1
|
Selepe MA, Mthembu ST, Sonopo MS. Total synthesis of isoflavonoids. Nat Prod Rep 2025; 42:540-591. [PMID: 39932198 DOI: 10.1039/d4np00060a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Covering: 2012 to 2024Isoflavonoids are phenolic compounds with wide structural diversity and a plethora of biological activities. Owing to their structural variation and potential health-promoting and other benefits, they have been targeted for synthesis. Herein, we review the synthesis of natural isoflavonoids belonging to different classes that include isoflavones, isoflavanones, isoflavans, isoflavenes, pterocarpans, rotenoids, coumaronochromones, and coumestans. The synthetic methodologies employed and advancements in synthetic strategies are highlighted.
Collapse
Affiliation(s)
- Mamoalosi A Selepe
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, University of Pretoria, Lynnwood Road, Hatfield, Pretoria 0002, South Africa.
| | - Siyanda T Mthembu
- Department of Physical and Earth Sciences, Faculty of Natural and Applied Sciences, Sol Plaatje University, P/Bag x 5008, Kimberley, 8300, South Africa
| | - Molahlehi S Sonopo
- Applied Radiation Department, South African Nuclear Energy Corporation Ltd, Pelindaba, Brits 0240, South Africa
| |
Collapse
|
2
|
Liu Y, Pu Y, Shen L, Li D, Xu J, He X, Wang Y. Isoflavones isolated from the fruits of Ficus altissima and their anti-proliferative activities. Fitoterapia 2024; 175:105966. [PMID: 38631600 DOI: 10.1016/j.fitote.2024.105966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/08/2024] [Accepted: 04/14/2024] [Indexed: 04/19/2024]
Abstract
Ficus altissima, also known as lofty fig, is a monoecious plant from the Moraceae family commonly found in southern China. In this study, we isolated and identified one new isoflavone (1), three new hydroxycoumaronochromones (2a, 2b and 3a) and 12 known compounds from the fruits of F. altissima. Their chemical structures were determined using spectroscopic analysis methods. We also tested all the isolated compounds for their anti-proliferative activities against eight human tumour cell lines (A-549, AGS, K562, K562/ADR, HepG2, HeLa, SPC-A-1 and CNE2) using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. Our experiments showed that compound 6 exhibited obvious anti-proliferative activity against the K562 cell line with an IC50 value of 1.55 μM. Additionally, compounds 8 and 9 showed significant anti-proliferative activities against the AGS and K562 cell lines, respectively. Moreover, compound 6 induced apoptosis in K562 cells through the caspase family signalling pathway.
Collapse
Affiliation(s)
- Yiliang Liu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yajing Pu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Liyuan Shen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Dan Li
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jingwen Xu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Engineering Research Center for Lead Compounds & Drug Discovery, Guangzhou 510006, China
| | - Xiangjiu He
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Engineering Research Center for Lead Compounds & Drug Discovery, Guangzhou 510006, China.
| | - Yihai Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Engineering Research Center for Lead Compounds & Drug Discovery, Guangzhou 510006, China.
| |
Collapse
|
3
|
Li H, Liu L, Liu G, Li J, Aisa HA. Chlorine-containing guaianolide sesquiterpenoids from Achillea millefolium L. with inhibitory effects against LPS-induced NO release in BV-2 microglial cells. PHYTOCHEMISTRY 2023; 207:113567. [PMID: 36549383 DOI: 10.1016/j.phytochem.2022.113567] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/16/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
Chlorine-containing guaianolide sesquiterpenoids are rare natural compounds that are mainly derived from plants of the Asteraceae family. Our previous investigations on the whole plant of Achillea millefolium L. resulted in the discovery of two chlorine-containing guaianolide sesquiterpenoids. In the present study, a LC‒MS tracking strategy based on the characteristic isotropic peak of atomic chlorine was employed to isolate nine undescribed chlorine-containing guaianolide sesquiterpenoids, Millefolactons B1-B9, from A. millefolium L.. The structures of these compounds were elucidated by spectroscopic data analysis, and the corresponding absolute configurations were determined by single-crystal X-ray crystallography and ECD data analysis. Millefolactons B2-B7 displayed inhibitory activities against LPS-induced NO release in BV-2 microglial cells.
Collapse
Affiliation(s)
- Hongliang Li
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, And Key Laboratory of Plant Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830011, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liu Liu
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, And Key Laboratory of Plant Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830011, China
| | - Geyu Liu
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, And Key Laboratory of Plant Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830011, China
| | - Jun Li
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, And Key Laboratory of Plant Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830011, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Haji Akber Aisa
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, And Key Laboratory of Plant Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830011, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
4
|
Liu CY, Deng P, Wang B, Liu AH, Wang MG, Li SW, Chen LL, Mao SC. Coumaronochromones, flavanones, and isoflavones from the twigs and leaves of Erythrina subumbrans inhibit PTP1B and nitric oxide production. PHYTOCHEMISTRY 2023; 206:113550. [PMID: 36481312 DOI: 10.1016/j.phytochem.2022.113550] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/26/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
A chemical investigation of the twigs and leaves of Erythrina subumbrans led to the isolation and structural elucidation of three coumaronochromones, erythrinasubumbrin A and (±)-erythrinasubumbrin B, five prenylated flavanones, (±)-erythrinasubumbrin C and erythrinasubumbrins D-F, and two prenylated isoflavones, (±)-5,4'-dihydroxy-[4,5-cis-4-ethoxy-5-hydroxy-6,6-dimethyl-4,5-dihydropyrano (2,3:7,6)]-isoflavone, in addition to 18 known analogues. Two extra cinnamylphenols previously only known as commercial synthetic products were also isolated and elucidated from a natural source for the first time, and assigned the trivial names erythrinasubumbrins G and H. Their structures were characterized by detailed analysis of spectroscopic data, including HRESIMS and 2D NMR. The absolute configurations of the previously undescribed isolates and the known coumaronochromone lupinol C were determined by specific rotation and electronic circular dichroism (ECD) data. All the isolates were evaluated for their inhibitory activities on protein tyrosine phosphatase 1 B (PTP1B) and nitric oxide (NO) production in lipopolysaccharide (LPS)-induced BV-2 microglial cells as well as their cytotoxicity against the HCT116 cell line. The pair of enantiomers, (+)-5,4'-dihydroxy-[4,5-cis-4-ethoxy-5-hydroxy-6,6-dimethyl-4,5-dihydropyrano (2,3:7,6)]-isoflavone and (-)-5,4'-dihydroxy-[4,5-cis-4-ethoxy-5-hydroxy-6,6-dimethyl-4,5-dihydropyrano (2,3:7,6)]-isoflavone, and the known compounds lupinol C, 4'-O-methyl-8-prenylnaringenin, glepidotin B, shuterin, parvisoflavones A, luteone, lupiwighteone, 2,3-dehydrokievitone, 6,8-diprenylgenistein, angustone A, and 2'-O-demethylbidwillol B exhibited different levels of PTP1B inhibitory activities with IC50 values ranging from 3.21 to 19.17 μM, while erythrinasubumbrin A, (-)-erythrinasubumbrin B, (+)-5,4'-dihydroxy-[4,5-cis-4-ethoxy-5-hydroxy-6,6-dimethyl-4,5-dihydropyrano (2,3:7,6)]-isoflavone, (-)-5,4'-dihydroxy-[4,5-cis-4-ethoxy-5-hydroxy-6,6-dimethyl-4,5-dihydropyrano (2,3:7,6)]-isoflavone, and the known compounds lupinol C, 8-prenylnaringenin, macatrichocarpin A, alpinumisoflavone, and 2'-O-demethylbidwillol B substantially inhibited NO production in BV-2 microglial cells. In addition, 8-prenylnaringenin showed weak cytotoxicity with an IC50 value of 9.13 μM. This is the first report of PTP1B inhibitory activity for a coumaronochromone.
Collapse
Affiliation(s)
- Cai-Ying Liu
- School of Pharmacy, Nanchang University, 461 Bayi Road, Nanchang, 330006, People's Republic of China
| | - Pan Deng
- School of Pharmacy, Nanchang University, 461 Bayi Road, Nanchang, 330006, People's Republic of China
| | - Bin Wang
- School of Pharmacy, Nanchang University, 461 Bayi Road, Nanchang, 330006, People's Republic of China
| | - Ai-Hong Liu
- Center of Analysis and Testing, Nanchang University, Nanchang, 330047, People's Republic of China
| | - Meng-Ge Wang
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| | - Song-Wei Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, People's Republic of China
| | - Li-Li Chen
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| | - Shui-Chun Mao
- School of Pharmacy, Nanchang University, 461 Bayi Road, Nanchang, 330006, People's Republic of China.
| |
Collapse
|