1
|
Wei W, Yang C, Su Z, Wang Y, Wang P, Yan X, Zhou Z. Engineering a Yeast Cell Factory to Sustainably Biosynthesize Parthenolide. ACS Synth Biol 2025; 14:729-739. [PMID: 40050240 DOI: 10.1021/acssynbio.4c00665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
The sesquiterpene lactone parthenolide is a promising anticancer drug. Its biosynthesis via a microbial cell factory has been considered as a sustainable alternative to plant extraction. Herein, systematic metabolic engineering approaches, as well as the introduction of a novel noncanonical tricarboxylic acid (TCA) cycle, were employed to enhance the production of the key precursor germacrene A. By identifying two new dehydrogenases and controlling the expression of parthenolide synthase, we further achieved the elimination of byproducts and enhanced parthenolide production. A two-stage fermentation approach and in situ product extraction using macroreticular resin were further applied to relieve the nocuous effect of costunolide and parthenolide on the growth of yeast cell factories, ultimately achieving a titer of 549.7 mg/L for parthenolide and 972.7 mg/L for costunolide in a 10 L fermenter, which represents the highest reported titer obtained by microbial fermentation. The strategies should also contribute to the microbial cell factory-construction for other natural products exhibiting toxicity.
Collapse
Affiliation(s)
- Wenping Wei
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chengshuai Yang
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Zhen Su
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Wang
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Pingping Wang
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Xing Yan
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhihua Zhou
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Li C, Li Y, Wang J, Lu F, Zheng L, Yang L, Sun W, Ro DK, Qu X, Wu Y, Zhang Y. An independent biosynthetic route to frame a xanthanolide-type sesquiterpene lactone in Asteraceae. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e17199. [PMID: 39642193 DOI: 10.1111/tpj.17199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/25/2024] [Accepted: 11/27/2024] [Indexed: 12/08/2024]
Abstract
Xanthanolides, also described as seco-guaianolides, are unique sesquiterpene lactones (STLs) with diverse bioactivities. Most of xanthanolides are 12,8-olides based on the position of their lactone ring. The biosynthetic pathway leading to xanthanolides has hitherto been elusive, especially how nature creates the xanthane skeleton is a long-standing question. This study reports the elucidation of a complete biosynthetic pathway to the important 12,8-xanthanolide 8-epi-xanthatin. The xanthane-type backbone is directly derived from the central precursor germacrene-type sesquiterpene, germacrene A acid, via oxidative rearrangement, catalyzed by an unusual cytochrome P450. Subsequently, a 12,8-lactone ring is formed within this xanthane-type backbone resulting in xanthanolides. The biosynthetic pathway for xanthanolides contrasts with the previously unified biosynthetic route for diverse 12,6-guaianolides, in which a 12,6-lactone ring formation precedes the transformation of a germacrene-type skeleton into a guaiane-type structure. The discovery of the full biosynthetic pathway of 8-epi-xanthantin opens new opportunities for producing xanthanolides in microbial organisms using synthetic biology strategies.
Collapse
Affiliation(s)
- Changfu Li
- Shanghai Key Laboratory of Bio-Energy Crops, Synthetic Biology Research Center, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Yuanjun Li
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Jinxu Wang
- Shanghai Key Laboratory of Bio-Energy Crops, Synthetic Biology Research Center, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Fengliu Lu
- Shanghai Key Laboratory of Bio-Energy Crops, Synthetic Biology Research Center, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Lifen Zheng
- Shanghai Key Laboratory of Bio-Energy Crops, Synthetic Biology Research Center, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Lu Yang
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wenwen Sun
- Shanghai Key Laboratory of Bio-Energy Crops, Synthetic Biology Research Center, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Dae-Kyun Ro
- Department of Biological Sciences, University of Calgary, Calgary, T2N 1N4, Alberta, Canada
| | - Xudong Qu
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yihan Wu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Yansheng Zhang
- Shanghai Key Laboratory of Bio-Energy Crops, Synthetic Biology Research Center, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
3
|
Amrehn E, Spring O. Ultrastructural Alterations in Cells of Sunflower Linear Glandular Trichomes during Maturation. PLANTS 2021; 10:plants10081515. [PMID: 34451559 PMCID: PMC8398616 DOI: 10.3390/plants10081515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/19/2021] [Accepted: 07/21/2021] [Indexed: 11/29/2022]
Abstract
Sunflower and related taxa are known to possess a characteristic type of multicellular uniseriate trichome which produces sesquiterpenes and flavonoids of yet unknown function for this plant. Contrary to the metabolic profile, the cytological development and ultrastructural rearrangements during the biosynthetic activity of the trichome have not been studied in detail so far. Light, fluorescence and transmission electron microscopy were employed to investigate the functional structure of different trichome cells and their subcellular compartmentation in the pre-secretory, secretory and post-secretory phase. It was shown that the trichome was composed of four cell types, forming the trichome basis with a basal and a stalk cell, a variable number (mostly from five to eight) of barrel-shaped glandular cells and the tip consisting of a dome-shaped apical cell. Metabolic activity started at the trichome tip sometimes accompanied by the formation of small subcuticular cavities at the apical cell. Subsequently, metabolic activity progressed downwards in the upper glandular cells. Cells involved in the secretory process showed disintegration of the subcellular compartments and lost vitality in parallel to deposition of fluorescent and brownish metabolites. The subcuticular cavities usually collapsed in the early secretory stage, whereas the colored depositions remained in cells of senescent hairs.
Collapse
|
4
|
Thakur V, Bains S, Kaur R, Singh K. Identification and characterization of SlbHLH, SlDof and SlWRKY transcription factors interacting with SlDPD gene involved in costunolide biosynthesis in Saussurea lappa. Int J Biol Macromol 2021; 173:146-159. [PMID: 33482203 DOI: 10.1016/j.ijbiomac.2021.01.114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/26/2020] [Accepted: 01/17/2021] [Indexed: 11/27/2022]
Abstract
The genes involved in costunolide biosynthesis in Saussurea lappa have been identified recently by our lab. However, the study of transcriptional regulators of these genes was lacking for better opportunities for engineering the pharmacologically important biosynthetic pathway. Therefore, we cloned the promoter region of diphosphomevalonate decarboxylase gene (DPD) and analyzed its cis-acting regulatory elements to reveal the potential transcription factor (TF) binding sites for Dof, bHLH and WRKY family proteins in the gene promoter. The transcriptome study approach followed by the hidden Markov model based search, digital gene expression, co-expression network analysis, conserved domain properties and evolutionary analyses were carried out to screen out seven putative TFs for the DPD-TF interaction studies. Yeast one-hybrid assays were performed and three TFs were reported, namely, SlDOF2, SlbHLH3 and SlWRKY2 from Dof, bHLH and WRKY families, respectively that interacted positively with the DPD gene of the costunolide biosynthetic pathway. The tissue specific relative gene expression studies also supported the linked co-expression of the gene and its interacting TFs The present report will improve the understanding of transcriptional regulation pattern of costunolide biosynthetic pathway.
Collapse
Affiliation(s)
- Vasundhara Thakur
- Department of Biotechnology, Panjab University, BMS Block I, Sector 25, Chandigarh 160014, India
| | - Savita Bains
- Department of Biotechnology, Panjab University, BMS Block I, Sector 25, Chandigarh 160014, India
| | - Ravneet Kaur
- Department of Biotechnology, Panjab University, BMS Block I, Sector 25, Chandigarh 160014, India
| | - Kashmir Singh
- Department of Biotechnology, Panjab University, BMS Block I, Sector 25, Chandigarh 160014, India.
| |
Collapse
|
5
|
Spring O, Schmauder K, Lackus ND, Schreiner J, Meier C, Wellhausen J, Smith LV, Frey M. Spatial and developmental synthesis of endogenous sesquiterpene lactones supports function in growth regulation of sunflower. PLANTA 2020; 252:2. [PMID: 32504343 PMCID: PMC7275010 DOI: 10.1007/s00425-020-03409-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 05/29/2020] [Indexed: 05/28/2023]
Abstract
Tissue-specific occurrence and formation of endogenous sesquiterpene lactones has been assessed and suggests physiological function as antagonists of auxin-induced plant growth in sunflower. Sunflower, Helianthus annuus, accumulate high concentrations of bioactive sesquiterpene lactones (STL) in glandular trichomes, but in addition, structurally different STL occur in only trace amounts in the inner tissues. The spatial and temporal production of these endogenous STL during early phases of plant development is widely unknown and their physiological function as putative natural growth regulators is yet speculative. By means of HPLC and MS analysis it was shown that costunolide, dehydrocostuslactone, 8-epixanthatin and tomentosin are already present in dry seeds and can be extracted in low amounts from cotyledons, hypocotyls and roots of seedlings during the first days after germination. Semi-quantitative and RT-qPCR experiments with genes of the key enzymes of two independent routes of the endogenous STL biosynthesis confirmed the early and individual expression in these organs and revealed a gradual down regulation during the first 72-96 h after germination. Light irradiation of the plants led to a fast, but transient increase of STL in parts of the hypocotyl which correlated with growth retardation of the stem. One-sided external application of costunolide on hypocotyls conferred reduced growth of the treated side, thus resulting in the curving of the stem towards the side of the application. This indicates the inhibiting effects of STL on plant growth. The putative function of endogenous STL in sunflower as antagonists of auxin in growth processes is discussed.
Collapse
Affiliation(s)
- Otmar Spring
- Institute of Biology, University of Hohenheim, Garbenstraße 30, 70593, Stuttgart, Germany.
| | - Katharina Schmauder
- Institute of Biology, University of Hohenheim, Garbenstraße 30, 70593, Stuttgart, Germany
| | - Nathalie D Lackus
- Institute of Biology, University of Hohenheim, Garbenstraße 30, 70593, Stuttgart, Germany
| | - Jasmin Schreiner
- Institute of Biology, University of Hohenheim, Garbenstraße 30, 70593, Stuttgart, Germany
| | - Carolin Meier
- Institute of Biology, University of Hohenheim, Garbenstraße 30, 70593, Stuttgart, Germany
| | - Jan Wellhausen
- Institute of Biology, University of Hohenheim, Garbenstraße 30, 70593, Stuttgart, Germany
| | - Lisa V Smith
- Institute of Biology, University of Hohenheim, Garbenstraße 30, 70593, Stuttgart, Germany
| | - Maximilian Frey
- Institute of Biology, University of Hohenheim, Garbenstraße 30, 70593, Stuttgart, Germany
| |
Collapse
|
6
|
Frey M. Traps and Pitfalls-Unspecific Reactions in Metabolic Engineering of Sesquiterpenoid Pathways. Molecules 2020; 25:E1935. [PMID: 32331245 PMCID: PMC7221646 DOI: 10.3390/molecules25081935] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/19/2020] [Accepted: 04/21/2020] [Indexed: 02/06/2023] Open
Abstract
The characterization of plant enzymes by expression in prokaryotic and eukaryotic (yeast and plants) heterologous hosts has widely been used in recent decades to elucidate metabolic pathways in plant secondary metabolism. Yeast and plant systems provide the cellular environment of a eukaryotic cell and the subcellular compartmentalization necessary to facilitate enzyme function. The expression of candidate genes in these cell systems and the identification of the resulting products guide the way for the identification of enzymes with new functions. However, in many cases, the detected compounds are not the direct enzyme products but are caused by unspecific subsequent reactions. Even if the mechanisms for these unspecific reactions are in many cases widely reported, there is a lack of overview of potential reactions that may occur to provide a guideline for researchers working on the characterization of new enzymes. Here, an across-the-board summary of rearrangement reactions of sesquiterpenes in metabolic pathway engineering is presented. The different kinds of unspecific reactions as well as their chemical and cellular background are explained and strategies how to spot and how to avoid these unspecific reactions are given. Also, a systematic approach of classification of unspecific reactions is introduced. It is hoped that this mini-review will stimulate a discussion on how to systematically classify unspecific reactions in metabolic engineering and to expand this approach to other classes of plant secondary metabolites.
Collapse
Affiliation(s)
- Maximilian Frey
- Institute of Biology, Dept. of Biochemistry of Plant Secondary Metabolism (190b), University of Hohenheim, Garbenstraße 30, 70593 Stuttgart, Germany
| |
Collapse
|