1
|
Yang W, Zhang L, Yang Y, Xiang H, Yang P. Plant secondary metabolites-mediated plant defense against bacteria and fungi pathogens. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 217:109224. [PMID: 39437667 DOI: 10.1016/j.plaphy.2024.109224] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/30/2024] [Accepted: 10/19/2024] [Indexed: 10/25/2024]
Abstract
Plant diseases caused by pathogenic bacteria and fungi are major threats to both wild plants and crops. To counteract these threats, plants have evolved various defense mechanisms, including the production of plant secondary metabolites (PSMs). These compounds, such as terpenoids, phenolics, alkaloids, and glucosinolates, offer a versatile, efficient, and cost-effective means of pathogen resistance. The traditional pathogen management methods relying on synthetic microbicides are often environment unfriendly. In contrast, PSMs provide promising alternative way due to their high efficiency and environmental benefits. This article reviews the categories, biosynthetic pathways, mechanisms of actions, and the commercialization of the PSMs to enhance our understanding of their pathogen resistance capabilities. The goal is to develop sustainable disease management strategies using PSM-based bactericides and fungicides.
Collapse
Affiliation(s)
- Wenjuan Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Lu Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Yong Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Haibo Xiang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China.
| | - Pingfang Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China.
| |
Collapse
|
2
|
Çiçek SS, Mangoni A, Hanschen FS, Agerbirk N, Zidorn C. Essentials in the acquisition, interpretation, and reporting of plant metabolite profiles. PHYTOCHEMISTRY 2024; 220:114004. [PMID: 38331135 DOI: 10.1016/j.phytochem.2024.114004] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/10/2024]
Abstract
Plant metabolite profiling reveals the diversity of secondary or specialized metabolites in the plant kingdom with its hundreds of thousands of species. Specialized plant metabolites constitute a vast class of chemicals posing significant challenges in analytical chemistry. In order to be of maximum scientific relevance, reports dealing with these compounds and their source species must be transparent, make use of standards and reference materials, and be based on correctly and traceably identified plant material. Essential aspects in qualitative plant metabolite profiling include: (i) critical review of previous literature and a reasoned sampling strategy; (ii) transparent plant sampling with wild material documented by vouchers in public herbaria and, optimally, seed banks; (iii) if possible, inclusion of generally available reference plant material; (iv) transparent, documented state-of-the art chemical analysis, ideally including chemical reference standards; (v) testing for artefacts during preparative extraction and isolation, using gentle analytical methods; (vi) careful chemical data interpretation, avoiding over- and misinterpretation and taking into account phytochemical complexity when assigning identification confidence levels, and (vii) taking all previous scientific knowledge into account in reporting the scientific data. From the current stage of the phytochemical literature, selected comments and suggestions are given. In the past, proposed revisions of botanical taxonomy were sometimes based on metabolite profiles, but this approach ("chemosystematics" or "chemotaxonomy") is outdated due to the advent of DNA sequence-based phylogenies. In contrast, systematic comparisons of plant metabolite profiles in a known phylogenetic framework remain relevant. This approach, known as chemophenetics, allows characterizing species and clades based on their array of specialized metabolites, aids in deducing the evolution of biosynthetic pathways and coevolution, and can serve in identifying new sources of rare and economically interesting natural products.
Collapse
Affiliation(s)
- Serhat S Çiçek
- Department of Biotechnology, Hamburg University of Applied Sciences, Ulmenliet 20, 21033, Hamburg, Germany
| | - Alfonso Mangoni
- Dipartimento di Farmacia, Università di Napoli Federico II, Via Domenico Montesano 49, 80131, Napoli, Italy
| | - Franziska S Hanschen
- Plant Quality and Food Security, Leibniz Institute of Vegetable and Ornamental Crops (IGZ) e. V., Theodor-Echtermeyer-Weg 1, 14979, Grossbeeren, Germany
| | - Niels Agerbirk
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg, Denmark
| | - Christian Zidorn
- Pharmazeutisches Institut, Abteilung Pharmazeutische Biologie, Christian-Albrechts- Universität zu Kiel, Gutenbergstraße 76, 24118, Kiel, Germany.
| |
Collapse
|
3
|
Kang D, Lee H, Bae H, Jeon J. Comparative insight of pesticide transformations between river and wetland systems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 879:163172. [PMID: 37003314 DOI: 10.1016/j.scitotenv.2023.163172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/18/2023] [Accepted: 03/26/2023] [Indexed: 05/17/2023]
Abstract
The widespread use of pesticides threatens the environment and ecosystems. Despite the positive effects of plant protection products, pesticides also have unexpected negative effects on nontarget organisms. The microbial biodegradation of pesticides is one of the major pathways for reducing their risks at aquatic ecosystems. The objective of this study was to compare the biodegradability of pesticides in simulated wetland and river systems. Parallel experiments were conducted with 17 pesticides based on the OECD 309 guidelines. A comprehensive analytical method, such as target screening combined with suspect and non-target screening, was performed to evaluate the biodegradation via identification of transformation products (TPs) using LC-HRMS. As evidence of biodegradation, we identified 97 TPs for 15 pesticides. Metolachlor and dimethenamid had 23 and 16 TPs, respectively, including Phase II glutathione conjugates. The analysis of 16S rRNA sequences for microbials characterized operational taxonomic units. Rheinheimera and Flavobacterium, which have the potential for glutathione S-transferase, were dominant in wetland systems. Estimation of toxicity, biodegradability, and hydrophobicity using QSAR prediction indicated lower environmental risks of detected TPs. We conclude that the wetland system is more favorable for pesticide degradation and risk mitigation mainly attributed to the abundance and variety of the microbial communities.
Collapse
Affiliation(s)
- Daeho Kang
- Department of Environmental Engineering, Changwon National University, Changwon, Gyeongsangnamdo 51140, Republic of Korea
| | - Hyebin Lee
- Graduate School of Carbon Neutrality, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan 44919, Republic of Korea
| | - Hyokwan Bae
- Graduate School of Carbon Neutrality, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan 44919, Republic of Korea; Department of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan 44919, Republic of Korea
| | - Junho Jeon
- Department of Environmental Engineering, Changwon National University, Changwon, Gyeongsangnamdo 51140, Republic of Korea; School of Smart and Green Engineering, Changwon National University, Changwon, Gyeongsangnamdo 51140, Republic of Korea.
| |
Collapse
|
4
|
Plaszkó T, Szűcs Z, Vasas G, Gonda S. Effects of Glucosinolate-Derived Isothiocyanates on Fungi: A Comprehensive Review on Direct Effects, Mechanisms, Structure-Activity Relationship Data and Possible Agricultural Applications. J Fungi (Basel) 2021; 7:539. [PMID: 34356918 PMCID: PMC8305656 DOI: 10.3390/jof7070539] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/24/2021] [Accepted: 07/03/2021] [Indexed: 12/29/2022] Open
Abstract
Plants heavily rely on chemical defense systems against a variety of stressors. The glucosinolates in the Brassicaceae and some allies are the core molecules of one of the most researched such pathways. These natural products are enzymatically converted into isothiocyanates (ITCs) and occasionally other defensive volatile organic constituents (VOCs) upon fungal challenge or tissue disruption to protect the host against the stressor. The current review provides a comprehensive insight on the effects of the isothiocyanates on fungi, including, but not limited to mycorrhizal fungi and pathogens of Brassicaceae. In the review, our current knowledge on the following topics are summarized: direct antifungal activity and the proposed mechanisms of antifungal action, QSAR (quantitative structure-activity relationships), synergistic activity of ITCs with other agents, effects of ITCs on soil microbial composition and allelopathic activity. A detailed insight into the possible applications is also provided: the literature of biofumigation studies, inhibition of post-harvest pathogenesis and protection of various products including grains and fruits is also reviewed herein.
Collapse
Affiliation(s)
- Tamás Plaszkó
- Department of Botany, Division of Pharmacognosy, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary; (T.P.); (Z.S.); (G.V.)
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, 4032 Debrecen, Hungary
| | - Zsolt Szűcs
- Department of Botany, Division of Pharmacognosy, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary; (T.P.); (Z.S.); (G.V.)
- Healthcare Industry Institute, University of Debrecen, 4032 Debrecen, Hungary
| | - Gábor Vasas
- Department of Botany, Division of Pharmacognosy, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary; (T.P.); (Z.S.); (G.V.)
| | - Sándor Gonda
- Department of Botany, Division of Pharmacognosy, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary; (T.P.); (Z.S.); (G.V.)
| |
Collapse
|