1
|
Dwianingsih EK, Iskandar K, Hapsara S, Ping Liu C, Malueka RG, Gunadi, Matsuo M, Lai PS. Mutation spectrum analysis of DMD gene in Indonesian Duchenne and Becker muscular dystrophy patients. F1000Res 2023; 11:148. [PMID: 38009102 PMCID: PMC10668572 DOI: 10.12688/f1000research.73476.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/13/2023] [Indexed: 11/28/2023] Open
Abstract
Background Duchenne muscular dystrophy (DMD) and Becker muscular dystrophy (BMD) are allelic disorders caused by mutations in the DMD gene. The full mutation spectrum of the DMD gene in Indonesian patients is currently unknown. Mutation-specific therapies are currently being developed, such as exon skipping or stop codon read-through therapy. This study was conducted with the aim of identifying the mutation spectrum of the DMD gene in Indonesia to guide future development and application of feasible therapeutic strategies. Methods This study is a cross sectional study that enrolled 43 male patients with a clinical suspicion of DMD or BMD. Multiplex ligation-dependent probe amplification (MLPA) reaction was performed to screen for the common mutations in the DMD gene. Results Out of 43 subjects, deletions accounted for 69.77% (n=30) cases, while duplications were found in 11.63% (n=5) cases. One novel duplication spanning exons 2 to 62 was identified. Deletion mutations clustered around the distal (66.67%) and proximal (26.67%) hot spot regions of the DMD gene while duplication mutations were observed solely at the proximal region. Two false positive cases of single exon deletion detected through MLPA were attributed to sequence mutations affecting primer ligation sites, confirming the need to validate all single exon deletions when using this screening method. Analysis of available maternal DNA samples showed that the rate of de novo mutations (48.15%) appears higher than expected in this population. Out of 31 patients who were classified as DMD based on clinical and genotype characterizations, 60.47% (n=26) of cases were suitable for exon skipping therapy. Conclusion This is the first comprehensive study showing the feasibility of implementing the MLPA method for routine screening of DMD patients in Indonesia. This is also the first study showing the potential applicability of exon skipping therapy in the majority of DMD cases in the country.
Collapse
Affiliation(s)
- Ery Kus Dwianingsih
- Genetics Working Group, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
- Dr. Sardjito General Hospital, Yogyakarta, 55281, Indonesia
- Department of Anatomical Pathology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
| | - Kristy Iskandar
- Genetics Working Group, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
- Academic Hospital, Universitas Gadjah Mada, Yogyakarta, 55291, Indonesia
- Department of Child Health, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
| | - Sunartini Hapsara
- Academic Hospital, Universitas Gadjah Mada, Yogyakarta, 55291, Indonesia
- Department of Child Health, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
| | - Chun Ping Liu
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Rusdy Ghazali Malueka
- Genetics Working Group, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
- Dr. Sardjito General Hospital, Yogyakarta, 55281, Indonesia
- Department of Neurology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
| | - Gunadi
- Genetics Working Group, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
- Dr. Sardjito General Hospital, Yogyakarta, 55281, Indonesia
- Pediatric Surgery Division, Department of Surgery, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
| | - Masafumi Matsuo
- KNC Department of Nucleic Acid Drug Discovery, Faculty of Rehabilitation, Kobegakuin University, Kobe, 651-2180, Japan
| | - Poh San Lai
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| |
Collapse
|
2
|
Yao S, Chen Z, Yu Y, Zhang N, Jiang H, Zhang G, Zhang Z, Zhang B. Current Pharmacological Strategies for Duchenne Muscular Dystrophy. Front Cell Dev Biol 2021; 9:689533. [PMID: 34490244 PMCID: PMC8417245 DOI: 10.3389/fcell.2021.689533] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/23/2021] [Indexed: 12/25/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a lethal, X-linked neuromuscular disorder caused by the absence of dystrophin protein, which is essential for muscle fiber integrity. Loss of dystrophin protein leads to recurrent myofiber damage, chronic inflammation, progressive fibrosis, and dysfunction of muscle stem cells. There is still no cure for DMD so far and the standard of care is principally limited to symptom relief through glucocorticoids treatments. Current therapeutic strategies could be divided into two lines. Dystrophin-targeted therapeutic strategies that aim at restoring the expression and/or function of dystrophin, including gene-based, cell-based and protein replacement therapies. The other line of therapeutic strategies aims to improve muscle function and quality by targeting the downstream pathological changes, including inflammation, fibrosis, and muscle atrophy. This review introduces the important developments in these two lines of strategies, especially those that have entered the clinical phase and/or have great potential for clinical translation. The rationale and efficacy of each agent in pre-clinical or clinical studies are presented. Furthermore, a meta-analysis of gene profiling in DMD patients has been performed to understand the molecular mechanisms of DMD.
Collapse
Affiliation(s)
- Shanshan Yao
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Zihao Chen
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Yuanyuan Yu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong
| | - Ning Zhang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Hewen Jiang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Ge Zhang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong
| | - Zongkang Zhang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Baoting Zhang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| |
Collapse
|
3
|
Genotype and age at diagnosis in Thai boys with Duchenne muscular dystrophy (DMD). Neuromuscul Disord 2020; 30:839-844. [PMID: 32962870 DOI: 10.1016/j.nmd.2020.09.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/04/2020] [Accepted: 09/02/2020] [Indexed: 11/24/2022]
Abstract
Gene-based therapy is a treatment for Duchenne muscular dystrophy (DMD) has become lately available; limited use for specific of mutation and percentages of the patients. Diagnosis in Thailand is made by muscle biopsy or multiplex ligation-dependent probe amplification (MLPA). Appropriate treatment in developing countries is difficult because gene sequencing is expensive and has limited availability. We aimed to identify the clinical and genetic characteristics of Thai DMD. Patients aged 0-22 years were recruited from the pediatric neuromuscular clinic of Siriraj Hospital during 2017-2019. Ninety-four charts were reviewed for clinical and laboratory data. Patients with negative MLPA who underwent next generation sequencing were consented. The mean age at onset and diagnosis was 4 and 7 years, respectively. Approximately 70% of patients had loss of ambulation by the mean age of 9.6 ± 1.8 years. Eighty percent were treated with glucocorticoids. Genetic testing was performed in 70 patients. Molecular analysis revealed mutations in 90% of cases, including exon deletions in 48.57%, nonsense mutations in 20%, frameshift mutations in 12.86%, splice site in 7.14%, exon duplications in 5.71%, and in-frame deletion in 2.86%. Gene sequencing should be performed because baseline genetic mutation data is essential for gene-based therapies that will become available in the future.
Collapse
|
4
|
Yang YM, Yan K, Liu B, Chen M, Wang LY, Huang YZ, Qian YQ, Sun YX, Li HG, Dong MY. Comprehensive genetic diagnosis of patients with Duchenne/Becker muscular dystrophy (DMD/BMD) and pathogenicity analysis of splice site variants in the DMD gene. J Zhejiang Univ Sci B 2020; 20:753-765. [PMID: 31379145 DOI: 10.1631/jzus.b1800541] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Duchenne muscular dystrophy (DMD) and Becker muscular dystrophy (BMD) are caused by mutations in the DMD gene. The aim of this study is to identify pathogenic DMD variants in probands and reduce the risk of recurrence of the disease in affected families. Variations in 100 unrelated DMD/BMD patients were detected by multiplex ligation-dependent probe amplification (MLPA) and next-generation sequencing (NGS). Pathogenic variants in DMD were successfully identified in all cases, and 11 of them were novel. The most common mutations were intragenic deletions (69%), with two hotspots located in the 5' end (exons 2-19) and the central of the DMD gene (exons 45-55), while point mutations were observed in 22% patients. Further, c.1149+1G>A and c.1150-2A>G were confirmed by hybrid minigene splicing assay (HMSA). This two splice site mutations would lead to two aberrant DMD isoforms which give rise to severely truncated protein. Therefore, the clinical use of MLPA, NGS, and HMSA is an effective strategy to identify variants. Importantly, eight embryos were terminated pregnancies according to prenatal diagnosis and a healthy boy was successfully delivered by preimplantation genetic diagnosis (PGD). Early and accurate genetic diagnosis is essential for prenatal diagnosis/PGD to reduce the risk of recurrence of DMD in affected families.
Collapse
Affiliation(s)
- Yan-Mei Yang
- Department of Reproductive Genetics, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China.,Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education, Hangzhou 310006, China.,Key Laboratory of Women's Reproductive Health of Zhejiang Province, Hangzhou 310006, China
| | - Kai Yan
- Department of Reproductive Genetics, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China.,Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education, Hangzhou 310006, China.,Key Laboratory of Women's Reproductive Health of Zhejiang Province, Hangzhou 310006, China
| | - Bei Liu
- Department of Reproductive Genetics, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China.,Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education, Hangzhou 310006, China.,Key Laboratory of Women's Reproductive Health of Zhejiang Province, Hangzhou 310006, China
| | - Min Chen
- Department of Reproductive Genetics, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China.,Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education, Hangzhou 310006, China.,Key Laboratory of Women's Reproductive Health of Zhejiang Province, Hangzhou 310006, China
| | - Li-Ya Wang
- Department of Reproductive Genetics, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China.,Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education, Hangzhou 310006, China.,Key Laboratory of Women's Reproductive Health of Zhejiang Province, Hangzhou 310006, China
| | - Ying-Zhi Huang
- Department of Reproductive Genetics, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China.,Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education, Hangzhou 310006, China.,Key Laboratory of Women's Reproductive Health of Zhejiang Province, Hangzhou 310006, China
| | - Ye-Qing Qian
- Department of Reproductive Genetics, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China.,Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education, Hangzhou 310006, China.,Key Laboratory of Women's Reproductive Health of Zhejiang Province, Hangzhou 310006, China
| | - Yi-Xi Sun
- Department of Reproductive Genetics, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China.,Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education, Hangzhou 310006, China.,Key Laboratory of Women's Reproductive Health of Zhejiang Province, Hangzhou 310006, China
| | - Hong-Ge Li
- Department of Reproductive Genetics, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China.,Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education, Hangzhou 310006, China.,Key Laboratory of Women's Reproductive Health of Zhejiang Province, Hangzhou 310006, China
| | - Min-Yue Dong
- Department of Reproductive Genetics, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China.,Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education, Hangzhou 310006, China.,Key Laboratory of Women's Reproductive Health of Zhejiang Province, Hangzhou 310006, China
| |
Collapse
|
5
|
Ling C, Dai Y, Fang L, Yao F, Liu Z, Qiu Z, Cui L, Xia F, Zhao C, Zhang S, Wang K, Zhang X. Exonic rearrangements in DMD in Chinese Han individuals affected with Duchenne and Becker muscular dystrophies. Hum Mutat 2019; 41:668-677. [PMID: 31705731 PMCID: PMC7028077 DOI: 10.1002/humu.23953] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 10/31/2019] [Accepted: 11/07/2019] [Indexed: 01/12/2023]
Abstract
Exonic deletions and duplications within DMD are the main pathogenic variants in Duchenne and Becker muscular dystrophies (DMD/BMD). However, few studies have profiled the flanking sequences of breakpoints and the potential mechanism underlying the breakpoints in different fragile regions of DMD. In this study, 896 Chinese male probands afflicted with DMD/BMD were selected from unrelated families and analyzed using multiplex ligation‐dependent probe amplification of the DMD gene, in which we identified exon deletions in 784 subjects and duplications in 112 subjects. Deletions occurred most frequently in the genomic region encompassing exons 45–55, accounting for 73% of all deletion patterns. Furthermore, to unravel the potential mechanism that induced breaks, DMD gene capture and sequencing were performed to identify the breakpoints in 37 subjects with deletions encompassing exons 45–55 of DMD; we found that DMD instability did not arise from a single cause; instead, long‐sequence motifs, nonconsensus microhomologies, low‐copy repeats, and microindels were embedded around the breakpoints, which may predispose DMD to instability. In summary, this study highlights the heterogeneous characteristics of the flanking sequences around the breakpoints and helps us to understand the mechanism underlying DMD gene instability.
Collapse
Affiliation(s)
- Chao Ling
- The Laboratory of Clinical Genetics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Yi Dai
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Li Fang
- Department of Pathology & Laboratory Medicine, Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Fengxia Yao
- The Laboratory of Clinical Genetics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Zhe Liu
- The Laboratory of Clinical Genetics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Zhengqing Qiu
- Department of Pediatrics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Liying Cui
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Fan Xia
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Chen Zhao
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Shuyang Zhang
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Kai Wang
- Department of Pathology & Laboratory Medicine, Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.,Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Xue Zhang
- The Laboratory of Clinical Genetics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China.,Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, McKusick-Zhang Center for GeneticMedicine, School of Basic Medicine Peking, Union Medical College, Beijing, China
| |
Collapse
|
6
|
Toksoy G, Durmus H, Aghayev A, Bagirova G, Sevinc Rustemoglu B, Basaran S, Avci S, Karaman B, Parman Y, Altunoglu U, Yapici Z, Tekturk P, Deymeer F, Topaloglu H, Kayserili H, Oflazer-Serdaroglu P, Uyguner ZO. Mutation spectrum of 260 dystrophinopathy patients from Turkey and important highlights for genetic counseling. Neuromuscul Disord 2019; 29:601-613. [DOI: 10.1016/j.nmd.2019.03.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 03/20/2019] [Accepted: 03/25/2019] [Indexed: 12/24/2022]
|
7
|
Aartsma-Rus A, Hegde M, Ben-Omran T, Buccella F, Ferlini A, Gallano P, Howell RR, Leturcq F, Martin AS, Potulska-Chromik A, Saute JA, Schmidt WM, Sejersen T, Tuffery-Giraud S, Uyguner ZO, Witcomb LA, Yau S, Nelson SF. Evidence-Based Consensus and Systematic Review on Reducing the Time to Diagnosis of Duchenne Muscular Dystrophy. J Pediatr 2019; 204:305-313.e14. [PMID: 30579468 DOI: 10.1016/j.jpeds.2018.10.043] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 09/27/2018] [Accepted: 10/24/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Annemieke Aartsma-Rus
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Madhuri Hegde
- Department of Human Genetics, Emory University School of Medicine/School of Biological Sciences, Georgia Institute of Technology/Perkin Elmer Genetics, Atlanta, GA
| | - Tawfeg Ben-Omran
- Clinical and Metabolic Genetics, Department of Pediatrics, Hamad Medical Corporation, Doha, Qatar
| | | | | | - Pia Gallano
- U705 CIBERER, Servei de Genetica, Hospital de Sant Pau, Barcelona, Spain
| | | | - France Leturcq
- Department of Genetics and Molecular Biology, Hospitalier Universitaire Paris Centre, Cochin Hospital, Paris, France
| | - Ann S Martin
- Parent Project Muscular Dystrophy, Hackensack, NJ
| | | | - Jonas A Saute
- Medical Genetics and Neurology Services, Hospital de Clinicas de Porto Alegre/Internal Medicine Department, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Wolfgang M Schmidt
- Neuromuscular Research Department, Medical University of Vienna, Vienna, Austria
| | - Thomas Sejersen
- Department of Women's and Children's Health, Karolinska Institute/Astrid Lindgrens Barnsjukhus, Karolinska University Hospital, Stockholm, Sweden
| | - Sylvie Tuffery-Giraud
- Laboratory of Rare Genetic Diseases (LGMR), University of Montpellier, Montpellier, France
| | - Zehra Oya Uyguner
- Department of Medical Genetics, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey
| | | | - Shu Yau
- Viapath Analytics, Guy's Hospital, London, United Kingdom
| | - Stanley F Nelson
- Department of Human Genetics, University of California, Los Angeles, CA.
| |
Collapse
|
8
|
Clinical and molecular genetic analysis of a family with late-onset LAMA2-related muscular dystrophy. Brain Dev 2016; 38:242-9. [PMID: 26304763 DOI: 10.1016/j.braindev.2015.08.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Revised: 08/05/2015] [Accepted: 08/06/2015] [Indexed: 12/27/2022]
Abstract
PURPOSE LAMA2-related muscular dystrophy (LAMA2 MD) is an autosomal recessive inherited disease caused by LAMA2 gene mutation. The spectrum of the phenotype is expanding in recent years partially due to the definitive diagnosis of molecular genetics. We investigated the phenotype and genotype in a LAMA2 MD family manifesting as limb-girdle muscular dystrophy (LGMD). METHODS The clinical information of the proband and his family was collected. Muscle biopsy and immunohistochemical staining for the muscle specimen were performed. The genomic DNA of the family was extracted from the peripheral blood, and genetic testing was analyzed using the next generation sequencing and multiplex ligation dependent probe amplification (MLPA). The point mutation was verified by Sanger sequencing while exonic deletion was verified by array comparative genomic hybridization. RESULTS The patient had mild motor retardation when he was young, and no obvious weakness was reported. Muscle biopsy showed mild atrophy in histochemical staining. Immunohistochemical staining using antibody against merosin showed nearly normal expression surrounding the muscle fiber. The proband's sister had similar symptoms. By analyzing the gene test we found that compound heterozygous LAMA2 mutation inherited from the parents respectively. One coming from the father was a gross deletion expanding from exon 36 to exon 65. The other from the mother was a missense mutation c.1358G>C (p.Cys453Ser). Sanger sequencing verified the point mutation. Array comparative genomic hybridization confirmed a long stretch of deletion about 27.6-34.7 kb. The sister had the same mutations as the proband. We diagnosed the first late onset LAMA2 MD Chinese patients on molecular level and genetic counseling is available. CONCLUSION We investigated the phenotype and genotype in a family manifesting as limb-girdle muscular dystrophy (LGMD). This LAMA2 MD family manifesting as LGMD was identified in molecular genetic level and their phenotypes was described.
Collapse
|
9
|
Li Y, Liu Z, OuYang S, Zhu Y, Wang L, Wu J. Distribution of dystrophin gene deletions in a Chinese population. J Int Med Res 2016; 44:99-108. [PMID: 26786758 PMCID: PMC5536562 DOI: 10.1177/0300060515613223] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Accepted: 09/29/2015] [Indexed: 02/05/2023] Open
Abstract
Objective To describe the deletion patterns and distribution characteristics of the dystrophin gene in a Chinese population of patients with Duchenne muscular dystrophy (DMD) or Becker muscular dystrophy (BMD). Methods Patients with DMD/BMD were recruited. Deletions in 19 exons of the dystrophin gene were evaluated using accurate multiplex polymerase chain reaction (PCR). Result Multiplex PCR identified deletions in 238/401 (59.4%) patients with DMD/BMD. Of these, 196 (82.4%) were in the distal hotspot, 32 (13.4%) were in the proximal hotspot, five (2.1%) were in both regions and five (2.1%) were in neither hotspot. Deletions were classified into 54 patterns. Exon 49 was the most frequently deleted. The reading frame rule was upheld for 91.9% of cases. Conclusion Accurate multiplex PCR for 19 exons is an effective diagnostic tool.
Collapse
Affiliation(s)
- Yuanyuan Li
- Department of Biochemistry, Capital Institute of Paediatrics, Beijing, China
| | - Zhuo Liu
- Department of Biochemistry, Capital Institute of Paediatrics, Beijing, China
| | - Shengrong OuYang
- Department of Biochemistry, Capital Institute of Paediatrics, Beijing, China
| | - Yanli Zhu
- Department of Neurology, The Affiliated Children's Hospital, Capital Institute of Paediatrics, Beijing, China
| | - Liwen Wang
- Department of Neurology, The Affiliated Children's Hospital, Capital Institute of Paediatrics, Beijing, China
| | - Jianxin Wu
- Department of Biochemistry, Capital Institute of Paediatrics, Beijing, China
| |
Collapse
|