1
|
Supikova K, Žukauskaitė A, Kosinova A, Pěnčík A, De Diego N, Spíchal L, Fellner M, Skorepova K, Gruz J. Sulfonation of IAA in Urtica eliminates its DR5 auxin activity. PLANT CELL REPORTS 2024; 44:8. [PMID: 39704813 PMCID: PMC11662057 DOI: 10.1007/s00299-024-03399-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 12/05/2024] [Indexed: 12/21/2024]
Abstract
KEY MESSAGE N-Sulfonated IAA was discovered as a novel auxin metabolite in Urtica where it is biosynthesized de novo utilizing inorganic sulfate. It showed no auxin activity in DR5::GUS assay, implying possible inactivation/storage mechanism. A novel auxin derivative, N-sulfoindole-3-acetic acid (IAA-N-SO3H, SIAA), was discovered in stinging nettle (Urtica dioica) among 116 sulfonated metabolites putatively identified by a semi-targeted UHPLC-QqTOF-MS analysis of 23 plant/algae/fungi species. These sulfometabolites were detected based on the presence of a neutral loss of sulfur trioxide, as indicated by the m/z difference of 79.9568 Da in the MS2 spectra. The structure of newly discovered SIAA was confirmed by synthesizing its standard and comparing retention time, m/z and MS2 spectrum with those of SIAA found in Urtica. To study its natural occurrence, 73 species in total were further analyzed by UHPLC-QqTOF-MS or targeted UHPLC-MS/MS method with a limit of detection of 244 fmol/g dry weight. However, SIAA was only detected in Urtica at a concentration of 13.906 ± 9.603 nmol/g dry weight. Its concentration was > 30 times higher than that of indole-3-acetic acid (IAA), and the SIAA/IAA ratio was further increased under different light conditions, especially in continuous blue light. In addition to SIAA, structurally similar metabolites, N-sulfoindole-3-lactic acid, 4-(sulfooxy)phenyllactic acid and 4-(sulfooxy)phenylacetic acid, were detected in Urtica for the first time. SIAA was biosynthesized from inorganic sulfate in seedlings, as confirmed by the incorporation of exogenous 34S-ammonium sulfate (1 mM and 10 mM). SIAA exhibited no auxin activity, as demonstrated by both the Arabidopsis DR5::GUS assay and the Arabidopsis phenotype analysis. Sulfonation of IAA may therefore be a mechanism for IAA deactivation and/or storage in Urtica, similar to sulfonation of the jasmonates in Arabidopsis.
Collapse
Affiliation(s)
- Klara Supikova
- Department of Experimental Biology, Palacký University Olomouc, Šlechtitelů 27, CZ-77900, Olomouc, Czech Republic
| | - Asta Žukauskaitė
- Department of Chemical Biology, Palacký University Olomouc, Šlechtitelů 27, CZ-77900, Olomouc, Czech Republic
| | - Andrea Kosinova
- Department of Experimental Biology, Palacký University Olomouc, Šlechtitelů 27, CZ-77900, Olomouc, Czech Republic
| | - Aleš Pěnčík
- Laboratory of Growth Regulators, Institute of Experimental Botany, The Czech Academy of Sciences & Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - Nuria De Diego
- Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 27, CZ-77900, Olomouc, Czech Republic
| | - Lukáš Spíchal
- Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 27, CZ-77900, Olomouc, Czech Republic
| | - Martin Fellner
- Laboratory of Growth Regulators, Institute of Experimental Botany, The Czech Academy of Sciences & Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - Katerina Skorepova
- Department of Experimental Biology, Palacký University Olomouc, Šlechtitelů 27, CZ-77900, Olomouc, Czech Republic
| | - Jiri Gruz
- Department of Experimental Biology, Palacký University Olomouc, Šlechtitelů 27, CZ-77900, Olomouc, Czech Republic.
| |
Collapse
|
2
|
Kisiriko M, Noleto-Dias C, Bitchagno GTM, Naboulsi I, Anastasiadi M, Terry LA, Sobeh M, Beale MH, Ward JL. The First Comprehensive Chemical Profiling of Vachellia gummifera (Willd.) Kyal. & Boatwr., a Plant with Medicinal Value. Chem Biodivers 2024; 21:e202400396. [PMID: 38501581 DOI: 10.1002/cbdv.202400396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 03/20/2024]
Abstract
Vachellia gummifera (Willd.) Kyal. & Boatwr. is a medicinal plant endemic to Morocco that has no documented studies on its chemical composition. In this study, the chemical composition of the water/methanol (4 : 1) extracts of air-dried leaf and stem samples of Moroccan V. gummifera was determined using UHPLC-MS and NMR. In total, over 100 metabolites were identified in our study. Pinitol was the major compound in both the leaf and stem extracts, being significantly more abundant in the former. Asparagine and 3-hydroxyheteroendrin were the second most abundant compounds in the stem and leaf extracts, respectively, though both compounds were present in each tissue. The other compounds included flavonoids based on quercetin, and phenolic derivatives. Eucomic acid, only identified in the stems and was the major aromatic compound distinguishing the leaf and stem profiles. Quercetin 3-O-(6''-O-malonyl)-β-D-glucopyranoside was identified as the major flavonoid in the leaves but was also present in the stems. Other malonylated derivatives that were all flavonol glycosides based on myricetin, kaempferol, and isorhamnetin in addition to quercetin were also identified. This is the first report of eucomic acid and malonylated compounds in Vachellia species. This report provides valuable insights into the chemotaxonomic significance of the Vachellia genus.
Collapse
Affiliation(s)
- Musa Kisiriko
- Plant Sciences for the Bioeconomy, Rothamsted Research, West Common, Harpenden, AL5 2JQ, UK
- Plant Science Laboratory, Cranfield University, Cranfield, MK43 0AL, UK
- AgroBioSciences Research Division, Mohammed VI Polytechnic University, Lot 660, Moulay Rachid, Ben Guerir 43150, Morocco
| | - Clarice Noleto-Dias
- Plant Sciences for the Bioeconomy, Rothamsted Research, West Common, Harpenden, AL5 2JQ, UK
| | - Gabin T M Bitchagno
- Plant Sciences for the Bioeconomy, Rothamsted Research, West Common, Harpenden, AL5 2JQ, UK
- AgroBioSciences Research Division, Mohammed VI Polytechnic University, Lot 660, Moulay Rachid, Ben Guerir 43150, Morocco
- Current Address, Royal Botanical Gardens, Kew, Richmond, London, TW9 3AE
| | - Imane Naboulsi
- AgroBioSciences Research Division, Mohammed VI Polytechnic University, Lot 660, Moulay Rachid, Ben Guerir 43150, Morocco
| | - Maria Anastasiadi
- Plant Science Laboratory, Cranfield University, Cranfield, MK43 0AL, UK
| | - Leon A Terry
- Plant Science Laboratory, Cranfield University, Cranfield, MK43 0AL, UK
| | - Mansour Sobeh
- AgroBioSciences Research Division, Mohammed VI Polytechnic University, Lot 660, Moulay Rachid, Ben Guerir 43150, Morocco
| | - Michael H Beale
- Plant Sciences for the Bioeconomy, Rothamsted Research, West Common, Harpenden, AL5 2JQ, UK
| | - Jane L Ward
- Plant Sciences for the Bioeconomy, Rothamsted Research, West Common, Harpenden, AL5 2JQ, UK
| |
Collapse
|
3
|
da Silva ACC, de Almeida RR, Vidal CS, Neto JFC, da Cruz Sousa AC, Martínez FNA, Pinheiro DP, Sales SLA, Pessoa C, Denardin JC, de Morais SM, Ricardo NMPS. Sulfated xyloglucan-based magnetic nanocomposite for preliminary evaluation of theranostic potential. Int J Biol Macromol 2022; 216:520-527. [PMID: 35803410 DOI: 10.1016/j.ijbiomac.2022.06.197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 11/05/2022]
Affiliation(s)
- Aiêrta Cristina Carrá da Silva
- Laboratory of Polymers and Materials Innovation, Department of Organic and Inorganic Chemistry, Sciences Center, Federal University of Ceará, Campus of Pici, Zip Code 60440-760 Fortaleza, CE, Brazil
| | - Raimundo Rafael de Almeida
- Federal Institute of Education, Science and Technology of Ceará, Campus Camocim, Zip Code 62400-000 Camocim, CE, Brazil
| | - Cristine Soares Vidal
- Laboratory of Polymers and Materials Innovation, Department of Organic and Inorganic Chemistry, Sciences Center, Federal University of Ceará, Campus of Pici, Zip Code 60440-760 Fortaleza, CE, Brazil
| | - João Francisco Câmara Neto
- Laboratory of Polymers and Materials Innovation, Department of Organic and Inorganic Chemistry, Sciences Center, Federal University of Ceará, Campus of Pici, Zip Code 60440-760 Fortaleza, CE, Brazil
| | - Alexandre Carreira da Cruz Sousa
- Laboratory of Polymers and Materials Innovation, Department of Organic and Inorganic Chemistry, Sciences Center, Federal University of Ceará, Campus of Pici, Zip Code 60440-760 Fortaleza, CE, Brazil
| | | | - Daniel Pascoalino Pinheiro
- Laboratory of Experimental Oncology, Center for Research and Drug Development, Federal University of Ceará, Zip Code 60430-275 Fortaleza, CE, Brazil
| | - Sarah Leyenne Alves Sales
- Laboratory of Experimental Oncology, Center for Research and Drug Development, Federal University of Ceará, Zip Code 60430-275 Fortaleza, CE, Brazil
| | - Cláudia Pessoa
- Laboratory of Experimental Oncology, Center for Research and Drug Development, Federal University of Ceará, Zip Code 60430-275 Fortaleza, CE, Brazil
| | - Juliano Casagrande Denardin
- University of Santiago of Chile and Cedenna, USACH-CEDENNA, Department of Physics, Zip Code 9170124 Santiago, Chile
| | - Selene Maia de Morais
- Laboratory of Natural Products, Science and Technology Center, Ceará State University, Campus of Itaperi, Zip Code 60714-903 Fortaleza, CE, Brazil
| | - Nágila Maria Pontes Silva Ricardo
- Laboratory of Polymers and Materials Innovation, Department of Organic and Inorganic Chemistry, Sciences Center, Federal University of Ceará, Campus of Pici, Zip Code 60440-760 Fortaleza, CE, Brazil.
| |
Collapse
|
4
|
Tienaho J, Reshamwala D, Sarjala T, Kilpeläinen P, Liimatainen J, Dou J, Viherä-Aarnio A, Linnakoski R, Marjomäki V, Jyske T. Salix spp. Bark Hot Water Extracts Show Antiviral, Antibacterial, and Antioxidant Activities-The Bioactive Properties of 16 Clones. Front Bioeng Biotechnol 2022; 9:797939. [PMID: 34976988 PMCID: PMC8716786 DOI: 10.3389/fbioe.2021.797939] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 11/15/2021] [Indexed: 11/13/2022] Open
Abstract
Earlier studies have shown that the bark of Salix L. species (Salicaceae family) is rich in extractives, such as diverse bioactive phenolic compounds. However, we lack knowledge on the bioactive properties of the bark of willow species and clones adapted to the harsh climate conditions of the cool temperate zone. Therefore, the present study aimed to obtain information on the functional profiles of northern willow clones for the use of value-added bioactive solutions. Of the 16 willow clones studied here, 12 were examples of widely distributed native Finnish willow species, including dark-leaved willow (S. myrsinifolia Salisb.) and tea-leaved willow (S. phylicifolia L.) (3 + 4 clones, respectively) and their natural and artificial hybrids (3 + 2 clones, respectively). The four remaining clones were commercial willow varieties from the Swedish willow breeding program. Hot water extraction of bark under mild conditions was carried out. Bioactivity assays were used to screen antiviral, antibacterial, antifungal, yeasticidal, and antioxidant activities, as well as the total phenolic content of the extracts. Additionally, we introduce a fast and less labor-intensive steam-debarking method for Salix spp. feedstocks. Clonal variation was observed in the antioxidant properties of the bark extracts of the 16 Salix spp. clones. High antiviral activity against a non-enveloped enterovirus, coxsackievirus A9, was found, with no marked differences in efficacy between the native clones. All the clones also showed antibacterial activity against Staphylococcus aureus and Escherichia coli, whereas no antifungal (Aspergillus brasiliensis) or yeasticidal (Candida albicans) efficacy was detected. When grouping the clone extract results into Salix myrsinifolia, Salix phylicifolia, native hybrid, artificial hybrid, and commercial clones, there was a significant difference in the activities between S. phylicifolia clone extracts and commercial clone extracts in the favor of S. phylicifolia in the antibacterial and antioxidant tests. In some antioxidant tests, S. phylicifolia clone extracts were also significantly more active than artificial clone extracts. Additionally, S. myrsinifolia clone extracts showed significantly higher activities in some antioxidant tests than commercial clone extracts and artificial clone extracts. Nevertheless, the bark extracts of native Finnish willow clones showed high bioactivity. The obtained knowledge paves the way towards developing high value-added biochemicals and other functional solutions based on willow biorefinery approaches.
Collapse
Affiliation(s)
- Jenni Tienaho
- Production Systems, Natural Resources Institute Finland (Luke), Helsinki, Finland
| | - Dhanik Reshamwala
- Department of Biological and Environmental Science, Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Tytti Sarjala
- Production Systems, Natural Resources Institute Finland (Luke), Helsinki, Finland
| | - Petri Kilpeläinen
- Production Systems, Natural Resources Institute Finland (Luke), Helsinki, Finland
| | - Jaana Liimatainen
- Production Systems, Natural Resources Institute Finland (Luke), Helsinki, Finland
| | - Jinze Dou
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Espoo, Finland
| | - Anneli Viherä-Aarnio
- Production Systems, Natural Resources Institute Finland (Luke), Helsinki, Finland
| | - Riikka Linnakoski
- Natural Resources, Natural Resources Institute Finland (Luke), Helsinki, Finland
| | - Varpu Marjomäki
- Department of Biological and Environmental Science, Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Tuula Jyske
- Production Systems, Natural Resources Institute Finland (Luke), Helsinki, Finland
| |
Collapse
|
5
|
Han L, Fu Q, Deng C, Luo L, Xiang T, Zhao H. Immunomodulatory potential of flavonoids for the treatment of autoimmune diseases and tumour. Scand J Immunol 2021. [DOI: 10.1111/sji.13106] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Limin Han
- Department of Pathophysiology Zunyi Medical University Zunyi China
- Department of Endocrinology People’s Hospital of Changshou Chongqing Chongqing China
| | - Qiang Fu
- Organ Transplantation Center Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital School of Medicine University of Electronic Science and Technology of China Chengdu China
| | - Chuan Deng
- Department of Neurology People’s Hospital of Changshou Chongqing Chongqing China
| | - Li Luo
- Department of Forensic Medicine Zunyi Medical University Zunyi China
| | - Tengxiao Xiang
- Department of Endocrinology People’s Hospital of Changshou Chongqing Chongqing China
| | - Hailong Zhao
- Department of Pathophysiology Zunyi Medical University Zunyi China
| |
Collapse
|
6
|
Tawfeek N, Mahmoud MF, Hamdan DI, Sobeh M, Farrag N, Wink M, El-Shazly AM. Phytochemistry, Pharmacology and Medicinal Uses of Plants of the Genus Salix: An Updated Review. Front Pharmacol 2021; 12:593856. [PMID: 33643045 PMCID: PMC7908037 DOI: 10.3389/fphar.2021.593856] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 01/07/2021] [Indexed: 01/18/2023] Open
Abstract
The Willows (genus Salix), with more than 330–500 species and 200 hybrids, are trees, shrubs or prostrate plants that are widely distributed in Africa, North America, Europe, and Asia. The genus is traditionally used in folk medicine and represents a valuable source of biologically active compounds among them salicin, a prodrug for salicylic acid. Altogether, 322 secondary metabolites were characterized in the genus including flavonoids 94) (flavonols, flavones, flavanones, isoflavones, flavan-3-ols (catechins and procyanidins), chalcones, dihydrochalcone, anthocyanins, dihydroflavonols), phenolic glycosides (76), organic acids (28), and non-phenolic glycosides (17), sterols and terpenes (17), simple phenolics 13) and lignans 7) in addition to volatiles and fatty acids (69). Furthermore, willows exert analgesic, anti-inflammatory, antioxidant, anticancer, cytotoxic, antidiabetic, antimicrobial, antiobesity, neuroprotective and hepatoprotective activities. The current review provides an updated summary of the importance of willows, their chemical composition and pharmacological activities.
Collapse
Affiliation(s)
- Nora Tawfeek
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany.,Department of Pharmacognosy, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Mona F Mahmoud
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Dalia I Hamdan
- Department of Pharmacognosy, Faculty of Pharmacy, Menoufia University, Shibin Elkom, Egypt
| | - Mansour Sobeh
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany.,AgroBioSciences Research Division, Mohammed VI Polytechnic University, Ben-Guerir, Morocco
| | - Nawaal Farrag
- Department of Pharmacognosy, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Michael Wink
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany
| | - Assem M El-Shazly
- Department of Pharmacognosy, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| |
Collapse
|
7
|
Variation in Phenolic Chemistry in Zostera marina Seagrass Along Environmental Gradients. PLANTS 2021; 10:plants10020334. [PMID: 33572371 PMCID: PMC7916139 DOI: 10.3390/plants10020334] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/26/2021] [Accepted: 02/03/2021] [Indexed: 11/17/2022]
Abstract
Chemical ecology has been suggested as a less time-consuming and more cost-efficient monitoring tool of seagrass ecosystems than traditional methods. Phenolic chemistry in Zostera marina samples was analyzed against latitude, sea depth, sample position within a seagrass meadow (periphery or center) and wave exposure. Multivariate data analysis showed that rosmarinic acid correlated moderately positively with depth, while the flavonoids had an overall strong negative correlation with increasing depth—possibly reflecting lack of stress-induced conditions with increasing depth, rather than a different response to light conditions. At a molecular level, the flavonoids were separated into two groups; one group is well described by the variables of depth and wave exposure, and the other group that was not well described by these variables—the latter may reflect biosynthetic dependencies or other unrevealed factors. A higher flavonoid/rosmarinic acid ratio was seen in the periphery of a seagrass meadow, while the contrary ratio was seen in the center. This may reflect higher plant stress in the periphery of a meadow, and the flavonoid/rosmarinic acid ratio may provide a possible molecular index of seagrass ecosystem health. Further studies are needed before the full potential of using variation in phenolic chemistry as a seagrass ecosystem monitoring tool is established.
Collapse
|
8
|
Vrba J, Papoušková B, Kosina P, Lněničková K, Valentová K, Ulrichová J. Identification of Human Sulfotransferases Active towards Silymarin Flavonolignans and Taxifolin. Metabolites 2020; 10:metabo10080329. [PMID: 32806559 PMCID: PMC7465014 DOI: 10.3390/metabo10080329] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 08/04/2020] [Accepted: 08/10/2020] [Indexed: 12/17/2022] Open
Abstract
Natural phenolic compounds are known to be metabolized by phase II metabolic reactions. In this study, we examined the in vitro sulfation of the main constituents of silymarin, an herbal remedy produced from the fruits of the milk thistle. The study focused on major flavonolignan constituents, including silybin A, silybin B, isosilybin A, isosilybin B, silychristin, and silydianin, as well as the flavonoid taxifolin. Using ultra-high-performance liquid chromatography coupled with tandem mass spectrometry (UHPLC-MS), individual flavonolignans and taxifolin were found to be sulfated by human liver and human intestinal cytosols. Moreover, experiments with recombinant enzymes revealed that human sulfotransferases (SULTs) 1A1*1, 1A1*2, 1A2, 1A3, 1B1, 1C4, and 1E1 catalyzed the sulfation of all of the tested compounds, with the exception of silydianin, which was not sulfated by SULT1B1 and SULT1C4. The sulfation products detected were monosulfates, of which some of the major ones were identified as silybin A 20-O-sulfate, silybin B 20-O-sulfate, and isosilybin A 20-O-sulfate. Further, we also observed the sulfation of the tested compounds when they were tested in the silymarin mixture. Sulfates of flavonolignans and of taxifolin were produced by incubating silymarin with all of the above SULT enzymes, with human liver and intestinal cytosols, and also with human hepatocytes, even though the spectrum and amount of the sulfates varied among the metabolic models. Considering our results and the expression patterns of human sulfotransferases in metabolic tissues, we conclude that flavonolignans and taxifolin can potentially undergo both intestinal and hepatic sulfation, and that SULTs 1A1, 1A3, 1B1, and 1E1 could be involved in the biotransformation of the constituents of silymarin.
Collapse
Affiliation(s)
- Jiří Vrba
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, 77515 Olomouc, Czech Republic; (P.K.); (K.L.); (J.U.)
- Correspondence:
| | - Barbora Papoušková
- Regional Centre of Advanced Technologies and Materials, Department of Analytical Chemistry, Faculty of Science, Palacký University, 17. Listopadu 12, 77146 Olomouc, Czech Republic;
| | - Pavel Kosina
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, 77515 Olomouc, Czech Republic; (P.K.); (K.L.); (J.U.)
| | - Kateřina Lněničková
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, 77515 Olomouc, Czech Republic; (P.K.); (K.L.); (J.U.)
| | - Kateřina Valentová
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220 Prague, Czech Republic;
| | - Jitka Ulrichová
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, 77515 Olomouc, Czech Republic; (P.K.); (K.L.); (J.U.)
| |
Collapse
|