1
|
Kobayashi Y, Lu Y, Li N, Endo N, Sotome K, Ueno K, Tahara Y, Ishihara A. A new phthalide derivative from the mushroom Cyclocybe cf. erebia culture filtrate affects the phase of circadian rhythms in mouse fibroblasts. Biosci Biotechnol Biochem 2025; 89:354-361. [PMID: 39657072 DOI: 10.1093/bbb/zbae187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 11/29/2024] [Indexed: 12/17/2024]
Abstract
Circadian rhythms are biological systems that provide approximately 24-h cycles for the behavior and physiological functions of organisms. As diverse modern lifestyles often cause disturbances in circadian rhythms, new approaches to their regulation are required. Therefore, new compounds that affect circadian rhythms have been explored in edible mushrooms. The extract from the culture filtrate of Cyclocybe cf. erebia showed activity that advanced the circadian rhythm in a bioassay with mouse fibroblasts expressing the LUCIFERASE protein under the control of the Period2 promoter. Bioassay-guided fractionation of the extract resulted in the isolation of the compound. Spectroscopic analyses identified the compound as a phthalide derivative, and the compound was named cyclocybelide. Treatment of mouse fibroblasts with the compound shifted the circadian rhythm forward, irrespective of the timing of treatment. In addition, some phthalide derivatives with hydroxy and methoxy groups showed similar effects on circadian rhythms.
Collapse
Affiliation(s)
- Yusei Kobayashi
- The United Graduate School of Agricultural Sciences, Tottori University, Tottori, Japan
| | - Yuanyuan Lu
- Department of Public Health and Health Policy, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Nan Li
- Department of Public Health and Health Policy, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Naoki Endo
- Fungus/Mushroom Resource and Research Center, Faculty of Agriculture, Tottori University, Tottori, Japan
| | - Kozue Sotome
- Fungus/Mushroom Resource and Research Center, Faculty of Agriculture, Tottori University, Tottori, Japan
| | - Kotomi Ueno
- Faculty of Agriculture, Tottori University, Tottori, Japan
| | - Yu Tahara
- Department of Public Health and Health Policy, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Atsushi Ishihara
- Fungus/Mushroom Resource and Research Center, Faculty of Agriculture, Tottori University, Tottori, Japan
- Faculty of Agriculture, Tottori University, Tottori, Japan
| |
Collapse
|
2
|
Monestime O, Davis BA, Layman C, Wheeler KJ, Hack W, Zweig JA, Soumyanath A, Carbone L, Gray NE. Peripheral Blood DNA Methylation Changes in Response to Centella asiatica Treatment in Aged Mice. BIOLOGY 2025; 14:52. [PMID: 39857283 PMCID: PMC11762129 DOI: 10.3390/biology14010052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/04/2025] [Accepted: 01/07/2025] [Indexed: 01/27/2025]
Abstract
Alterations in epigenetic modifications, like DNA methylation, in peripheral blood could serve as a useful, minimally invasive biomarker of the effects of anti-aging interventions. This study explores this potential with a water extract of the botanical Centella asiatica (CAW). Eighteen-month-old mice were treated with CAW in their drinking water for 5 weeks alongside vehicle-treated eighteen-month-old C57BL6 mice. Reduced representation bisulfite sequencing (RRBS) was used to identify genome-wide differential methylation in the blood of CAW-treated aged mice compared to vehicle-treated aged mice. Our results showed a distinct enrichment of differentially methylated regions (DMRs) nearby genes involved in biological processes relevant to aging (i.e., antioxidant response, metabolic regulation, cellular metabolism). A distinct difference was observed between males and females in both the number of methylation sites and the state of methylation. Moreover, genes nearby or overlapping DMRs were found to be enriched for biological processes related to previously described cellular effects of CAW in the mouse brain (i.e., antioxidant response, metabolic regulation, calcium regulation, and circadian rhythm). Together, our data suggest that the peripheral blood methylation signature of CAW in the blood could be a useful, and readily accessible, biomarker of CAW's effects in aging.
Collapse
Affiliation(s)
- Olivia Monestime
- BENFRA Botanical Dietary Supplements Research Center, Oregon Health & Science University, Portland, OR 97239, USA (B.A.D.); (A.S.)
- Department of Neurology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Brett A. Davis
- BENFRA Botanical Dietary Supplements Research Center, Oregon Health & Science University, Portland, OR 97239, USA (B.A.D.); (A.S.)
- Department of Medicine, Knight Cardiovascular Institute (KCVI), Oregon Health and Science University, Portland, OR 97239, USA (K.J.W.)
| | - Cora Layman
- Department of Medicine, Knight Cardiovascular Institute (KCVI), Oregon Health and Science University, Portland, OR 97239, USA (K.J.W.)
| | - Kandace J. Wheeler
- Department of Medicine, Knight Cardiovascular Institute (KCVI), Oregon Health and Science University, Portland, OR 97239, USA (K.J.W.)
| | - Wyatt Hack
- BENFRA Botanical Dietary Supplements Research Center, Oregon Health & Science University, Portland, OR 97239, USA (B.A.D.); (A.S.)
- Department of Neurology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Jonathan A. Zweig
- BENFRA Botanical Dietary Supplements Research Center, Oregon Health & Science University, Portland, OR 97239, USA (B.A.D.); (A.S.)
- Department of Neurology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Amala Soumyanath
- BENFRA Botanical Dietary Supplements Research Center, Oregon Health & Science University, Portland, OR 97239, USA (B.A.D.); (A.S.)
- Department of Neurology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Lucia Carbone
- BENFRA Botanical Dietary Supplements Research Center, Oregon Health & Science University, Portland, OR 97239, USA (B.A.D.); (A.S.)
- Department of Medicine, Knight Cardiovascular Institute (KCVI), Oregon Health and Science University, Portland, OR 97239, USA (K.J.W.)
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR 97239, USA
- Division of Genetics, Oregon National Primate Research Center, Beaverton, OR 97006, USA
| | - Nora E. Gray
- BENFRA Botanical Dietary Supplements Research Center, Oregon Health & Science University, Portland, OR 97239, USA (B.A.D.); (A.S.)
- Department of Neurology, Oregon Health & Science University, Portland, OR 97239, USA
| |
Collapse
|
3
|
Kobayashi Y, Akagi Y, Tsubaki K, Shimoda E, Kikuchi T, Endo N, Ichiyanagi T, Nakagiri A, Nishida T, Ishihara A. Identification of Cyclocybe erebia metabolites that affect the circadian rhythm of Eluc expression under control of Bmal1 promoter in mouse fibroblast cells. J Biosci Bioeng 2023; 136:278-286. [PMID: 37550133 DOI: 10.1016/j.jbiosc.2023.06.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 06/15/2023] [Accepted: 06/29/2023] [Indexed: 08/09/2023]
Abstract
Pharmacological intervention of circadian rhythms is a potentially useful approach for ameliorating various health problems caused by disturbed circadian rhythms including sleep disorder and metabolic diseases. To find compounds that affect circadian rhythms, we screened mushroom extracts using mouse cells expressing the luciferase gene under the control of the mouse Bmal1 promoter. The culture filtrate extract from the basidiomycete Cyclocybe erebia enhanced the oscillation of bioluminescence caused by the expression of the luciferase gene and prolonged the period of bioluminescence. Bioassay-guided fractionation of the extract resulted in purification of compounds 1 and 2. Spectroscopic analyses along with single-crystal X-ray diffraction analysis, revealed that these compounds were diterpenoids with a unique skeleton and a fused ring system comprising 3-, 7-, and 5-membered rings. Compounds 1 and 2 were named cyclocircadins A and B, respectively. These findings suggested that natural diterpenoids could be a source of compounds with the activity affecting circadian rhythms.
Collapse
Affiliation(s)
- Yusei Kobayashi
- The United Graduate School of Agricultural Sciences, Tottori University, 4-101 Koyamacho-minami, Tottori 680-8553, Japan; GPC Laboratory, Tottori Bio-Frontier, 86 Nishi-cho, Yonago, Tottori 683-0826, Japan
| | - Yasunori Akagi
- GPC Laboratory, Tottori Bio-Frontier, 86 Nishi-cho, Yonago, Tottori 683-0826, Japan
| | - Kaori Tsubaki
- GPC Laboratory, Tottori Bio-Frontier, 86 Nishi-cho, Yonago, Tottori 683-0826, Japan
| | - Emiko Shimoda
- Fungus/Mushroom Resource and Research Center, Faculty of Agriculture, Tottori University, 4-101, Koyamacho-minami, Tottori 680-8553, Japan
| | - Takashi Kikuchi
- Rigaku Corporation, 3-9-12 Matsubara-cho, Akishima-shi, Tokyo 196-8666, Japan
| | - Naoki Endo
- Fungus/Mushroom Resource and Research Center, Faculty of Agriculture, Tottori University, 4-101, Koyamacho-minami, Tottori 680-8553, Japan
| | - Tsuyoshi Ichiyanagi
- Fungus/Mushroom Resource and Research Center, Faculty of Agriculture, Tottori University, 4-101, Koyamacho-minami, Tottori 680-8553, Japan
| | - Akira Nakagiri
- Fungus/Mushroom Resource and Research Center, Faculty of Agriculture, Tottori University, 4-101, Koyamacho-minami, Tottori 680-8553, Japan
| | - Tadashi Nishida
- GPC Laboratory, Tottori Bio-Frontier, 86 Nishi-cho, Yonago, Tottori 683-0826, Japan
| | - Atsushi Ishihara
- Fungus/Mushroom Resource and Research Center, Faculty of Agriculture, Tottori University, 4-101, Koyamacho-minami, Tottori 680-8553, Japan.
| |
Collapse
|
4
|
Huang JQ, Lu M, Ho CT. Health benefits of dietary chronobiotics: beyond resynchronizing internal clocks. Food Funct 2021; 12:6136-6156. [PMID: 34057166 DOI: 10.1039/d1fo00661d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The internal circadian clock in mammals drives whole-body biological activity rhythms. The clock reflects changes in external signals by controlling enzyme functions and the release of hormones involved in metabolic processes. Thus, misalignments between the circadian clock and an individual's daily schedule are recognized to be related to various metabolic diseases, such as obesity and diabetes. Although evidence has shown the existence of a complex relationship between circadian clock regulation and daily food intake, the regulatory effects of phytochemicals on the circadian clock remain unclarified. To better elucidate these relationships/effects, the circadian system components in mammals, circadian misalignment-related metabolic diseases, circadian rhythm-adjusting phytochemicals (including the heterocycles, acids, flavonoids and others) and the potential mechanisms (including the regulation of clock genes/proteins, metabolites of gut microbiota and secondary metabolites) are reviewed here. The bioactive components of functional foods discussed in this review could be considered potentially effective factors for the prevention and treatment of metabolic disorders related to circadian misalignment.
Collapse
Affiliation(s)
- Jun-Qing Huang
- Guangzhou Key Laboratory of Formula-pattern of Traditional Chinese Medicine, Formula-pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China.
| | | | | |
Collapse
|