae, namely Psychotria kirkii and Psychotria viridiflora. Our analysis showed that many plant species containing bacterial nodules in their leaves do not produce pavettamine. It is consequently unlikely that the endosymbiont alone can be accredited for the synthesis of the toxin. Until now the inconsistent toxicity of the gousiekte-causing plants have hindered studies that aimed at a better understanding of the disease. In vitro dedifferentiated plant cell cultures are a useful tool for the study of molecular processes. Plant callus cultures were obtained from pavettamine-positive species. Mass spectrometric analysis shows that these calli do not produce pavettamine but can produce common plant polyamines.
Collapse
Affiliation(s)
- Daan Van Elst
- Plant Growth and Development, University of Antwerp, Antwerp, Belgium.
| | - Sarah Nuyens
- Plant Growth and Development, University of Antwerp, Antwerp, Belgium.
| | - Braam van Wyk
- H.G.W.J. Schweickerdt Herbarium, University of Pretoria, Pretoria 0002, South Africa.
| | - Brecht Verstraete
- Plant Conservation and Population Biology, KU Leuven, Leuven, Belgium.
| | | | - Els Prinsen
- Plant Growth and Development, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|