1
|
Wang P, Wei J, Hua X, Dong G, Dziedzic K, Wahab AT, Efferth T, Sun W, Ma P. Plant anthraquinones: Classification, distribution, biosynthesis, and regulation. J Cell Physiol 2024; 239:e31063. [PMID: 37393608 DOI: 10.1002/jcp.31063] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/10/2023] [Accepted: 05/22/2023] [Indexed: 07/04/2023]
Abstract
Anthraquinones are polycyclic compounds with an unsaturated diketone structure (quinoid moiety). As important secondary metabolites of plants, anthraquinones play an important role in the response of many biological processes and environmental factors. Anthraquinones are common in the human diet and have a variety of biological activities including anticancer, antibacterial, and antioxidant activities that reduce disease risk. The biological activity of anthraquinones depends on the substitution pattern of their hydroxyl groups on the anthraquinone ring structure. However, there is still a lack of systematic summary on the distribution, classification, and biosynthesis of plant anthraquinones. Therefore, this paper systematically reviews the research progress of the distribution, classification, biosynthesis, and regulation of plant anthraquinones. Additionally, we discuss future opportunities in anthraquinone research, including biotechnology, therapeutic products, and dietary anthraquinones.
Collapse
Affiliation(s)
- Peng Wang
- College of Life Sciences, Northwest A&F University, Yangling, China
| | - Jia Wei
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Xin Hua
- College of Life Sciences, Northeast Forestry University, Harbin, China
| | | | - Krzysztof Dziedzic
- Department of Food Technology of Plant Origin, Poznan' University of Life Sciences, Poznań, Poland
| | - Atia-Tul Wahab
- Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany
| | - Wei Sun
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Pengda Ma
- College of Life Sciences, Northwest A&F University, Yangling, China
| |
Collapse
|
2
|
Petit R, Izambart J, Guillou M, da Silva Almeida JRG, de Oliveira Junior RG, Sol V, Ouk TS, Grougnet R, Quintans-Júnior LJ, Sitarek P, Thiéry V, Picot L. A Review of Phototoxic Plants, Their Phototoxic Metabolites, and Possible Developments as Photosensitizers. Chem Biodivers 2024; 21:e202300494. [PMID: 37983920 DOI: 10.1002/cbdv.202300494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 11/17/2023] [Accepted: 11/17/2023] [Indexed: 11/22/2023]
Abstract
This study provides a comprehensive overview of the current knowledge regarding phototoxic terrestrial plants and their phototoxic and photosensitizing metabolites. Within the 435,000 land plant species, only around 250 vascular plants have been documented as phototoxic or implicated in phototoxic occurrences in humans and animals. This work compiles a comprehensive catalog of these phototoxic plant species, organized alphabetically based on their taxonomic family. The dataset encompasses meticulous details including taxonomy, geographical distribution, vernacular names, and information on the nature and structure of their phototoxic and photosensitizing molecule(s). Subsequently, this study undertook an in-depth investigation into phototoxic molecules, resulting in the compilation of a comprehensive and up-to-date list of phytochemicals exhibiting phototoxic or photosensitizing activity synthesized by terrestrial plants. For each identified molecule, an extensive review was conducted, encompassing discussions on its phototoxic activity, chemical family, occurrence in plant families or species, distribution within different plant tissues and organs, as well as the biogeographical locations of the producer species worldwide. The analysis also includes a thorough discussion on the potential use of these molecules for the development of new photosensitizers that could be used in topical or injectable formulations for antimicrobial and anticancer phototherapy as well as manufacturing of photoactive devices.
Collapse
Affiliation(s)
- Raphaëlle Petit
- UMR CNRS 7266 LIENSs, La Rochelle Université, UMR CNRS 7266 LIENSs, Curie B10 Faculté des Sciences et Technologies, Avenue Michel Crépeau, 17042, La Rochelle, France
| | - Jonathan Izambart
- UMR CNRS 7266 LIENSs, La Rochelle Université, UMR CNRS 7266 LIENSs, Curie B10 Faculté des Sciences et Technologies, Avenue Michel Crépeau, 17042, La Rochelle, France
| | - Mathieu Guillou
- UMR CNRS 7266 LIENSs, La Rochelle Université, UMR CNRS 7266 LIENSs, Curie B10 Faculté des Sciences et Technologies, Avenue Michel Crépeau, 17042, La Rochelle, France
| | | | - Raimundo Gonçalves de Oliveira Junior
- UMR CNRS 7266 LIENSs, La Rochelle Université, UMR CNRS 7266 LIENSs, Curie B10 Faculté des Sciences et Technologies, Avenue Michel Crépeau, 17042, La Rochelle, France
- Franco-Brazilian Network on Natural Products, FB2NP
- UMR CNRS 8038 CiTCoM, Université Paris Cité, 75006, Paris, France
| | - Vincent Sol
- Franco-Brazilian Network on Natural Products, FB2NP
- LABCiS, UR 22722, Université de Limoges, 87000, Limoges, France
| | - Tan-Sothea Ouk
- Franco-Brazilian Network on Natural Products, FB2NP
- LABCiS, UR 22722, Université de Limoges, 87000, Limoges, France
| | - Raphaël Grougnet
- Franco-Brazilian Network on Natural Products, FB2NP
- UMR CNRS 8038 CiTCoM, Université Paris Cité, 75006, Paris, France
| | - Lucindo José Quintans-Júnior
- Franco-Brazilian Network on Natural Products, FB2NP
- LANEF, Universidade Federal de Sergipe, 49100-000, São Cristóvão, Sergipe, Brazil
| | | | - Valérie Thiéry
- UMR CNRS 7266 LIENSs, La Rochelle Université, UMR CNRS 7266 LIENSs, Curie B10 Faculté des Sciences et Technologies, Avenue Michel Crépeau, 17042, La Rochelle, France
- Franco-Brazilian Network on Natural Products, FB2NP
| | - Laurent Picot
- UMR CNRS 7266 LIENSs, La Rochelle Université, UMR CNRS 7266 LIENSs, Curie B10 Faculté des Sciences et Technologies, Avenue Michel Crépeau, 17042, La Rochelle, France
- Franco-Brazilian Network on Natural Products, FB2NP
| |
Collapse
|
3
|
Dimmer JA, Cabral FV, Núñez Montoya SC, Ribeiro MS. Towards effective natural anthraquinones to mediate antimicrobial photodynamic therapy of cutaneous leishmaniasis. Photodiagnosis Photodyn Ther 2023; 42:103525. [PMID: 36966867 DOI: 10.1016/j.pdpdt.2023.103525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 03/18/2023] [Accepted: 03/20/2023] [Indexed: 04/16/2023]
Abstract
BACKGROUND Cutaneous leishmaniasis (CL) is an important tropical neglected disease with broad geographical dispersion. The lack of effective drugs has raised an urgent need to improve CL treatment, and antimicrobial photodynamic therapy (APDT) has been investigated as a new strategy to face it with positive outcomes. Natural compounds have emerged as promising photosensitizers (PSs), but their use in vivo remains unexplored. PURPOSE In this work, we investigated the potential of three natural anthraquinones (AQs) on CL induced by Leishmania amazonensis in BALB/c mice. STUDY DESIGN/METHODS ANIMALS WERE INFECTED AND RANDOMLY DIVIDED INTO FOUR GROUPS: CG (control, non-treated group), G5ClSor-gL (treated with 5-chlorosoranjidiol and green LED, 520±10 nm), GSor-bL and GBisor-bL (treated with soranjidiol and bisoranjidiol, respectively, exposed to violet-blue LED, 410±10 nm). All AQs were assayed at 10 μM and LEDs delivered a radiant exposure of 45 J/cm2 with an irradiance of 50 mW/cm2. We assessed the parasite burden in real time for three consecutive days. Lesion evolution and pain score were assessed over 3 weeks after a single APDT session. RESULTS G5ClSor-gL was able to sustain low levels of parasite burden over time. Besides, GSor-bL showed a smaller lesion area than the control group, inhibiting the disease progression. CONCLUSION Taken together, our data demonstrate that monoAQs are promising compounds for pursuing the best protocol for treating CL and helping to face this serious health problem. Studies involving host-pathogen interaction as well as monoAQ-mediated PDT immune response are also encouraged.
Collapse
Affiliation(s)
- Jesica A Dimmer
- Universidad Nacional Córdoba. Fac. Cs. Químicas. Dpto. Ciencias Farmacéuticas. Edificio de Ciencias 2, Medina Allende y Haya de La Torre, Ciudad Universitaria. CP, X5000HUA Córdoba, Argentina; Instituto Multidisciplinario de Biología Vegetal (IMBIV), CONICET. Av. Vélez Sarsfield 1666 CP, X5016GCN Córdoba, Argentina.
| | - Fernanda V Cabral
- Centro de Lasers e Aplicações, Instituto de Pesquisas Energéticas e Nucleares (IPEN-CNEN), Av. Lineu Prestes 2242, C. Universitária "Armando de Salles Oliveira", CEP 05508-000 São Paulo, SP, Brasil
| | - Susana C Núñez Montoya
- Universidad Nacional Córdoba. Fac. Cs. Químicas. Dpto. Ciencias Farmacéuticas. Edificio de Ciencias 2, Medina Allende y Haya de La Torre, Ciudad Universitaria. CP, X5000HUA Córdoba, Argentina; Instituto Multidisciplinario de Biología Vegetal (IMBIV), CONICET. Av. Vélez Sarsfield 1666 CP, X5016GCN Córdoba, Argentina
| | - Martha S Ribeiro
- Centro de Lasers e Aplicações, Instituto de Pesquisas Energéticas e Nucleares (IPEN-CNEN), Av. Lineu Prestes 2242, C. Universitária "Armando de Salles Oliveira", CEP 05508-000 São Paulo, SP, Brasil
| |
Collapse
|
4
|
Primary Photosensitization by Chamaecrista serpens in Santa Inês Sheep. Animals (Basel) 2022; 12:ani12223132. [PMID: 36428360 PMCID: PMC9686935 DOI: 10.3390/ani12223132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/26/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022] Open
Abstract
This study aimed to clarify the type of photosensitization induced by C. serpens and to verify if the plant remains toxic after being collected and stored. Eight crossbred sheep, aged between 6 and 36 months, were divided into three groups (G1 to G3). Over 30 days, daily, G1 received an exclusive diet of C. serpens, and G2 and G3 received 10 g/kg/BW and 20 g/kg/BW, respectively. Two other sheep were used as controls (CG). Before administration, the plant had been harvested every 15 days. Liver biopsies and blood samples were taken from all sheep on day zero and weekly. All sheep that received the plant developed clinical signs of photosensitization, and no changes were observed in the serum activities of AST and GGT. On day 30, all sheep except Ov1 from G1 and Ov7 were euthanized and necropsied. All sheep that received the plant developed clinical signs. Macroscopic or histologic lesions were not observed in the liver. Ov 1 recovered 13 days after the end of ingestion. These results demonstrated that C. serpens causes primary photosensitization. It is advisable to avoid grazing on pastures invaded by the plant or to remove them from the pastures immediately after observing the first signs.
Collapse
|
5
|
Yang J, Huang Y, Xu H, Gu D, Xu F, Tang J, Fang C, Yang Y. Optimization of fungi co-fermentation for improving anthraquinone contents and antioxidant activity using artificial neural networks. Food Chem 2020; 313:126138. [DOI: 10.1016/j.foodchem.2019.126138] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/01/2019] [Accepted: 12/28/2019] [Indexed: 12/14/2022]
|
6
|
Dimmer J, Cabral FV, Sabino CP, Silva CR, Núñez-Montoya SC, Cabrera JL, Ribeiro MS. Natural anthraquinones as novel photosentizers for antiparasitic photodynamic inactivation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 61:152894. [PMID: 31054439 DOI: 10.1016/j.phymed.2019.152894] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/23/2019] [Accepted: 03/12/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Cutaneous leishmaniasis (CL) is a vector-borne disease caused by obligate protist parasites from the genus Leishmania. The potential toxicity as well as the increased resistance of standard treatments has encouraged the development of new therapeutical strategies. Photodynamic inactivation (PDI) combines the use of a photosensitizer and light to generate reactive oxygen species and kill cells, including microorganisms. Vegetal kingdom constitutes an important source of bioactive compounds that deserve to be investigated in the search of naturally occurring drugs with leishmanicidal activity. PURPOSE The purpose of this study was to test the antiparasitic activity of PDI (ApPDI) of five natural anthraquinones (AQs) obtained from Heterophyllaea lycioides (Rusby) Sandwith (Rubiacae). To support our results, effect of AQ mediated-PDI on parasite´s morphology and AQ uptake were studied. Cytotoxicity on fibroblasts was also evaluated. STUDY DESIGN/METHODS Two monomers, soranjidiol (Sor) and 5-chlorosoranjidiol (5-ClSor) plus three bi-anthraquinones (bi-AQs), bisoranjidiol (Bisor), 7-chlorobisoranjidiol (7-ClBisor) and Lycionine (Lyc) were selected for this study. Recombinant L. amazonensis promastigote strain expressing luciferase was subjected to AQs and LED treatment. Following irradiation with variable light parameters, cell viability was quantified by bioluminescence. Alteration on parasite's morphology was analyzed by scanning electron microscopy (SEM). In addition, we verified the AQ uptake in Leishmania cells by fluorescence and their toxicity on fibroblasts by using MTT assay. RESULTS Bisor, Sor and 5-ClSor exhibited photodynamic effect on L. amazonensis. SEM showed that promastigotes treated with Bisor-mediated PDI exhibited a significant alteration in shape and size. Sor and 5-ClSor presented higher uptake levels than bi-AQs (Bisor, Lyc and 7-ClBisor). Finally, Sor and Bisor presented the lowest toxic activity against fibroblasts. CONCLUSION Taking together, our results indicate that Sor presents the highest specificity towards Leishmania cells with no toxicity on fibroblasts.
Collapse
Affiliation(s)
- Jesica Dimmer
- Instituto Multidisciplinario de Biología Vegetal (IMBIV), CONICET. Av. Vélez Sarsfield 1666. CP: X5016GCN Córdoba, Argentina; Dpto. Ciencias Farmacéuticas, Fac. Cs. Qcas. Universidad Nacional Córdoba. CP: X5000HUA Córdoba, Argentina
| | - Fernanda V Cabral
- Centro de Lasers e Aplicações, Instituto de Pesquisas Energéticas e Nucleares (IPEN-CNEN/SP) - Av. Lineu Prestes 2242, Cidade Universitária "Armando de Sales Oliveira", CEP 05508-000 São Paulo, SP, Brazil
| | - Caetano Padial Sabino
- Centro de Lasers e Aplicações, Instituto de Pesquisas Energéticas e Nucleares (IPEN-CNEN/SP) - Av. Lineu Prestes 2242, Cidade Universitária "Armando de Sales Oliveira", CEP 05508-000 São Paulo, SP, Brazil; Department of Clinical Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil; Biolambda, Translational Biophotonics LTD, São Paulo, SP, Brazil
| | - Camila Ramos Silva
- Centro de Lasers e Aplicações, Instituto de Pesquisas Energéticas e Nucleares (IPEN-CNEN/SP) - Av. Lineu Prestes 2242, Cidade Universitária "Armando de Sales Oliveira", CEP 05508-000 São Paulo, SP, Brazil
| | - Susana C Núñez-Montoya
- Instituto Multidisciplinario de Biología Vegetal (IMBIV), CONICET. Av. Vélez Sarsfield 1666. CP: X5016GCN Córdoba, Argentina; Dpto. Ciencias Farmacéuticas, Fac. Cs. Qcas. Universidad Nacional Córdoba. CP: X5000HUA Córdoba, Argentina
| | - José Luis Cabrera
- Instituto Multidisciplinario de Biología Vegetal (IMBIV), CONICET. Av. Vélez Sarsfield 1666. CP: X5016GCN Córdoba, Argentina; Dpto. Ciencias Farmacéuticas, Fac. Cs. Qcas. Universidad Nacional Córdoba. CP: X5000HUA Córdoba, Argentina
| | - Martha S Ribeiro
- Centro de Lasers e Aplicações, Instituto de Pesquisas Energéticas e Nucleares (IPEN-CNEN/SP) - Av. Lineu Prestes 2242, Cidade Universitária "Armando de Sales Oliveira", CEP 05508-000 São Paulo, SP, Brazil.
| |
Collapse
|
7
|
Collett MG. Photosensitisation diseases of animals: Classification and a weight of evidence approach to primary causes. Toxicon X 2019; 3:100012. [PMID: 32550569 PMCID: PMC7285960 DOI: 10.1016/j.toxcx.2019.100012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 06/03/2019] [Accepted: 06/14/2019] [Indexed: 11/19/2022] Open
Abstract
Clare's (1952) classification system for photosensitisation diseases (types I, II, III and Uncertain) has endured many years of use despite some confusion regarding his secondary, or type III, category, as well as the more recent discovery of two mechanisms (types I and II) of phototoxicity. Therefore, to reduce confusion in terminology, I propose that Clare's four groups be known as primary (or direct), secondary (indirect or hepatogenous), endogenous (aberrant porphyrin synthesis), and idiopathic. The use of the word type can then be reserved for the mechanisms of phototoxicity. Clare's (1952, 1955) papers listed three plants as primary photosensitisers and three as idiopathic. In the literature, several other plants have been associated with photosensitisation in farm animals. Most of these are likely to have a primary pathogenesis; however, the weight of evidence for all but a few is sparse. With respect to plants (and certain mycotoxins and insects) implicated in primary photosensitisation outbreaks, McKenzie's "toxicity confidence rankings" (Australia's Poisonous Plants, Fungi and Cyanobacteria, 2012) has been adapted to "phototoxic agent confidence rankings". Thus, plants, mycotoxins or insects can be categorised regarding phototoxicity, i.e. definite (A); some evidence (B); suspected (C); or phototoxin isolated but no field cases known (D), and weight of evidence, i.e. field cases (1); experimental feeding produces photosensitisation (2); phototoxin isolated (3); phototoxin produces photosensitisation experimentally (4); and/or correlation of the action spectrum/chromatogram in blood or skin with the absorption spectrum/chromatogram of the phototoxin (5). As a result, confidence rankings ranging from A5 to D1 can be allocated. From the available literature, at least seventeen plant species can be ranked as A5 (definite phototoxicity with a maximum weight of evidence). The relatively recent breakthrough regarding the discovery of phototoxic anthraquinones in Heterophyllaea spp. has led to the serendipitous association of the same and similar anthraquinones as the most likely phototoxins in alligator weed (Alternanthera philoxeroides).
Collapse
|
8
|
Siewert B, Stuppner H. The photoactivity of natural products - An overlooked potential of phytomedicines? PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 60:152985. [PMID: 31257117 DOI: 10.1016/j.phymed.2019.152985] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 06/07/2019] [Accepted: 06/08/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Photoactivity, though known for centuries, is only recently shifting back into focus as a treatment option against cancer and microbial infections. The external factor light is the ingenious key-component of this therapy: Since light activates the drug locally, a high level of selectivity is reached and side effects are avoided. The first reported photoactive medicines were plant extracts. Synthetic entities (so-called photosensitizers PSs), however, paved the route towards the clinical approval of the so-called photodynamic therapy (PDT), and thus natural PSs took a backseat in the past. HYPOTHESIS Many isolated bioactive phytochemicals hold a hidden photoactive potential, which is overlooked due to the reduced common awareness of photoactivity. METHODS A systematic review of reported natural PSs and their supposed medicinal application was conducted by employing PubMed, Scifinder, and Web of Science. The identified photoactive natural products were compiled including information about their natural sources, their photoyield, and their pharmacological application. Furthermore, the common chemical scaffolds of natural PS are shown to enable the reader to recognize potentially overlooked natural PSs. RESULTS The literature review revealed over 100 natural PS, excluding porphyrins. The PSs were classified according to their scaffold. Thereby it was shown that some PS-scaffolds were analyzed in a detailed way, while other classes were only scarcely investigated, which leaves space for future discoveries. In addition, the literature revealed that many PSs are phytoalexins, thus the selection of the starting material significantly matters in order to find new PSs. CONCLUSION Photoactive principles are ubiquitous and can be found in various plant extracts. With the increasing availability of light-irradiation setups for the identification of photoactive natural products, we anticipate the discovery of many new natural PSs in the near future. With the accumulation of chemically diverse PSs, PDT itself might finally reach its clinical breakthrough as a promising alternative treatment against multi-resistant microbes and cancer types.
Collapse
Affiliation(s)
- Bianka Siewert
- Institute of Pharmacy/Pharmacognosy, Center for Molecular Biosciences Innsbruck (CMBI), Center for Chemistry and Biomedicine, University of Innsbruck, Innrain 80-82, Innsbruck, 6020 Austria.
| | - Hermann Stuppner
- Institute of Pharmacy/Pharmacognosy, Center for Molecular Biosciences Innsbruck (CMBI), Center for Chemistry and Biomedicine, University of Innsbruck, Innrain 80-82, Innsbruck, 6020 Austria
| |
Collapse
|
9
|
Micheloud JF, Colque-Caro LA, Comini LR, Cabrera JL, Núñez-Montoya S, Martinez OG, Gimeno EJ. Spontaneous photosensitization by Heterophyllaea pustulata Hook. f. (Rubiaceae), in sheep from Northwestern Argentina. Trop Anim Health Prod 2017; 49:1553-1556. [DOI: 10.1007/s11250-017-1354-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Accepted: 07/03/2017] [Indexed: 10/19/2022]
|