1
|
Palupi KD, Oktavia L, Wulansari D, Fathoni A, Praptiwi P, Rahmi D, Agusta A. Plant Endophytic Fungi: Powerful Catalytic Cells for Biotransformation of Chemical Structures of Biologically Active Compounds. Chem Biodivers 2025; 22:e202402281. [PMID: 39714361 DOI: 10.1002/cbdv.202402281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 12/05/2024] [Accepted: 12/17/2024] [Indexed: 12/24/2024]
Abstract
Fungal endophytes are recognized as an essential source of bioactive compounds. Besides producing a wide variety of compounds, fungal endophytes can also facilitate a biotransformation process. In this process, endophytes act as an enzyme source to catalyze chemical reactions and modify the structures of bioactive compounds. Biotransformation offers advantages over chemical synthesis, for instance, the allowance of eco-friendly reactions and regioselective as well as stereoselective synthesis that is often difficult to achieve using chemical synthesis. This review focuses on the utilization of endophytic fungi in the biotransformation process of bioactive compounds to improve their pharmacological, pharmacokinetic, or toxicological parameters. We also discuss the future perspectives and obstacles of using the endophytic fungi-based biotransformation process.
Collapse
Affiliation(s)
- Kartika Dyah Palupi
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Listiana Oktavia
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Dewi Wulansari
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Ahmad Fathoni
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Praptiwi Praptiwi
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Dwinna Rahmi
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Andria Agusta
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| |
Collapse
|
2
|
Prajapati C, Rai SN, Singh AK, Chopade BA, Singh Y, Singh SK, Haque S, Prieto MA, Ashraf GM. An Update of Fungal Endophyte Diversity and Strategies for Augmenting Therapeutic Potential of their Potent Metabolites: Recent Advancement. Appl Biochem Biotechnol 2025; 197:2799-2866. [PMID: 39907846 PMCID: PMC12065773 DOI: 10.1007/s12010-024-05098-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2024] [Indexed: 02/06/2025]
Abstract
Endophytic fungi represent a significant renewable resource for the discovery of pharmaceutically important compounds, offering substantial potential for new drug development. Their ability to address the growing issue of drug resistance has drawn attention from researchers seeking novel, nature-derived lead molecules that can be produced on a large scale to meet global demand. Recent advancements in genomics, metabolomics, bioinformatics, and improved cultivation techniques have significantly aided the identification and characterization of fungal endophytes and their metabolites. Current estimates suggest there are approximately 1.20 million fungal endophytes globally, yet only around 16% (190,000) have been identified and studied in detail. This underscores the vast untapped potential of fungal endophytes in pharmaceutical research. Research has increasingly focused on the transformation of bioactive compounds by fungal endophytes through chemical and enzymatic processes. A notable example is the anthraquinone derivative 6-O-methylalaternin, whose cytotoxic potential is enhanced by the addition of a hydroxyl group, sharing structural similarities with its parent compound macrosporin. These structure-bioactivity studies open up new avenues for developing safer and more effective therapeutic agents by synthesizing targeted derivatives. Despite the immense promise, challenges remain, particularly in the large-scale cultivation of fungal endophytes and in understanding the complexities of their biosynthetic pathways. Additionally, the genetic manipulation of endophytes for optimized metabolite production is still in its infancy. Future research should aim to overcome these limitations by focusing on more efficient cultivation methods and deeper exploration of fungal endophytes' genetic and metabolic capabilities to fully harness their therapeutic potential.
Collapse
Affiliation(s)
- Chandrabhan Prajapati
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Sachchida Nand Rai
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Anurag Kumar Singh
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi, 221005, India
| | | | - Yashveer Singh
- Department of Statistics, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Santosh Kumar Singh
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India.
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, 45142, Jazan, Saudi Arabia
| | - Miguel Angel Prieto
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department. Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E-32004, Ourense, Spain.
| | - Ghulam Md Ashraf
- Department of Biosciences and Bioinformatics, School of Science, Xi'an Jiaotong-Liverpool University, 111 Ren'ai road, SIP, Jiangsu Province, Suzhou, 215123, P. R. China.
| |
Collapse
|
3
|
Rustamova N, Huang G, Isokov M, Movlanov J, Farid R, Buston I, Xiang H, Davranov K, Yili A. Modification of natural compounds through biotransformation process by microorganisms and their pharmacological properties. Fitoterapia 2024; 179:106227. [PMID: 39326800 DOI: 10.1016/j.fitote.2024.106227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/17/2024] [Accepted: 09/21/2024] [Indexed: 09/28/2024]
Abstract
The biotransformation of natural compounds by fungal microorganisms is a complex biochemical process. Tandem whole-cell biotransformation offers a promising, alternative, and cost-effective method for modifying of bioactive novel compounds. This approach is particularly beneficial for structurally complex natural products that are difficult to be synthesized through traditional synthetic methods. Biotransformation also provides significant regio- and stereoselectivity, making it a valuable tool for the chemical modification of natural compounds. By utilizing microbial conversion reactions, the biological activity and structural diversity of natural products can be enhanced. In this review, we have summarized 282 novel metabolites resulting from microbial transformation by various microorganisms. We discussed the chemical structures and pharmacological properties of these novel biotransformation products. The review would assist scientists working in the fields of biotechnology, organic chemistry, medicinal chemistry, and pharmacology.
Collapse
Affiliation(s)
- Nigora Rustamova
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China; Department of Enzymology, Institute of Microbiology, Academy of Sciences of the Republic of Uzbekistan, Tashkent, Shaykhantakhur district, street Abdulla Kadiriy, 7 B100128, Uzbekistan; Department of Biology, Samarkand State University, University Boulevard 15, Samarkand 703004, Uzbekistan.
| | - Guozheng Huang
- Department of Chemical Biology and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Anhui University of Technology, 59 Hudong Road, Ma'anshan 243002, Anhui, China
| | - Maksud Isokov
- University of Geological Science, Center of Geoinnovation Technologies, 100041 Tashkent, Uzbekistan
| | - Jakhongir Movlanov
- University of Geological Science, Center of Geoinnovation Technologies, 100041 Tashkent, Uzbekistan
| | - Ruziev Farid
- Department of Biology, Samarkand State University, University Boulevard 15, Samarkand 703004, Uzbekistan
| | - Islamov Buston
- Department of Biology, Samarkand State University, University Boulevard 15, Samarkand 703004, Uzbekistan
| | - Hua Xiang
- Institute Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Kahramon Davranov
- Department of Enzymology, Institute of Microbiology, Academy of Sciences of the Republic of Uzbekistan, Tashkent, Shaykhantakhur district, street Abdulla Kadiriy, 7 B100128, Uzbekistan
| | - Abulimiti Yili
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China.
| |
Collapse
|
4
|
Han S, Ma H, Wu Y, Wang C, Li Y, Li Q, Cheng Z. Andrastin-type meroterpenoids, α-pyrone polyketides, and sesquicarane derivatives from Penicillium sp., a fungus isolated from Pinus koraiensis seed. PHYTOCHEMISTRY 2024; 225:114202. [PMID: 38944099 DOI: 10.1016/j.phytochem.2024.114202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/25/2024] [Accepted: 06/25/2024] [Indexed: 07/01/2024]
Abstract
The genus Penicillium has provided us with the household antibiotic penicillin and the well-known lipid-lowering agent mevastatin. The strain Penicillium sp. SZ-1 was found to grow vigorously in an intact Pinus koraiensis seed, it is inferred that the strain may develop unique mechanisms associated with the biosynthesis of rare metabolites. Further fermentation of the strain on solid rice medium yielded thirteen undescribed compounds, including three andrastin-type meroterpenoids (1-3), two α-pyrone polyketides (4 and 5), and eight sesquicarane derivatives (6-13), along with seven known compounds (14-20). Their structures were determined by detailed analysis of the spectroscopic and spectrometric data (NMR and HRESIMS), in addition to comparisons of the experimental and calculated ECD data for absolute configurational assignments. The hemiacetal moiety in compounds 1 and 2 and the 3α-hydroxy group in compound 3 were rarely found in the andrastin-type meroterpenoid family. The sesquicaranes belong to a small group of sesquiterpenoid that are rarely reported. Bioassay study showed that compound 1 exhibited inhibitory effects against Staphylococcus aureus ATCC 29213 and Escherichia coli ATCC 25922 with MIC values of 64 and 32 μg/mL, respectively. In addition, compounds 1 and 3 displayed weak DPPH radical scavenging activities. The andrastins and sesquicaranes in this study enriched the structural diversity of these classes of terpenoids. Of note, this study is the first report on the metabolites of a fungus isolated from P. koraiensis seed.
Collapse
Affiliation(s)
- Shouye Han
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, PR China; Center of Scientific Research and Experiment, Nanyang Medical College, Nanyang, 473061, PR China; School of Pharmacy, Henan University, Kaifeng, 475004, PR China
| | - Huabin Ma
- Central Laboratory, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, PR China
| | - Yumeng Wu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, PR China
| | - Chunying Wang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, PR China
| | - Yuanli Li
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, PR China
| | - Qin Li
- School of Pharmacy, Henan University, Kaifeng, 475004, PR China
| | - Zhongbin Cheng
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, PR China.
| |
Collapse
|
5
|
Yang WQ, Lu QP, Chen CX, Zhu LP, Zhang X, Xu W, Hu LS, Chen J, Zhao ZX. Six undescribed 23-norursane triterpenoids from the biotransformation of ilexgenin a by endophytic fungi and their vascular protective activity. Fitoterapia 2024; 176:106053. [PMID: 38838828 DOI: 10.1016/j.fitote.2024.106053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/01/2024] [Accepted: 06/01/2024] [Indexed: 06/07/2024]
Abstract
Biotransformation of ursane-type triterpenoid ilexgenin A by endophytic fungi Lasiodiplodia sp. MQD-4 and Pestalotiopsis sp. ZZ-1, isolated from Ilex pubescences and Callicarpa kwangtungensis respectively, was investigated for the first time. Six previously undescribed metabolites (1-6) with 23-norursane triterpenoids skeleton were isolated and their structures were unambiguously established by the analysis of spectroscopic data and single-crystal X-ray crystallographic experiments. Decarboxylation, oxidation, and hydroxylation reactions were observed on the triterpenoid skeleton. Especially, the decarboxylation of C-23 provided definite evidence to understand the biogenetic process of 23-norursane triterpenoids. Moreover, the qualitative analysis of the extract of I. pubescences showed metabolites 1, 3, 4, and 6 could be detected in the originated plant, indicating biotransformation by endophytic fungi is a practical strategy for the isolation of novel natural products. Finally, all isolates were evaluated for the protective activities against H2O2-induced HUVECs dysfunction in vitro. Compound 5 could improve the viability of endothelial cells and decrease the level of intracellular ROS.
Collapse
Affiliation(s)
- Wei-Qun Yang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Qi-Ping Lu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Cai-Xin Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Li-Ping Zhu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Xiao Zhang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Wei Xu
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Le-Shi Hu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Jie Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| | - Zhong-Xiang Zhao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| |
Collapse
|
6
|
Pang C, Chen YH, Bian HH, Zhang JP, Su L, Han H, Zhang W. Anti-Inflammatory Ergosteroid Derivatives from the Coral-Associated Fungi Penicillium oxalicum HL-44. Molecules 2023; 28:7784. [PMID: 38067514 PMCID: PMC10708211 DOI: 10.3390/molecules28237784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/24/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
To obtain the optimal fermentation condition for more abundant secondary metabolites, Potato Dextrose Agar (PDA) medium was chosen for the scale-up fermentation of the fungus Penicillium oxalicum HL-44 associated with the soft coral Sinularia gaweli. The EtOAc extract of the fungi HL-44 was subjected to repeated column chromatography (CC) on silica gel and Sephadex LH-20 and semipreparative RP-HPLC to afford a new ergostane-type sterol ester (1) together with fifteen derivatives (2-16). Their structures were determined with spectroscopic analyses and comparisons with reported data. The anti-inflammatory activity of the tested isolates was assessed by evaluating the expression of pro-inflammatory factors Tnfα and Ifnb1 in Raw264.7 cells stimulated with LPS or DMXAA. Compounds 2, 9, and 14 exhibited significant inhibition of Ifnb1 expression, while compounds 2, 4, and 5 showed strong inhibition of Tnfα expression in LPS-stimulated cells. In DMXAA-stimulated cells, compounds 1, 5, and 7 effectively suppressed Ifnb1 expression, whereas compounds 7, 8, and 11 demonstrated the most potent inhibition of Tnfα expression. These findings suggest that the tested compounds may exert their anti-inflammatory effects by modulating the cGAS-STING pathway. This study provides valuable insight into the chemical diversity of ergosteroid derivatives and their potential as anti-inflammatory agents.
Collapse
Affiliation(s)
- Cheng Pang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Gao-Ke Rd., Hangzhou 311402, China
- School of Medicine, Tongji University, 1238 Gonghexin Rd., Shanghai 200070, China
| | - Yu-Hong Chen
- Institute of Translational Medicine, Shanghai University, 99 Shangda Rd., Shanghai 200444, China
| | - Hui-Hui Bian
- Institute of Translational Medicine, Shanghai University, 99 Shangda Rd., Shanghai 200444, China
| | - Jie-Ping Zhang
- School of Medicine, Tongji University, 1238 Gonghexin Rd., Shanghai 200070, China
| | - Li Su
- Institute of Translational Medicine, Shanghai University, 99 Shangda Rd., Shanghai 200444, China
| | - Hua Han
- School of Medicine, Tongji University, 1238 Gonghexin Rd., Shanghai 200070, China
| | - Wen Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Gao-Ke Rd., Hangzhou 311402, China
- School of Medicine, Tongji University, 1238 Gonghexin Rd., Shanghai 200070, China
| |
Collapse
|
7
|
Park SC, Ji Y, Ryu J, Kyung S, Kim M, Kang S, Jang YP. Anti-aging efficacy of solid-state fermented ginseng with Aspergillus cristatus and its active metabolites. Front Mol Biosci 2022; 9:984307. [PMID: 36250021 PMCID: PMC9556955 DOI: 10.3389/fmolb.2022.984307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/02/2022] [Indexed: 11/13/2022] Open
Abstract
Aspergillus cristatus is a beneficial fungus of microbial fermented teas such as China’s Fuzhuan brick tea and Pu-erh tea, and is commonly called golden flower fungus (GFF) because its cleistothecium has a yellow millet or sand grain shape. Since natural materials fermented with GFF exhibit various physiological activities, a new active cosmeceutical ingredient was developed by solid-state fermentation of ginseng, a famous active material for healthy skin, with GFF. The extract of solid-state fermented ginseng with GFF (GFFG) exhibited potent anti-aging efficacy on the skin such as the increase of hyaluronic acid synthesis, aquaporin expression, and mRNA level of filaggrin in HaCaT keratinocyte. GFFG also inhibited the expression of MMP-1 increased by TNF-α in human dermal fibroblast. Sophisticated chromatographic and spectroscopic studies have elucidated isodihydroauroglaucin and flavoglaucin as the metabolites which were not present in ginseng extract nor GFF extract alone. Bioassay of these metabolites revealed that these compounds were part of active principles of GFFG. These results suggest that GFFG would be a potential active ingredient in anti-aging cosmeceutical products.
Collapse
Affiliation(s)
- Sang Cheol Park
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul, South Korea
| | - Yura Ji
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul, South Korea
| | - Jeoungjin Ryu
- COSMAX BTI R&I Center, Bio Material Research Team, Seongnam-si, South Korea
| | - Seoyeon Kyung
- COSMAX BTI R&I Center, Bio Material Research Team, Seongnam-si, South Korea
| | - Minji Kim
- COSMAX BTI R&I Center, Bio Material Research Team, Seongnam-si, South Korea
| | - Seunghyun Kang
- COSMAX BTI R&I Center, Bio Material Research Team, Seongnam-si, South Korea
| | - Young Pyo Jang
- Department of Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul, South Korea
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul, South Korea
- *Correspondence: Young Pyo Jang,
| |
Collapse
|
8
|
Srinivasa C, Mellappa G, Patil SM, Ramu R, Shreevatsa B, Dharmashekar C, Kollur SP, Syed A, Shivamallu C. Plants and endophytes - a partnership for the coumarin production through the microbial systems. Mycology 2022; 13:243-256. [PMID: 36405338 PMCID: PMC9673776 DOI: 10.1080/21501203.2022.2027537] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 01/06/2022] [Indexed: 02/04/2023] Open
Abstract
Plant-based secondary metabolite production system is well established. However, host-endophyte interaction in the production of secondary metabolite is a new less exploited area that is overcoming barriers and evolving as one of the prospective fields. Endophytes such as bacteria or fungi have the ability to produce some of the secondary metabolites that mimic the plant metabolites therefore escaping the host defence system. Coumarin is one such metabolite with immense biological functions. Most of the studies have demonstrated coumarin production from fungal endophytes but not bacterial endophytes. Herein, we present an overview of all the coumarin derivatives produced from endophytic sources and their biosynthetic pathways. Furthermore, the review also throws light on the isolation of these coumarins and different derivatives with respect to their biological activity. The biotransformation of coumarin derivatives by the action of endophytic fungi is also elaborated. The present review provides an insight on the challenges faced in the coumarin production through fungal endophytes.
Collapse
Affiliation(s)
| | | | - Shashank M. Patil
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru, India
| | - Ramith Ramu
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru, India
| | - Bhargav Shreevatsa
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru, India
| | - Chandan Dharmashekar
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru, India
| | - Shiva Prasad Kollur
- Department of Sciences, Amrita School of Arts and Sciences, Amrita Vishwa Vidyapeetham, Mysuru Campus, Mysuru, India
- School of Agriculture, Geography, Environment, Ocean and Natural Sciences (SAGEONS), The University of South Pacific, Suva, Fiji
| | - Asad Syed
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Chandan Shivamallu
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru, India
| |
Collapse
|
9
|
Mishra S, Sahu PK, Agarwal V, Singh N. Exploiting endophytic microbes as micro-factories for plant secondary metabolite production. Appl Microbiol Biotechnol 2021; 105:6579-6596. [PMID: 34463800 DOI: 10.1007/s00253-021-11527-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/12/2021] [Accepted: 08/15/2021] [Indexed: 01/19/2023]
Abstract
Plant secondary metabolites have significant potential applications in a wide range of pharmaceutical, food, and cosmetic industries by providing new chemistries and compounds. However, direct isolation of such compounds from plants has resulted in over-harvesting and loss of biodiversity, currently threatening several medicinal plant species to extinction. With the breakthrough report of taxol production by an endophytic fungus of Taxus brevifolia, a new era in natural product research was established. Since then, the ability of endophytic microbes to produce metabolites similar to those produced by their host plants has been discovered. The plant "endosphere" represents a rich and unique biological niche inhabited by organisms capable of producing a range of desired compounds. In addition, plants growing in diverse habitats and adverse environmental conditions represent a valuable reservoir for obtaining rare microbes with potential applications. Despite being an attractive and sustainable approach for obtaining economically important metabolites, the industrial exploitation of microbial endophytes for the production and isolation of plant secondary metabolites remains in its infancy. The present review provides an updated overview of the prospects, challenges, and possible solutions for using microbial endophytes as micro-factories for obtaining commercially important plant metabolites.Key points• Some "plant" metabolites are rather synthesized by the associated endophytes.• Challenges: Attenuation, silencing of BGCs, unculturability, complex cross-talk.• Solutions: Simulation of in planta habitat, advanced characterization methods.
Collapse
Affiliation(s)
- Sushma Mishra
- Plant Biotechnology Laboratory, Dayalbagh Educational Institute (Deemed-to-be-University), Agra, Uttar Pradesh, 282005, India.
| | - Pramod Kumar Sahu
- ICAR-National Bureau of Agriculturally Important Microorganisms, Kushmaur, Maunath Bhanjan, Uttar Pradesh, 275103, India
| | - Vishad Agarwal
- Plant Biotechnology Laboratory, Dayalbagh Educational Institute (Deemed-to-be-University), Agra, Uttar Pradesh, 282005, India
| | - Namrata Singh
- Plant Biotechnology Laboratory, Dayalbagh Educational Institute (Deemed-to-be-University), Agra, Uttar Pradesh, 282005, India
| |
Collapse
|
10
|
Choudhary M, Gupta S, Dhar MK, Kaul S. Endophytic Fungi-Mediated Biocatalysis and Biotransformations Paving the Way Toward Green Chemistry. Front Bioeng Biotechnol 2021; 9:664705. [PMID: 34222213 PMCID: PMC8242341 DOI: 10.3389/fbioe.2021.664705] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 04/28/2021] [Indexed: 11/13/2022] Open
Abstract
Catalysis is a process carried out in the presence of a heterogenous catalyst for accelerating the rate of a chemical reaction. It plays a pivotal role in transition from take, make, and dispose technology to sustainable technology via chemo- and biocatalytic processes. However, chemocatalyzed reactions are usually associated with copious amounts of perilous/hazardous environmental footprints. Therefore, whole-cell biotransformations or enzyme cocktails serve as cleaner biocatalytic alternatives in replacing the classical chemical procedures. These benchmark bioconversion reactions serve as important key technology in achieving the goals of green chemistry by eliminating waste generation at source. For this, nature has always been a driving force in fuelling natural product discovery and related applications. The fungal endophytic community, in particular, has undergone co-evolution with their host plant and has emerged as a powerful tool of genetic diversity. They can serve as a treasure trove of biocatalysts, catalyzing organic transformations of a wide range of substances into enantiopure compounds with biotechnological relevance. Additionally, the biocatalytic potential of endophytic fungi as whole-intact organisms/isolated enzyme systems has been greatly expanded beyond the existing boundaries with the advancement in high-throughput screening, molecular biology techniques, metabolic engineering, and protein engineering. Therefore, the present review illustrates the promising applications of endophytic fungi as biocatalysts for the synthesis of new structural analogs and pharmaceutical intermediates and refinement of existing proteins for novel chemistries.
Collapse
Affiliation(s)
| | - Suruchi Gupta
- School of Biotechnology, University of Jammu, Jammu, India
| | - Manoj K Dhar
- School of Biotechnology, University of Jammu, Jammu, India
| | - Sanjana Kaul
- School of Biotechnology, University of Jammu, Jammu, India
| |
Collapse
|