1
|
Nowruzi B, Beiranvand H. In vitro and in vivo study of the antifungal activity of extracellular products of cyanobacterium Neowestiellopsis persica strain A1387 against Fusarium wilt disease of cucumber. Rev Argent Microbiol 2024:S0325-7541(24)00132-9. [PMID: 39706746 DOI: 10.1016/j.ram.2024.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 10/15/2024] [Accepted: 10/28/2024] [Indexed: 12/23/2024] Open
Abstract
Fusarium wilt of cucumber, caused by the fungus Fusarium oxysporum, is a major plant disease that causes significant economic losses. The extensive use of chemical fungicides for its control poses environmental and health risks. Due to growing concerns about the detrimental effects of chemical fungicides, finding safe and effective bio-based alternatives for plant disease control is of high importance. In this study, the potential of Neowestiellopsis persica A1387 cyanobacterial metabolites as a promising substitute for chemical fungicides in controlling this disease was investigated. The antifungal activity of N. persica A1387 cyanobacterial exopolysaccharide (EPS) extract was evaluated against F. oxysporum under in vitro and in vivo conditions. Cucumber plants infected with the fungus were treated with cyanobacterial EPS extract and then assessed for disease severity, antioxidant enzyme activity, and growth parameters. Both biomass and EPS extracts of N. persica A1387 cyanobacteria significantly increased the diameter of the F. oxysporum growth inhibition zone under in vitro conditions. Treatment with cyanobacterial EPS extract resulted in increased dry and fresh weight of stem and roots, and a significant reduction in disease severity and percentage in F. oxysporum-infected plants. Peroxidase, superoxide dismutase (SOD), and catalase enzyme activities in fungus-infected plants treated with cyanobacterial EPS extract were significantly lower on day 42 of infection compared to untreated and infected control plants. These findings demonstrate the potential of N. persica A1387 cyanobacterial extracts as natural and safe alternatives to chemical fungicides for controlling cucumber Fusarium wilt disease.
Collapse
Affiliation(s)
- Bahareh Nowruzi
- Department of Biotechnology, Faculty of Converging Sciences and Technologies, Islamic Azad University, Science and Research Branch, Tehran, Iran.
| | - Hassan Beiranvand
- Department of Biotechnology, Faculty of Converging Sciences and Technologies, Islamic Azad University, Science and Research Branch, Tehran, Iran
| |
Collapse
|
2
|
Thawabteh AM, Naseef HA, Karaman D, Bufo SA, Scrano L, Karaman R. Understanding the Risks of Diffusion of Cyanobacteria Toxins in Rivers, Lakes, and Potable Water. Toxins (Basel) 2023; 15:582. [PMID: 37756009 PMCID: PMC10535532 DOI: 10.3390/toxins15090582] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/10/2023] [Accepted: 09/18/2023] [Indexed: 09/28/2023] Open
Abstract
Blue-green algae, or cyanobacteria, may be prevalent in our rivers and tap water. These minuscule bacteria can grow swiftly and form blooms in warm, nutrient-rich water. Toxins produced by cyanobacteria can pollute rivers and streams and harm the liver and nervous system in humans. This review highlights the properties of 25 toxin types produced by 12 different cyanobacteria genera. The review also covered strategies for reducing and controlling cyanobacteria issues. These include using physical or chemical treatments, cutting back on fertilizer input, algal lawn scrubbers, and antagonistic microorganisms for biocontrol. Micro-, nano- and ultrafiltration techniques could be used for the removal of internal and extracellular cyanotoxins, in addition to powdered or granular activated carbon, ozonation, sedimentation, ultraviolet radiation, potassium permanganate, free chlorine, and pre-treatment oxidation techniques. The efficiency of treatment techniques for removing intracellular and extracellular cyanotoxins is also demonstrated. These approaches aim to lessen the risks of cyanobacterial blooms and associated toxins. Effective management of cyanobacteria in water systems depends on early detection and quick action. Cyanobacteria cells and their toxins can be detected using microscopy, molecular methods, chromatography, and spectroscopy. Understanding the causes of blooms and the many ways for their detection and elimination will help the management of this crucial environmental issue.
Collapse
Affiliation(s)
- Amin Mahmood Thawabteh
- Faculty of Pharmacy, Nursing and Health Professions, Birzeit University, Ramallah 00972, Palestine; (A.M.T.); (H.A.N.)
- General Safety Section, General Services Department, Birzeit University, Bir Zeit 71939, Palestine
| | - Hani A Naseef
- Faculty of Pharmacy, Nursing and Health Professions, Birzeit University, Ramallah 00972, Palestine; (A.M.T.); (H.A.N.)
| | - Donia Karaman
- Faculty of Pharmacy, Al-Quds University, Jerusalem 20002, Palestine;
| | - Sabino A. Bufo
- Department of Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy;
- Department of Geography, Environmental Management and Energy Studies, University of Johannesburg, Auckland Park Kingsway Campus, Johannesburg 2092, South Africa
| | - Laura Scrano
- Department of European and Mediterranean Cultures, University of Basilicata, Via Lanera 20, 75100 Matera, Italy;
| | - Rafik Karaman
- Faculty of Pharmacy, Al-Quds University, Jerusalem 20002, Palestine;
- Department of Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy;
| |
Collapse
|
3
|
Song L, Ping X, Mao Z, Zhao J, Yang Y, Li Y, Xie B, Ling J. Variation and stability of rhizosphere bacterial communities of Cucumis crops in association with root-knot nematodes infestation. FRONTIERS IN PLANT SCIENCE 2023; 14:1163271. [PMID: 37324672 PMCID: PMC10266268 DOI: 10.3389/fpls.2023.1163271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 05/03/2023] [Indexed: 06/17/2023]
Abstract
Introduction Root-knot nematodes (RKN) disease is a devastating disease in Cucumis crops production. Existing studies have shown that resistant and susceptible crops are enriched with different rhizosphere microorganisms, and microorganisms enriched in resistant crops can antagonize pathogenic bacteria. However, the characteristics of rhizosphere microbial communities of Cucumis crops after RKN infestation remain largely unknown. Methods In this study, we compared the changes in rhizosphere bacterial communities between highly RKN-resistant Cucumis metuliferus (cm3) and highly RKN-susceptible Cucumis sativus (cuc) after RKN infection through a pot experiment. Results The results showed that the strongest response of rhizosphere bacterial communities of Cucumis crops to RKN infestation occurred during early growth, as evidenced by changes in species diversity and community composition. However, the more stable structure of the rhizosphere bacterial community in cm3 was reflected in less changes in species diversity and community composition after RKN infestation, forming a more complex and positively co-occurrence network than cuc. Moreover, we observed that both cm3 and cuc recruited bacteria after RKN infestation, but the bacteria enriched in cm3 were more abundant including beneficial bacteria Acidobacteria, Nocardioidaceae and Sphingomonadales. In addition, the cuc was enriched with beneficial bacteria Actinobacteria, Bacilli and Cyanobacteria. We also found that more antagonistic bacteria than cuc were screened in cm3 after RKN infestation and most of them were Pseudomonas (Proteobacteria, Pseudomonadaceae), and Proteobacteria were also enriched in cm3 after RKN infestation. We hypothesized that the cooperation between Pseudomonas and the beneficial bacteria in cm3 could inhibit the infestation of RKN. Discussion Thus, our results provide valuable insights into the role of rhizosphere bacterial communities on RKN diseases of Cucumis crops, and further studies are needed to clarify the bacterial communities that suppress RKN in Cucumis crops rhizosphere.
Collapse
Affiliation(s)
- Liqun Song
- Insititute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- Microbial Research Institute of Liaoning Province, Liaoning Academy of Agricultural Sciences, Chaoyang, China
| | - Xingxing Ping
- Insititute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhenchuan Mao
- Insititute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jianlong Zhao
- Insititute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuhong Yang
- Insititute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yan Li
- Insititute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Bingyan Xie
- Insititute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jian Ling
- Insititute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
4
|
Wang L, Li W, Wang X, Xu J. Remote sensing image analysis and prediction based on improved Pix2Pix model for water environment protection of smart cities. PeerJ Comput Sci 2023; 9:e1292. [PMID: 37346622 PMCID: PMC10280440 DOI: 10.7717/peerj-cs.1292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 02/23/2023] [Indexed: 06/23/2023]
Abstract
Background As an important part of smart cities, smart water environmental protection has become an important way to solve water environmental pollution problems. It is proposed in this article to develop a water quality remote sensing image analysis and prediction method based on the improved Pix2Pix (3D-GAN) model to overcome the problems associated with water environment prediction of smart cities based on remote sensing image data having low accuracy in predicting image information, as well as being difficult to train. Methods Firstly, due to inversion differences and weather conditions, water quality remote sensing images are not perfect, which leads to the creation of time series data that cannot be used directly in prediction modeling. Therefore, a method for preprocessing time series of remote sensing images has been proposed in this article. The original remote sensing image was unified by pixel substitution, the image was repaired by spatial weight matrix, and the time series data was supplemented by linear interpolation. Secondly, in order to enhance the ability of the prediction model to process spatial-temporal data and improve the prediction accuracy of remote sensing images, the convolutional gated recurrent unit network is concatenated with the U-net network as the generator of the improved Pix2Pix model. At the same time, the channel attention mechanism is introduced into the convolutional gated recurrent unit network to enhance the ability of extracting image time series information, and the residual structure is introduced into the downsampling of the U-net network to avoid gradient explosion or disappearance. After that, the remote sensing images of historical moments are superimposed on the channels as labels and sent to the discriminator for adversarial training. The improved Pix2Pix model no longer translates images, but can predict two dimensions of space and one dimension of time, so it is actually a 3D-GAN model. Third, remote sensing image inversion data of chlorophyll-a concentrations in the Taihu Lake basin are used to verify and predict the water environment at future moments. Results The results show that the mean value of structural similarity, peak signal-to-noise ratio, cosine similarity, and mutual information between the predicted value of the proposed method and the real remote sensing image is higher than that of existing methods, which indicates that the proposed method is effective in predicting water environment of smart cities.
Collapse
Affiliation(s)
- Li Wang
- Beijing Laboratory for Intelligent Environmental Protection, School of Artificial Intelligence, Beijing Technology and Business University, Beijing, P.R. China
| | - Wenhao Li
- Beijing Laboratory for Intelligent Environmental Protection, School of Artificial Intelligence, Beijing Technology and Business University, Beijing, P.R. China
| | - Xiaoyi Wang
- Beijing Institute of Fashion Technology, Beijing, P.R. China
| | - Jiping Xu
- Beijing Laboratory for Intelligent Environmental Protection, School of Artificial Intelligence, Beijing Technology and Business University, Beijing, P.R. China
| |
Collapse
|
5
|
Duan M, Wang L, Song X, Zhang X, Wang Z, Lei J, Yan M. Assessment of the rhizosphere fungi and bacteria recruited by sugarcane during smut invasion. Braz J Microbiol 2023; 54:385-395. [PMID: 36371518 PMCID: PMC9944363 DOI: 10.1007/s42770-022-00871-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 11/07/2022] [Indexed: 11/15/2022] Open
Abstract
Whip smut is one of the most serious and widely spread sugarcane diseases. Plant-associated microbes play various roles in conferring advantages to the host plant. Understanding the microbes associated with sugarcane roots will help develop strategies for the biocontrol of smut. Therefore, the present study explored microbe-mediated sugarcane response to smut invasion via 16S rRNA and ITS metabarcoding survey of the rhizosphere soils of resistant and susceptible sugarcane varieties. The bacterial and fungal diversity in the rhizosphere soils differed between the resistant and susceptible varieties. The bacterial genera Sphingomonas, Microcoleus_Es-Yyy1400, Marmoricola, Reyranella, Promicromonospora, Iamia, Phenylobacterium, Aridibacter, Actinophytocola, and Edaphobacter and one fungal genus Cyphellophora were found associated with smut resistance in sugarcane. Detailed analysis revealed that the majority of bacteria were beneficial, including the actinomycete Marmoricola and Iamia and Reyranella with denitrification activity. Analysis of bacterial network interaction showed that three major groups interacted during smut invasion. Meanwhile, seven of these genera appeared to interact and promote each other's growth. Finally, functional annotation based on the Functional Annotation of Prokaryotic Taxa (FAPROTAX) database predicted that the abundant bacteria are dominated by oxygenic photoautotrophy, photoautotrophy, and phototrophy functions, which may be related to smut resistance in sugarcane. The present study thus provides new insights into the dynamics of the sugarcane rhizosphere microbial community during smut invasion.
Collapse
Affiliation(s)
- Mingzheng Duan
- Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, 100 Daxue Rd, Nanning, 530004, China
| | - Lingqiang Wang
- Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, 100 Daxue Rd, Nanning, 530004, China
| | - Xiupeng Song
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences; Sugarcane Research Center, Chinese Academy of Agricultural Sciences; Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi); Ministry of Agriculture, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, 530007, China
| | - Xiaoqiu Zhang
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences; Sugarcane Research Center, Chinese Academy of Agricultural Sciences; Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi); Ministry of Agriculture, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, 530007, China
| | - Zeping Wang
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences; Sugarcane Research Center, Chinese Academy of Agricultural Sciences; Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi); Ministry of Agriculture, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, 530007, China
| | - Jingchao Lei
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences; Sugarcane Research Center, Chinese Academy of Agricultural Sciences; Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi); Ministry of Agriculture, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, 530007, China
| | - Meixin Yan
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences; Sugarcane Research Center, Chinese Academy of Agricultural Sciences; Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi); Ministry of Agriculture, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, 530007, China.
| |
Collapse
|
6
|
Abdelaziz AM, Attia MS, Salem MS, Refaay DA, Alhoqail WA, Senousy HH. Cyanobacteria-Mediated Immune Responses in Pepper Plants against Fusarium Wilt. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11152049. [PMID: 35956527 PMCID: PMC9370725 DOI: 10.3390/plants11152049] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 07/19/2022] [Indexed: 05/22/2023]
Abstract
Research in plant pathology has increasingly focused on developing environmentally friendly, effective strategies for controlling plant diseases. Cyanobacteria, including Desmonostoc muscorum, Anabaena oryzae, and Arthrospiraplatensis, were applied to Capsicum annuum L. to induce immunity against Fusarium wilt. Soil irrigation and foliar shoots (FS) application were used in this investigation. The disease symptoms, disease index, osmotic contents, total phenol, Malondialdehyde (MDA), hydrogen peroxide (H2O2), antioxidant enzymes (activity and isozymes), endogenous hormone content, and response to stimulation of defense resistance in infected plants were assessed. Results demonstrated that using all cyanobacterial aqueous extracts significantly reduced the risk of infection with Fusarium oxysporum. One of the most effective ways to combat the disease was through foliar spraying with Arthrospira platensis, Desmonostoc muscorum, and Anabaena oryzae (which provided 95, 90, and 69% protection percent, respectively). All metabolic resistance indices increased significantly following the application of the cyanobacterial aqueous extracts. Growth, metabolic characteristics, and phenols increased due to the application of cyanobacteria. Polyphenol oxidase (PPO) and peroxidase (POD) expressions improved in response to cyanobacteria application. Furthermore, treatment by cyanobacteria enhanced salicylic acid (SA) and Indole-3-Acetic Acid (IAA) in the infected plants while decreasing Abscisic acid (ABA). The infected pepper plant recovered from Fusarium wilt because cyanobacterial extract contained many biologically active compounds. The application of cyanobacteria through foliar spraying seems to be an effective approach to relieve the toxic influences of F. oxysporum on infected pepper plants as green and alternative therapeutic nutrients of chemical fungicides.
Collapse
Affiliation(s)
- Amer Morsy Abdelaziz
- Botany & Microbiology Department, Faculty of Science, Al-Azhar University, Cairo 11884, Egypt
- Correspondence: (A.M.A.); (M.S.A.); (W.A.A.); Tel.: +20-010-0857-8963 (A.M.A.)
| | - Mohamed S. Attia
- Botany & Microbiology Department, Faculty of Science, Al-Azhar University, Cairo 11884, Egypt
- Correspondence: (A.M.A.); (M.S.A.); (W.A.A.); Tel.: +20-010-0857-8963 (A.M.A.)
| | - Marwa S. Salem
- Botany & Microbiology Department, Faculty of Science, Al-Azhar University (Girls Branch), Cairo 11884, Egypt
| | - Dina A. Refaay
- Botany Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | - Wardah A. Alhoqail
- Department of Biology, College of Education, Majmaah University, Majmaah 11952, Saudi Arabia
- Correspondence: (A.M.A.); (M.S.A.); (W.A.A.); Tel.: +20-010-0857-8963 (A.M.A.)
| | - Hoda H. Senousy
- Botany and Microbiology Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| |
Collapse
|
7
|
Ghorbani E, Nowruzi B, Nezhadali M, Hekmat A. Metal removal capability of two cyanobacterial species in autotrophic and mixotrophic mode of nutrition. BMC Microbiol 2022; 22:58. [PMID: 35176992 PMCID: PMC8851847 DOI: 10.1186/s12866-022-02471-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 02/10/2022] [Indexed: 11/16/2022] Open
Abstract
Background Cyanobacteria are ecologically significant prokaryotes that can be found in heavy metals contaminated environments. As their photosynthetic machinery imposes high demands for metals, homeostasis of these micronutrients has been extensively considered in cyanobacteria. Recently, most studies have been focused on different habitats using microalgae leads to a remarkable reduction of an array of organic and inorganic nutrients, but what takes place in the extracellular environment when cells are exposed to external supplementation with heavy metals remains largely unknown. Methods Here, extracellular polymeric substances (EPS) production in strains Nostoc sp. N27P72 and Nostoc sp. FB71 was isolated from different habitats and thenthe results were compared and reported. Result Cultures of both strains, supplemented separately with either glucose, sucrose, lactose, or maltose showed that production of EPS and cell dry weight were boosted by maltose supplementation. The production of EPS (9.1 ± 0.05 μg/ml) and increase in cell dry weight (1.01 ± 0.06 g/l) were comparatively high in Nostoc sp. N27P72 which was isolated from lime stones.The cultures were evaluated for their ability to remove Cu (II), Cr (III), and Ni (II) in culture media with and without maltose. The crude EPS showed metal adsorption capacity assuming the order Ni (II) > Cu (II) > Cr (III) from the metal-binding experiments.Nickel was preferentially biosorbed with a maximal uptake of 188.8 ± 0.14 mg (g cell dry wt) −1 crude EPS. We found that using maltose as a carbon source can increase the production of EPS, protein, and carbohydrates content and it could be a significant reason for the high ability of metal absorbance. FT-IR spectroscopy revealed that the treatment with Ni can change the functional groups and glycoside linkages in both strains. Results of Gas Chromatography-Mass Spectrometry (GC–MS) were used to determine the biochemical composition of Nostoc sp. N27P72, showed that strong Ni (II) removal capability could be associated with the high silicon containing heterocyclic compound and aromatic diacid compounds content. Conclusion The results of this studyindicatede that strains Nostoc sp. N27P72 can be a good candidate for the commercial production of EPS and might be utilized in bioremediation field as an alternative to synthetic and abiotic flocculants. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-022-02471-8. Mixotrophic conditions can be used to optimize the biosorption controllable factors for the maximum metal removal efficiency. Different habitats (lime stones of Khuzestan province and fresh water of of Golestan province) can effect the uptake of heavy metal by two Nostoc species (Nostoc sp. N27P72 and Nostoc sp. FB71). Modification of culture media can maximize the uptake capacity of the heavy metal ions by two Nostoc species.
Collapse
Affiliation(s)
- Elham Ghorbani
- Department of Biotechnology, Faculty of Converging Sciences and Technologies, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Bahareh Nowruzi
- Department of Biotechnology, Faculty of Converging Sciences and Technologies, Islamic Azad University, Science and Research Branch, Tehran, Iran.
| | - Masoumeh Nezhadali
- Department of Biology, Islamshahr Branch, Islamic Azad University, Islamshahr, Iran
| | - Azadeh Hekmat
- Department of Biotechnology, Faculty of Converging Sciences and Technologies, Islamic Azad University, Science and Research Branch, Tehran, Iran
| |
Collapse
|
8
|
Kollmen J, Strieth D. The Beneficial Effects of Cyanobacterial Co-Culture on Plant Growth. Life (Basel) 2022; 12:life12020223. [PMID: 35207509 PMCID: PMC8879750 DOI: 10.3390/life12020223] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/21/2022] [Accepted: 01/30/2022] [Indexed: 11/16/2022] Open
Abstract
Cyanobacteria are ubiquitous phototrophic prokaryotes that find a wide range of applications in industry due to their broad product spectrum. In this context, the application of cyanobacteria as biofertilizers and thus as an alternative to artificial fertilizers has emerged in recent decades. The benefit is mostly based on the ability of cyanobacteria to fix elemental nitrogen and make it available to the plants in a usable form. However, the positive effects of co-cultivating plants with cyanobacteria are not limited to the provision of nitrogen. Cyanobacteria produce numerous secondary metabolites that can be useful for plants, for example, they can have growth-promoting effects or increase resistance to plant diseases. The effects of biotic and abiotic stress can as well be reduced by many secondary metabolites. Furthermore, the biofilms formed by the cyanobacteria can lead to improved soil conditions, such as increased water retention capacity. To exchange the substances mentioned, cyanobacteria form symbioses with plants, whereby the strength of the symbiosis depends on both partners, and not every plant can form symbiosis with every cyanobacterium. Not only the plants in symbiosis benefit from the cyanobacteria, but also vice versa. This review summarizes the beneficial effects of cyanobacterial co-cultivation on plants, highlighting the substances exchanged and the strength of cyanobacterial symbioses with plants. A detailed explanation of the mechanism of nitrogen fixation in cyanobacterial heterocysts is given. Finally, a summary of possible applications of co-cultivation in the (agrar-)industry is given.
Collapse
|