1
|
Park S, Choi N, Trang LNH, Oh M, Oh Y, Sung JH, Kim SH. Dermal Papilla Cell Proliferation of Phytochemicals Isolated from Chestnut Shells ( Castanea crenata). PLANTS (BASEL, SWITZERLAND) 2023; 12:1018. [PMID: 36903879 PMCID: PMC10005320 DOI: 10.3390/plants12051018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/19/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Castanea crenata (Fagaceae) is a species of chestnut tree that is endemic to the Republic of Korea and Japan. While its kernels are consumed, chestnut by-products such as shells and burs, which account for 10-15% of the total weight, are discarded as waste. Phytochemical and biological studies have been carried out to eliminate this waste and develop high-value products from its by-products. In this study, five new compounds (1-2, 6-8) along with seven known compounds were isolated from the shell of C. crenata. This is the first study to report diterpenes from the shell of C. crenata. Comprehensive spectroscopic data including 1D, 2D NMR, and CD spectroscopy were used to determine the compound structures. All isolated compounds were examined for their ability to stimulate dermal papilla cell proliferation using a CCK-8 assay. In particular, 6β,7β,16α,17-Tetrahydroxy-ent-kauranoic acid, isopentyl-α-L-arabinofuranosyl-(1→6)-β-D-glucopyranoside, and ellagic acid exhibited the most potent proliferation activity of all.
Collapse
Affiliation(s)
- SeonJu Park
- Chuncheon Center, Korea Basic Science Institute (KBSI), Chuncheon 24341, Republic of Korea
| | - Nahyun Choi
- Epibiotech Co., Ltd., Incheon 21984, Republic of Korea
| | | | - Mira Oh
- Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon 21983, Republic of Korea
- Research Group of Traditional Food, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea
| | - Youngse Oh
- Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon 21983, Republic of Korea
| | - Jong-Hyuk Sung
- Epibiotech Co., Ltd., Incheon 21984, Republic of Korea
- Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon 21983, Republic of Korea
| | - Seung Hyun Kim
- Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon 21983, Republic of Korea
| |
Collapse
|
2
|
Formato M, Vastolo A, Piccolella S, Calabrò S, Cutrignelli MI, Zidorn C, Pacifico S. Castanea sativa Mill. Leaf: UHPLC-HR MS/MS Analysis and Effects on In Vitro Rumen Fermentation and Methanogenesis. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248662. [PMID: 36557796 PMCID: PMC9785889 DOI: 10.3390/molecules27248662] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/02/2022] [Accepted: 12/02/2022] [Indexed: 12/14/2022]
Abstract
Castanea sativa Mill. (Fagaceae) is a deciduous tree grown for its wood and edible fruits. Chestnut processing produces residues (burs, shells, and leaves) exploitable for their diversity in bioactive compounds in animal nutrition. In fact, plant-specialized metabolites likely act as rumen modifiers. Thus, the recovery of residual plant parts as feed ingredients is an evaluable strategy. In this context, European chestnut leaves from northern Germany have been investigated, proving to be a good source of flavonoids as well as gallo- and ellagitannins. To this purpose, an alcoholic extract was obtained and an untargeted profiling carried out, mainly by means of ultra-high-performance liquid chromatography/high-resolution tandem mass spectrometry (UHPLC-HR MS/MS) techniques. To better unravel the polyphenol constituents, fractionation strategies were employed to obtain a lipophilic fraction and a polar one. This latter was highly responsive to total phenolic and flavonoid content analyses, as well as to antiradical (DPPH● and ABTS+●) and reducing activity (PFRAP) assays. The effect of the alcoholic extract and its fractions on rumen liquor was also evaluated in vitro in terms of fermentative parameter changes and impact on methanogenesis. The data acquired confirm that chestnut leaf extract and the fractions therefrom promote an increase in total volatile fatty acids, while decreasing acetate/propionate ratio and CH4 production.
Collapse
Affiliation(s)
- Marialuisa Formato
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania ‘Luigi Vanvitelli’, Via Vivaldi 43, 81100 Caserta, Italy
| | - Alessandro Vastolo
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Via Federico Delpino 1, 80137 Napoli, Italy
| | - Simona Piccolella
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania ‘Luigi Vanvitelli’, Via Vivaldi 43, 81100 Caserta, Italy
| | - Serena Calabrò
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Via Federico Delpino 1, 80137 Napoli, Italy
| | - Monica Isabella Cutrignelli
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Via Federico Delpino 1, 80137 Napoli, Italy
| | - Christian Zidorn
- Pharmazeutisches Institut, Abteilung Pharmazeutische Biologie, Christian-Albrechts-Universität zu Kiel, Gutenbergstraße 76, 24118 Kiel, Germany
| | - Severina Pacifico
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania ‘Luigi Vanvitelli’, Via Vivaldi 43, 81100 Caserta, Italy
- Correspondence:
| |
Collapse
|
3
|
Antioxidants in Animal Nutrition: UHPLC-ESI-Q qTOF Analysis and Effects on In Vitro Rumen Fermentation of Oak Leaf Extracts. Antioxidants (Basel) 2022; 11:antiox11122366. [PMID: 36552573 PMCID: PMC9774136 DOI: 10.3390/antiox11122366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 11/23/2022] [Accepted: 11/26/2022] [Indexed: 12/03/2022] Open
Abstract
The genus Quercus supplies a large amount of residual material (e.g., bark, acorns, leaves, wood), the valorization of which can favor a supply of antioxidant polyphenols to be used in the pharmaceutical, nutraceutical, or cosmeceutical sector. The recovery of specialized metabolites could also benefit livestock feeding, so much so that polyphenols have gained attention as rumen fermentation modifiers and for mitigating the oxidative imbalance to which farm animals are subject. In this context, leaves of Quercus robur L. from Northern Germany were of interest and the alcoholic extract obtained underwent an untargeted profiling by means of ultra-high-performance liquid chromatography/high-resolution tandem mass spectrometry (UHPLC-HRMS/MS) techniques. As triterpenes and fatty acids occurred, the alcoholic extract fractionation pointed out the obtainment of a polyphenol fraction, broadly constituted by coumaroyl flavonol glycosides and condensed tannins. Total phenol, flavonoid and condensed tannins content assays, as well as antiradical (DPPH● and ABTS+●) and reducing activity (PFRAP) were carried out on the alcoholic extract and its fractions. When the effects on rumen liquor was evaluated in vitro in terms of changes in fermentation characteristics, it was observed that oak leaf extract and its fractions promoted an increase in total volatile fatty acids and differently modulated the relative content of each fatty acid.
Collapse
|
4
|
Le KH, Huynh BLC, Pham NKT, Do THT, Nguyen LTT, Dang VS, Ngo QL, Tran TNM, Bui TD, Phan NM, Mai DT, Nguyen TP. Cycloartane-type triterpenoids from the whole plants of Macrosolen bidoupensis. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2022; 24:596-602. [PMID: 34292109 DOI: 10.1080/10286020.2021.1949301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 06/24/2021] [Indexed: 06/13/2023]
Abstract
One new cycloartane-type triterpenoid, named macrobidoupoic acid A (as an C-24 epimeric mixture, 4a, 4 b), together with three known ones (1-3), were clarified by different chromatography from the M. bidoupensis whole plants. Triterpenoids (1, 3 & 4) were detected for the first time from the Macrosolen genus. Chemical structures of them were illuminated using HR-ESI-MS, and NMR (1 D & 2 D) assessments. The cytotoxic properties of triterpenoids (3 & 4) were examined against two human cancer cell lines (A549, and RD) by MTT assay. As results shown, triterpenoids (3 & 4) possessed moderate cytotoxic activity against A549 and RD cancer cells (IC50 ranged from 5.44 to 39.52 μM).
Collapse
Affiliation(s)
- Kieu Hung Le
- Faculty of Chemistry, Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi 100000, Vietnam
- Department of Chemistry, Le Quy Don High School for the Gifted, Ba Ria-Vung Tau Province 78000, Vietnam
| | - Bui Linh Chi Huynh
- Department of Science, Dong Nai University, Bien Hoa City, Le Quy Don, Dong Nai Province 76000, Vietnam
| | - Nguyen Kim Tuyen Pham
- Faculty of Environmental Science, Sai Gon University, Ho Chi Minh City 70000, Vietnam
| | - Thi Hong Tuoi Do
- Department of Pharmacology, Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City 70000, Vietnam
| | - Le Thanh Tuyen Nguyen
- Saigon Pharmaceutical Sciences & Technologies Center, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City 70000, Vietnam
| | - Van Son Dang
- The VNM Herbarium, Institute of Tropical Biology, Academy of Science and Technology, Ho Chi Minh City 70000, Vietnam
| | | | - Thi Ngoc Mai Tran
- Institute of Applied Sciences, Ho Chi Minh City University of Technology, Ho Chi Minh City 700000, Vietnam
| | - Trong Dat Bui
- Bioactive Compounds Laboratory, Institute of Chemical Technology, Vietnam Academy of Science and Technology, Ho Chi Minh City 70000, Vietnam
| | - Nhat Minh Phan
- Faculty of Chemistry, Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi 100000, Vietnam
- Bioactive Compounds Laboratory, Institute of Chemical Technology, Vietnam Academy of Science and Technology, Ho Chi Minh City 70000, Vietnam
| | - Dinh Tri Mai
- Faculty of Chemistry, Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi 100000, Vietnam
- Bioactive Compounds Laboratory, Institute of Chemical Technology, Vietnam Academy of Science and Technology, Ho Chi Minh City 70000, Vietnam
| | - Tan Phat Nguyen
- Faculty of Chemistry, Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi 100000, Vietnam
- Bioactive Compounds Laboratory, Institute of Chemical Technology, Vietnam Academy of Science and Technology, Ho Chi Minh City 70000, Vietnam
| |
Collapse
|
5
|
Hameed H, King EFB, Doleckova K, Bartholomew B, Hollinshead J, Mbye H, Ullah I, Walker K, Van Veelen M, Abou-Akkada SS, Nash RJ, Horrocks PD, Price HP. Temperate Zone Plant Natural Products-A Novel Resource for Activity against Tropical Parasitic Diseases. Pharmaceuticals (Basel) 2021; 14:227. [PMID: 33800005 PMCID: PMC7998250 DOI: 10.3390/ph14030227] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/22/2021] [Accepted: 03/03/2021] [Indexed: 11/16/2022] Open
Abstract
The use of plant-derived natural products for the treatment of tropical parasitic diseases often has ethnopharmacological origins. As such, plants grown in temperate regions remain largely untested for novel anti-parasitic activities. We describe here a screen of the PhytoQuest Phytopure library, a novel source comprising over 600 purified compounds from temperate zone plants, against in vitro culture systems for Plasmodium falciparum, Leishmania mexicana, Trypanosoma evansi and T. brucei. Initial screen revealed 6, 65, 15 and 18 compounds, respectively, that decreased each parasite's growth by at least 50% at 1-2 µM concentration. These initial hits were validated in concentration-response assays against the parasite and the human HepG2 cell line, identifying hits with EC50 < 1 μM and a selectivity index of >10. Two sesquiterpene glycosides were identified against P. falciparum, four sterols against L. mexicana, and five compounds of various scaffolds against T. brucei and T. evansi. An L. mexicana resistant line was generated for the sterol 700022, which was found to have cross-resistance to the anti-leishmanial drug miltefosine as well as to the other leishmanicidal sterols. This study highlights the potential of a temperate plant secondary metabolites as a novel source of natural products against tropical parasitic diseases.
Collapse
Affiliation(s)
- Hamza Hameed
- Centre for Applied Entomology and Parasitology, Keele University, Staffordshire ST5 5BG, UK; (H.H.); (E.F.B.K.); (K.D.); (H.M.); (I.U.); (M.V.V.)
- Department of Chemistry, College of Education for Pure Science, University of Mosul, Mosul, Iraq
| | - Elizabeth F. B. King
- Centre for Applied Entomology and Parasitology, Keele University, Staffordshire ST5 5BG, UK; (H.H.); (E.F.B.K.); (K.D.); (H.M.); (I.U.); (M.V.V.)
| | - Katerina Doleckova
- Centre for Applied Entomology and Parasitology, Keele University, Staffordshire ST5 5BG, UK; (H.H.); (E.F.B.K.); (K.D.); (H.M.); (I.U.); (M.V.V.)
- Department of Biology, Faculty of Life Sciences, University of Hradec Králové, 500 03 Hradec Králové, Czech Republic
| | | | | | - Haddijatou Mbye
- Centre for Applied Entomology and Parasitology, Keele University, Staffordshire ST5 5BG, UK; (H.H.); (E.F.B.K.); (K.D.); (H.M.); (I.U.); (M.V.V.)
- MRC Unit The Gambia at LSHTM, Atlantic Boulevard, Fajara, Banjul PO Box 273, The Gambia
| | - Imran Ullah
- Centre for Applied Entomology and Parasitology, Keele University, Staffordshire ST5 5BG, UK; (H.H.); (E.F.B.K.); (K.D.); (H.M.); (I.U.); (M.V.V.)
- Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA 02115, USA
| | - Karen Walker
- School of Life Sciences, Keele University, Staffordshire ST5 5BG, UK;
| | - Maria Van Veelen
- Centre for Applied Entomology and Parasitology, Keele University, Staffordshire ST5 5BG, UK; (H.H.); (E.F.B.K.); (K.D.); (H.M.); (I.U.); (M.V.V.)
| | | | - Robert J. Nash
- PhytoQuest Limited, Aberystwyth SY23 3EB, UK; (B.B.); (J.H.); (R.J.N.)
| | - Paul D. Horrocks
- Centre for Applied Entomology and Parasitology, Keele University, Staffordshire ST5 5BG, UK; (H.H.); (E.F.B.K.); (K.D.); (H.M.); (I.U.); (M.V.V.)
| | - Helen P. Price
- Centre for Applied Entomology and Parasitology, Keele University, Staffordshire ST5 5BG, UK; (H.H.); (E.F.B.K.); (K.D.); (H.M.); (I.U.); (M.V.V.)
| |
Collapse
|
6
|
Ullah A, Munir S, Badshah SL, Khan N, Ghani L, Poulson BG, Emwas AH, Jaremko M. Important Flavonoids and Their Role as a Therapeutic Agent. Molecules 2020; 25:molecules25225243. [PMID: 33187049 PMCID: PMC7697716 DOI: 10.3390/molecules25225243] [Citation(s) in RCA: 524] [Impact Index Per Article: 104.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 10/25/2020] [Accepted: 11/01/2020] [Indexed: 12/14/2022] Open
Abstract
Flavonoids are phytochemical compounds present in many plants, fruits, vegetables, and leaves, with potential applications in medicinal chemistry. Flavonoids possess a number of medicinal benefits, including anticancer, antioxidant, anti-inflammatory, and antiviral properties. They also have neuroprotective and cardio-protective effects. These biological activities depend upon the type of flavonoid, its (possible) mode of action, and its bioavailability. These cost-effective medicinal components have significant biological activities, and their effectiveness has been proved for a variety of diseases. The most recent work is focused on their isolation, synthesis of their analogs, and their effects on human health using a variety of techniques and animal models. Thousands of flavonoids have been successfully isolated, and this number increases steadily. We have therefore made an effort to summarize the isolated flavonoids with useful activities in order to gain a better understanding of their effects on human health.
Collapse
Affiliation(s)
- Asad Ullah
- Department of Chemistry, Islamia College University Peshawar, Peshawar 25120, Pakistan; (A.U.); (S.M.); (N.K.)
| | - Sidra Munir
- Department of Chemistry, Islamia College University Peshawar, Peshawar 25120, Pakistan; (A.U.); (S.M.); (N.K.)
| | - Syed Lal Badshah
- Department of Chemistry, Islamia College University Peshawar, Peshawar 25120, Pakistan; (A.U.); (S.M.); (N.K.)
- Correspondence: (S.L.B.); (M.J.)
| | - Noreen Khan
- Department of Chemistry, Islamia College University Peshawar, Peshawar 25120, Pakistan; (A.U.); (S.M.); (N.K.)
| | - Lubna Ghani
- Department of Chemistry, The University of Azad Jammu and Kashmir, Muzaffarabad, Azad Kashmir 13230, Pakistan;
| | - Benjamin Gabriel Poulson
- Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia;
| | - Abdul-Hamid Emwas
- Core Labs, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia;
| | - Mariusz Jaremko
- Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia;
- Correspondence: (S.L.B.); (M.J.)
| |
Collapse
|
7
|
Langeder J, Grienke U, Chen Y, Kirchmair J, Schmidtke M, Rollinger JM. Natural products against acute respiratory infections: Strategies and lessons learned. JOURNAL OF ETHNOPHARMACOLOGY 2020; 248:112298. [PMID: 31610260 DOI: 10.1016/j.jep.2019.112298] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 10/08/2019] [Accepted: 10/09/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE A wide variety of traditional herbal remedies have been used throughout history for the treatment of symptoms related to acute respiratory infections (ARIs). AIM OF THE REVIEW The present work provides a timely overview of natural products affecting the most common pathogens involved in ARIs, in particular influenza viruses and rhinoviruses as well as bacteria involved in co-infections, their molecular targets, their role in drug discovery, and the current portfolio of available naturally derived anti-ARI drugs. MATERIALS AND METHODS Literature of the last ten years was evaluated for natural products active against influenza viruses and rhinoviruses. The collected bioactive agents were further investigated for reported activities against ARI-relevant bacteria, and analysed for the chemical space they cover in relation to currently known natural products and approved drugs. RESULTS An overview of (i) natural compounds active in target-based and/or phenotypic assays relevant to ARIs, (ii) extracts, and (iii) in vivo data are provided, offering not only a starting point for further in-depth phytochemical and antimicrobial studies, but also revealing insights into the most relevant anti-ARI scaffolds and compound classes. Investigations of the chemical space of bioactive natural products based on principal component analysis show that many of these compounds are drug-like. However, some bioactive natural products are substantially larger and have more polar groups than most approved drugs. A workflow with various strategies for the discovery of novel antiviral agents is suggested, thereby evaluating the merit of in silico techniques, the use of complementary assays, and the relevance of ethnopharmacological knowledge on the exploration of the therapeutic potential of natural products. CONCLUSIONS The longstanding ethnopharmacological tradition of natural remedies against ARIs highlights their therapeutic impact and remains a highly valuable selection criterion for natural materials to be investigated in the search for novel anti-ARI acting concepts. We observe a tendency towards assaying for broad-spectrum antivirals and antibacterials mainly discovered in interdisciplinary academic settings, and ascertain a clear demand for more translational studies to strengthen efforts for the development of effective and safe therapeutic agents for patients suffering from ARIs.
Collapse
Affiliation(s)
- Julia Langeder
- Department of Pharmacognosy, Faculty of Life Sciences, University of Vienna, Althanstraße 14, 1090, Vienna, Austria
| | - Ulrike Grienke
- Department of Pharmacognosy, Faculty of Life Sciences, University of Vienna, Althanstraße 14, 1090, Vienna, Austria.
| | - Ya Chen
- University of Hamburg, Center for Bioinformatics (ZBH), Bundesstraße 43, 22763, Hamburg, Germany
| | - Johannes Kirchmair
- Department of Chemistry, University of Bergen, N-5020, Bergen, Norway; Computational Biology Unit (CBU), University of Bergen, N-5020, Bergen, Norway
| | - Michaela Schmidtke
- Section of Experimental Virology, Department of Medical Microbiology, Jena University Hospital, Hans-Knöll-Straße 2, Jena, 07745, Germany
| | - Judith M Rollinger
- Department of Pharmacognosy, Faculty of Life Sciences, University of Vienna, Althanstraße 14, 1090, Vienna, Austria
| |
Collapse
|
8
|
Flavonoids as Antiviral Agents for Enterovirus A71 ( EV-A71). Viruses 2020; 12:v12020184. [PMID: 32041232 PMCID: PMC7077323 DOI: 10.3390/v12020184] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 01/21/2020] [Accepted: 01/22/2020] [Indexed: 12/15/2022] Open
Abstract
Flavonoids are natural biomolecules that are known to be effective antivirals. These biomolecules can act at different stages of viral infection, particularly at the molecular level to inhibit viral growth. Enterovirus A71 (EV-A71), a non-enveloped RNA virus, is one of the causative agents of hand, foot and mouth disease (HFMD), which is prevalent in Asia. Despite much effort, no clinically approved antiviral treatment is available for children suffering from HFMD. Flavonoids from plants serve as a vast reservoir of therapeutically active constituents that have been explored as potential antiviral candidates against RNA and DNA viruses. Here, we reviewed flavonoids as evidence-based natural sources of antivirals against non-picornaviruses and picornaviruses. The detailed molecular mechanisms involved in the inhibition of EV-A71 infections are discussed.
Collapse
|