1
|
Fan HY, Chien KL, Huang YT, Hsu JB, Chen YY, Lai EY, Su JY, Lu TP, Li HY, Hsu SY, Chen YC. Hypertension as a Novel Link for Shared Heritability in Age at Menarche and Cardiometabolic Traits. J Clin Endocrinol Metab 2023; 108:2389-2399. [PMID: 36810613 DOI: 10.1210/clinem/dgad104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/09/2023] [Accepted: 02/16/2023] [Indexed: 02/24/2023]
Abstract
CONTEXT Extremely early age at menarche, also called precocious puberty, has been associated with various cardiometabolic traits, but their shared heritability remains unclear. OBJECTIVES This work aimed to identify new shared genetic variants and their pathways for age at menarche and cardiometabolic traits and to investigate the influence of central precocious puberty on childhood cardiometabolic traits. METHODS Using the conjunction false discovery rate method, this study analyzed genome-wide association study data from the menarche-cardiometabolic traits among 59 655 females of Taiwanese ancestry and systemically investigated pleiotropy between age at menarche and cardiometabolic traits. To support the novel hypertension link, we used the Taiwan Puberty Longitudinal Study (TPLS) to investigate the influence of precocious puberty on childhood cardiometabolic traits. RESULTS We discovered 27 novel loci, with an overlap between age at menarche and cardiometabolic traits, including body fat and blood pressure. Among the novel genes discovered, SEC16B, CSK, CYP1A1, FTO, and USB1 are within a protein interaction network with known cardiometabolic genes, including traits for obesity and hypertension. These loci were confirmed through demonstration of significant changes in the methylation or expression levels of neighboring genes. Moreover, the TPLS provided evidence regarding a 2-fold higher risk of early-onset hypertension that occurred in girls with central precocious puberty. CONCLUSION Our study highlights the usefulness of cross-trait analyses for identifying shared etiology between age at menarche and cardiometabolic traits, especially early-onset hypertension. The menarche-related loci may contribute to early-onset hypertension through endocrinological pathways.
Collapse
Affiliation(s)
- Hsien-Yu Fan
- Institute of Epidemiology and Preventive Medicine, National Taiwan University, Taipei 100, Taiwan
- Department of Family Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Kuo-Liong Chien
- Institute of Epidemiology and Preventive Medicine, National Taiwan University, Taipei 100, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 100, Taiwan
| | - Yen-Tsung Huang
- Institute of Epidemiology and Preventive Medicine, National Taiwan University, Taipei 100, Taiwan
- Institute of Statistical Science, Academia Sinica, Taipei 115, Taiwan
- Department of Mathematics, National Taiwan University, Taipei 106, Taiwan
| | - Justin BoKai Hsu
- Department of Computer Science and Engineering, Yuan Ze University, Taoyuan 320, Taiwan
| | - Yun-Yu Chen
- Institute of Epidemiology and Preventive Medicine, National Taiwan University, Taipei 100, Taiwan
- Department of Medical Research, Taichung Veterans General Hospital, Taichung 407, Taiwan
- Cardiovascular Center, Taichung Veterans General Hospital, Taichung 407, Taiwan
- Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei 112, Taiwan
- Cardiovascular Research Center, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - En-Yu Lai
- Institute of Statistical Science, Academia Sinica, Taipei 115, Taiwan
| | - Jia-Ying Su
- Institute of Statistical Science, Academia Sinica, Taipei 115, Taiwan
| | - Tzu-Pin Lu
- Institute of Epidemiology and Preventive Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Hung-Yuan Li
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 100, Taiwan
| | - Shih-Yuan Hsu
- Department of Family Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Yang-Ching Chen
- Department of Family Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Department of Family Medicine, Taipei Medical University Hospital, Taipei Medical University, Taipei 110, Taiwan
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 110, Taiwan
- Graduate Institute of Metabolism and Obesity Sciences, Taipei Medical University, Taipei 110, Taiwan
| |
Collapse
|
2
|
Jin A, Zhang C, Zheng W, Xian J, Yang W, Liu T, Chen W, Li T, Wang B, Pan B, Li Q, Cheng J, Wang P, Hu B, Zhou J, Fan J, Yang X, Guo W. CD155/SRC complex promotes hepatocellular carcinoma progression via inhibiting the p38 MAPK signalling pathway and correlates with poor prognosis. Clin Transl Med 2022; 12:e794. [PMID: 35384345 PMCID: PMC8982318 DOI: 10.1002/ctm2.794] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 03/10/2022] [Accepted: 03/14/2022] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a prevalent malignancy with poor prognosis. As a cell adhesion molecule, poliovirus receptor (PVR/CD155) is abnormally overexpressed in tumour cells, and related to tumour proliferation and invasion. However, the potential role and mechanism of CD155 have not yet been elucidated in HCC. METHODS Immunohistochemistry, RT-PCR and Western blot assays were used to determine CD155 expression in HCC cell lines and tissues. Cell Counting Kit-8 and colony formation assays were used to examine cell proliferation. Transwell and wound healing assays were used to evaluate cell migration and invasion. Cell apoptosis and cycle distribution were assessed by flow cytometry. Cox regression and Kaplan-Meier analyses were performed to explore the clinical significance of CD155. The role of CD155 in vivo was evaluated by establishing liver orthotropic xenograft mice model. RNA sequencing, bioinformatics analysis and co-immunoprecipitation assay were used to explore the downstream signalling pathway of CD155. RESULTS CD155 was upregulated in HCC tissues and represented a promising prognostic indicator for HCC patients (n = 189) undergoing curative resection. High CD155 expression enhanced cell proliferation, migration and invasion, and contributed to cell survival in HCC. CD155 overexpression also induced epithelial-mesenchymal transition in HCC cells. CD155 function in HCC involved SRC/p38 MAPK signalling pathway. CD155 interacted with SRC homology-2 domain of SRC and promoted SRC activation, further inhibiting the downstream p38 MAPK signalling pathway in HCC. CONCLUSIONS CD155 promotes HCC progression via the SRC/p38 MAPK signalling pathway. CD155 may represent a predictor for poor postsurgery prognosis in HCC patients.
Collapse
Affiliation(s)
- An‐Li Jin
- Department of Laboratory MedicineZhongshan HospitalFudan UniversityShanghaiP. R. China
| | - Chun‐Yan Zhang
- Department of Laboratory MedicineZhongshan HospitalFudan UniversityShanghaiP. R. China
- Department of Laboratory MedicineXiamen BranchZhongshan HospitalFudan UniversityXiamenP. R. China
| | - Wen‐Jing Zheng
- Department of Liver Surgery & TransplantationLiver Cancer InstituteZhongshan HospitalFudan UniversityKey Laboratory of Carcinogenesis and Cancer InvasionMinistry of EducationShanghaiP. R. China
- Department of Hepatobiliary SurgeryShenzhen Key LaboratoryGuangdong Provincial Key Laboratory of Regional Immunity and DiseasesInternational Cancer CenterShenzhen University General HospitalShenzhen University Clinical Medical AcademyShenzhen UniversityShenzhenGuangdongP.R. China
| | - Jing‐Rong Xian
- Department of Laboratory MedicineZhongshan HospitalFudan UniversityShanghaiP. R. China
| | - Wen‐Jing Yang
- Department of Laboratory MedicineZhongshan HospitalFudan UniversityShanghaiP. R. China
| | - Te Liu
- Department of Laboratory MedicineZhongshan HospitalFudan UniversityShanghaiP. R. China
- Shanghai Geriatric Institute of Chinese MedicineShanghai University of Traditional Chinese MedicineShanghaiP. R. China
| | - Wei Chen
- Department of Laboratory MedicineZhongshan HospitalFudan UniversityShanghaiP. R. China
| | - Tong Li
- Department of Laboratory MedicineZhongshan HospitalFudan UniversityShanghaiP. R. China
| | - Bei‐Li Wang
- Department of Laboratory MedicineZhongshan HospitalFudan UniversityShanghaiP. R. China
- Department of Laboratory MedicineXiamen BranchZhongshan HospitalFudan UniversityXiamenP. R. China
- Department of Laboratory MedicineWusong BranchZhongshan HospitalFudan UniversityShanghaiP. R. China
| | - Bai‐Shen Pan
- Department of Laboratory MedicineZhongshan HospitalFudan UniversityShanghaiP. R. China
- Department of Laboratory MedicineWusong BranchZhongshan HospitalFudan UniversityShanghaiP. R. China
| | - Qian Li
- Department of Laboratory MedicineZhongshan HospitalFudan UniversityShanghaiP. R. China
- Department of Laboratory MedicineWusong BranchZhongshan HospitalFudan UniversityShanghaiP. R. China
| | - Jian‐Wen Cheng
- Department of Liver Surgery & TransplantationLiver Cancer InstituteZhongshan HospitalFudan UniversityKey Laboratory of Carcinogenesis and Cancer InvasionMinistry of EducationShanghaiP. R. China
| | - Peng‐Xiang Wang
- Department of Liver Surgery & TransplantationLiver Cancer InstituteZhongshan HospitalFudan UniversityKey Laboratory of Carcinogenesis and Cancer InvasionMinistry of EducationShanghaiP. R. China
| | - Bo Hu
- Department of Liver Surgery & TransplantationLiver Cancer InstituteZhongshan HospitalFudan UniversityKey Laboratory of Carcinogenesis and Cancer InvasionMinistry of EducationShanghaiP. R. China
| | - Jian Zhou
- Department of Liver Surgery & TransplantationLiver Cancer InstituteZhongshan HospitalFudan UniversityKey Laboratory of Carcinogenesis and Cancer InvasionMinistry of EducationShanghaiP. R. China
| | - Jia Fan
- Department of Liver Surgery & TransplantationLiver Cancer InstituteZhongshan HospitalFudan UniversityKey Laboratory of Carcinogenesis and Cancer InvasionMinistry of EducationShanghaiP. R. China
| | - Xin‐Rong Yang
- Department of Liver Surgery & TransplantationLiver Cancer InstituteZhongshan HospitalFudan UniversityKey Laboratory of Carcinogenesis and Cancer InvasionMinistry of EducationShanghaiP. R. China
| | - Wei Guo
- Department of Laboratory MedicineZhongshan HospitalFudan UniversityShanghaiP. R. China
- Cancer CenterZhongshan HospitalFudan UniversityShanghaiP. R. China
- Department of Laboratory MedicineXiamen BranchZhongshan HospitalFudan UniversityXiamenP. R. China
- Department of Laboratory MedicineWusong BranchZhongshan HospitalFudan UniversityShanghaiP. R. China
| |
Collapse
|
3
|
Jiang H, Li JX. Interaction networks between the Fallopian tubes and the embryo in human tubal pregnancy: Current knowledge and perspectives. J Obstet Gynaecol Res 2021; 47:4139-4147. [PMID: 34558156 DOI: 10.1111/jog.15033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/09/2021] [Accepted: 09/13/2021] [Indexed: 12/23/2022]
Abstract
AIM More than 90% of ectopic pregnancies occur in the Fallopian tubes. As the pathogenesis of tubal pregnancy remains largely unclear, the development of strategies to prevent and treat tubal pregnancy still represents a major clinical challenge. This review thoroughly summarizes the current data, aiming to determine the genes and signaling pathways that are involved in the pathophysiology of human tubal pregnancy. METHODS An electronic search from databases of PubMed, Google Scholar, and Chinese databases was carried out using key words pertaining to the pathogenesis of tubal pregnancy from the perspectives of both the Fallopian tubes and the embryo. A review of the literatures including review articles, experimental, and observational studies and case reports published between 1999 and 2021 was conducted. RESULTS Tubal pregnancy results from the interaction networks between the Fallopian tube and the embryo rather than from simple tubal abnormality. Furthermore, the embryo-maternal communication is supposed to start from the preimplantation period to the implantation period. CONCLUSION A greater understanding of the interaction networks between the Fallopian tubes and the embryo is of great significance for the prevention and medical treatment of tubal pregnancy.
Collapse
Affiliation(s)
- Huan Jiang
- Department of Reproductive Endocrinology, Longgang District Maternal and Child Healthcare Hospital of Shenzhen City, Shenzhen City, China
| | - Jian-Xiong Li
- Department of Gynaecology, Longgang District Maternal and Child Healthcare Hospital of Shenzhen City, Shenzhen City, China
| |
Collapse
|
4
|
Everson TM, Vives-Usano M, Seyve E, Cardenas A, Lacasaña M, Craig JM, Lesseur C, Baker ER, Fernandez-Jimenez N, Heude B, Perron P, Gónzalez-Alzaga B, Halliday J, Deyssenroth MA, Karagas MR, Íñiguez C, Bouchard L, Carmona-Sáez P, Loke YJ, Hao K, Belmonte T, Charles MA, Martorell-Marugán J, Muggli E, Chen J, Fernández MF, Tost J, Gómez-Martín A, London SJ, Sunyer J, Marsit CJ, Lepeule J, Hivert MF, Bustamante M. Placental DNA methylation signatures of maternal smoking during pregnancy and potential impacts on fetal growth. Nat Commun 2021; 12:5095. [PMID: 34429407 PMCID: PMC8384884 DOI: 10.1038/s41467-021-24558-y] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 06/22/2021] [Indexed: 02/07/2023] Open
Abstract
Maternal smoking during pregnancy (MSDP) contributes to poor birth outcomes, in part through disrupted placental functions, which may be reflected in the placental epigenome. Here we present a meta-analysis of the associations between MSDP and placental DNA methylation (DNAm) and between DNAm and birth outcomes within the Pregnancy And Childhood Epigenetics (PACE) consortium (N = 1700, 344 with MSDP). We identify 443 CpGs that are associated with MSDP, of which 142 associated with birth outcomes, 40 associated with gene expression, and 13 CpGs are associated with all three. Only two CpGs have consistent associations from a prior meta-analysis of cord blood DNAm, demonstrating substantial tissue-specific responses to MSDP. The placental MSDP-associated CpGs are enriched for environmental response genes, growth-factor signaling, and inflammation, which play important roles in placental function. We demonstrate links between placental DNAm, MSDP and poor birth outcomes, which may better inform the mechanisms through which MSDP impacts placental function and fetal growth.
Collapse
Affiliation(s)
- Todd M Everson
- Gangarosa Department of Environmental Health, Rollins School of Public Health at Emory University, Atlanta, GA, USA.
| | - Marta Vives-Usano
- Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Emie Seyve
- University Grenoble Alpes, Inserm, CNRS, IAB, Grenoble, France
| | - Andres Cardenas
- Department of Population Medicine, Harvard Medical School, Harvard Pilgrim Health Care Institute, Boston, MA, USA
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Marina Lacasaña
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Andalusian School of Public Health, Granada, Spain
- Instituto de Investigación Biosantaria (ibs.GRANADA), Granada, Spain
| | - Jeffrey M Craig
- Epigenetics Group, Murdoch Children's Research Institute, Parkville, VIC, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
- IMPACT - the Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, VIC, Australia
| | - Corina Lesseur
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Emily R Baker
- Department of Obstetrics & Gynecology, Geisel School of Medicine at Dartmouth College, Lebanon, NH, USA
| | - Nora Fernandez-Jimenez
- University of the Basque Country (UPV/EHU), Leioa, Spain
- Biocruces-Bizkaia Health Research Institute, Barakaldo, Spain
- Public Health Division of Gipuzkoa, Basque Government, San Sebastian, Spain
| | - Barbara Heude
- Université de Paris, CRESS, INSERM, INRAE, Paris, France
| | - Patrice Perron
- Department of Medicine, University of Sherbrooke, Sherbrooke, QC, Canada
| | - Beatriz Gónzalez-Alzaga
- Andalusian School of Public Health, Granada, Spain
- Instituto de Investigación Biosantaria (ibs.GRANADA), Granada, Spain
| | - Jane Halliday
- Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
- Reproductive Epidemiology, Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - Maya A Deyssenroth
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Margaret R Karagas
- Department of Epidemiology, Geisel School of Medicine at Dartmouth College, Hanover, NH, USA
| | - Carmen Íñiguez
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Department of Statistics and Computational Research, Universitat de València, València, Spain
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de València, València, Spain
| | - Luigi Bouchard
- Department of Biochemistry and Functional Genomics, University of Sherbrooke, Sherbrooke, QC, Canada
| | - Pedro Carmona-Sáez
- Bioinformatics Unit, GENYO. Centre for Genomics and Oncological Research, Pfizer, University of Granada, Andalusian Regional Government, Granada, Spain
- Department of Statistics, Faculty of Sciences, University of Granada, Granada, Spain
| | - Yuk J Loke
- Epigenetics Group, Murdoch Children's Research Institute, Parkville, VIC, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
| | - Ke Hao
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | | | - Jordi Martorell-Marugán
- Bioinformatics Unit, GENYO. Centre for Genomics and Oncological Research, Pfizer, University of Granada, Andalusian Regional Government, Granada, Spain
- Atrys Health S.A., Barcelona, Spain
| | - Evelyne Muggli
- Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
- Reproductive Epidemiology, Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - Jia Chen
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mariana F Fernández
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Instituto de Investigación Biosantaria (ibs.GRANADA), Granada, Spain
- Biomedical Research Centre (CIBM) and School of Medicine, University of Granada, Granada, Spain
| | - Jorg Tost
- Laboratory for Epigenetics and Environment, Centre National de Recherche en Génomique Humaine, CEA - Institut de Biologie François Jacob, Evry, France
| | - Antonio Gómez-Martín
- Genomics Unit, GENYO. Centre for Genomics and Oncological Research, Pfizer, University of Granada, Andalusian Regional Government, Granada, Spain
| | - Stephanie J London
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Durham, NC, USA
| | - Jordi Sunyer
- Universitat Pompeu Fabra, Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- ISGlobal, Barcelona Institute for Global Health, Barcelona, Spain
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Carmen J Marsit
- Gangarosa Department of Environmental Health, Rollins School of Public Health at Emory University, Atlanta, GA, USA
- Department of Epidemiology, Rollins School of Public health at Emory University, Atlanta, GA, USA
| | - Johanna Lepeule
- University Grenoble Alpes, Inserm, CNRS, IAB, Grenoble, France
| | - Marie-France Hivert
- Department of Population Medicine, Harvard Medical School, Harvard Pilgrim Health Care Institute, Boston, MA, USA
- Diabetes Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Mariona Bustamante
- Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain.
- Universitat Pompeu Fabra, Barcelona, Spain.
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.
- ISGlobal, Barcelona Institute for Global Health, Barcelona, Spain.
| |
Collapse
|
5
|
Jaremek A, Jeyarajah MJ, Jaju Bhattad G, Renaud SJ. Omics Approaches to Study Formation and Function of Human Placental Syncytiotrophoblast. Front Cell Dev Biol 2021; 9:674162. [PMID: 34211975 PMCID: PMC8240757 DOI: 10.3389/fcell.2021.674162] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 05/24/2021] [Indexed: 01/12/2023] Open
Abstract
Proper development of the placenta is vital for pregnancy success. The placenta regulates exchange of nutrients and gases between maternal and fetal blood and produces hormones essential to maintain pregnancy. The placental cell lineage primarily responsible for performing these functions is a multinucleated entity called syncytiotrophoblast. Syncytiotrophoblast is continuously replenished throughout pregnancy by fusion of underlying progenitor cells called cytotrophoblasts. Dysregulated syncytiotrophoblast formation disrupts the integrity of the placental exchange surface, which can be detrimental to maternal and fetal health. Moreover, various factors produced by syncytiotrophoblast enter into maternal circulation, where they profoundly impact maternal physiology and are promising diagnostic indicators of pregnancy health. Despite the multifunctional importance of syncytiotrophoblast for pregnancy success, there is still much to learn about how its formation is regulated in normal and diseased states. ‘Omics’ approaches are gaining traction in many fields to provide a more holistic perspective of cell, tissue, and organ function. Herein, we review human syncytiotrophoblast development and current model systems used for its study, discuss how ‘omics’ strategies have been used to provide multidimensional insights into its formation and function, and highlight limitations of current platforms as well as consider future avenues for exploration.
Collapse
Affiliation(s)
- Adam Jaremek
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Mariyan J Jeyarajah
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Gargi Jaju Bhattad
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Stephen J Renaud
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada.,Children's Health Research Institute, Lawson Health Research Institute, London, ON, Canada
| |
Collapse
|
6
|
Msheik H, El Hayek S, Bari MF, Azar J, Abou-Kheir W, Kobeissy F, Vatish M, Daoud G. Transcriptomic profiling of trophoblast fusion using BeWo and JEG-3 cell lines. Mol Hum Reprod 2020; 25:811-824. [PMID: 31778538 DOI: 10.1093/molehr/gaz061] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 10/07/2019] [Indexed: 01/26/2023] Open
Abstract
In human placenta, alteration in trophoblast differentiation has a major impact on placental maintenance and integrity. However, little is known about the mechanisms that control cytotrophoblast fusion. The BeWo cell line is used to study placental function, since it forms syncytium and secretes hormones after treatment with cAMP or forskolin. In contrast, the JEG-3 cell line fails to undergo substantial fusion. Therefore, BeWo and JEG-3 cells were used to identify a set of genes responsible for trophoblast fusion. Cells were treated with forskolin for 48 h to induce fusion. RNA was extracted, hybridised to Affymetrix HuGene ST1.0 arrays and analysed using system biology. Trophoblast differentiation was evaluated by real-time PCR and immunocytochemistry analysis. Moreover, some of the identified genes were validated by real-time PCR and their functional capacity was demonstrated by western blot using phospho-specific antibodies and CRISPR/cas9 knockdown experiments. Our results identified a list of 32 altered genes in fused BeWo cells compared to JEG-3 cells after forskolin treatment. Among these genes, four were validated by RT-PCR, including salt-inducible kinase 1 (SIK1) gene which is specifically upregulated in BeWo cells upon fusion and activated after 2 min with forskolin. Moreover, silencing of SIK1 completely abolished the fusion. Finally, SIK1 was shown to be at the center of many biological and functional processes, suggesting that it might play a role in trophoblast differentiation. In conclusion, this study identified new target genes implicated in trophoblast fusion. More studies are required to investigate the role of these genes in some placental pathology.
Collapse
Affiliation(s)
- H Msheik
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107-2020, Lebanon
| | - S El Hayek
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107-2020, Lebanon
| | - M Furqan Bari
- Department of Pathology, Dow University of Health Sciences, Karachi 74200, Pakistan
| | - J Azar
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107-2020, Lebanon
| | - W Abou-Kheir
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107-2020, Lebanon
| | - F Kobeissy
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut 1107-2020, Lebanon
| | - M Vatish
- Nuffield Department of Obstetrics and Gynaecology, University of Oxford, Oxford OX3 9DU, UK
| | - G Daoud
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107-2020, Lebanon
| |
Collapse
|
7
|
Szilagyi A, Gelencser Z, Romero R, Xu Y, Kiraly P, Demeter A, Palhalmi J, Gyorffy BA, Juhasz K, Hupuczi P, Kekesi KA, Meinhardt G, Papp Z, Draghici S, Erez O, Tarca AL, Knöfler M, Than NG. Placenta-Specific Genes, Their Regulation During Villous Trophoblast Differentiation and Dysregulation in Preterm Preeclampsia. Int J Mol Sci 2020; 21:ijms21020628. [PMID: 31963593 PMCID: PMC7013556 DOI: 10.3390/ijms21020628] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 12/15/2022] Open
Abstract
The human placenta maintains pregnancy and supports the developing fetus by providing nutrition, gas-waste exchange, hormonal regulation, and an immunological barrier from the maternal immune system. The villous syncytiotrophoblast carries most of these functions and provides the interface between the maternal and fetal circulatory systems. The syncytiotrophoblast is generated by the biochemical and morphological differentiation of underlying cytotrophoblast progenitor cells. The dysfunction of the villous trophoblast development is implicated in placenta-mediated pregnancy complications. Herein, we describe gene modules and clusters involved in the dynamic differentiation of villous cytotrophoblasts into the syncytiotrophoblast. During this process, the immune defense functions are first established, followed by structural and metabolic changes, and then by peptide hormone synthesis. We describe key transcription regulatory molecules that regulate gene modules involved in placental functions. Based on transcriptomic evidence, we infer how villous trophoblast differentiation and functions are dysregulated in preterm preeclampsia, a life-threatening placenta-mediated obstetrical syndrome for the mother and fetus. In the conclusion, we uncover the blueprint for villous trophoblast development and its impairment in preterm preeclampsia, which may aid in the future development of non-invasive biomarkers for placental functions and early identification of women at risk for preterm preeclampsia as well as other placenta-mediated pregnancy complications.
Collapse
Affiliation(s)
- Andras Szilagyi
- Systems Biology of Reproduction Lendulet Group, Institute of Enzymology, Research Centre for Natural Sciences, H-1117 Budapest, Hungary; (A.S.); (Z.G.); (P.K.); (A.D.); (J.P.); (K.J.)
| | - Zsolt Gelencser
- Systems Biology of Reproduction Lendulet Group, Institute of Enzymology, Research Centre for Natural Sciences, H-1117 Budapest, Hungary; (A.S.); (Z.G.); (P.K.); (A.D.); (J.P.); (K.J.)
| | - Roberto Romero
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD 20692, and Detroit, MI 48201, USA; (R.R.); (Y.X.); (O.E.); (A.L.T.)
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI 48824, USA
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA
- Detroit Medical Center, Detroit, MI 48201, USA
- Department of Obstetrics and Gynecology, Florida International University, Miami, FL 33199, USA
| | - Yi Xu
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD 20692, and Detroit, MI 48201, USA; (R.R.); (Y.X.); (O.E.); (A.L.T.)
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Peter Kiraly
- Systems Biology of Reproduction Lendulet Group, Institute of Enzymology, Research Centre for Natural Sciences, H-1117 Budapest, Hungary; (A.S.); (Z.G.); (P.K.); (A.D.); (J.P.); (K.J.)
| | - Amanda Demeter
- Systems Biology of Reproduction Lendulet Group, Institute of Enzymology, Research Centre for Natural Sciences, H-1117 Budapest, Hungary; (A.S.); (Z.G.); (P.K.); (A.D.); (J.P.); (K.J.)
| | - Janos Palhalmi
- Systems Biology of Reproduction Lendulet Group, Institute of Enzymology, Research Centre for Natural Sciences, H-1117 Budapest, Hungary; (A.S.); (Z.G.); (P.K.); (A.D.); (J.P.); (K.J.)
| | - Balazs A. Gyorffy
- Laboratory of Proteomics, Institute of Biology, Eotvos Lorand University, H-1117 Budapest, Hungary; (B.A.G.); (K.A.K.)
| | - Kata Juhasz
- Systems Biology of Reproduction Lendulet Group, Institute of Enzymology, Research Centre for Natural Sciences, H-1117 Budapest, Hungary; (A.S.); (Z.G.); (P.K.); (A.D.); (J.P.); (K.J.)
| | - Petronella Hupuczi
- Maternity Private Clinic of Obstetrics and Gynecology, H-1126 Budapest, Hungary; (P.H.); (Z.P.)
| | - Katalin Adrienna Kekesi
- Laboratory of Proteomics, Institute of Biology, Eotvos Lorand University, H-1117 Budapest, Hungary; (B.A.G.); (K.A.K.)
- Department of Physiology and Neurobiology, Eotvos Lorand University, H-1117 Budapest, Hungary
| | - Gudrun Meinhardt
- Department of Obstetrics and Gynecology, Reproductive Biology Unit, Medical University of Vienna, Vienna A-1090, Austria; (G.M.); (M.K.)
| | - Zoltan Papp
- Maternity Private Clinic of Obstetrics and Gynecology, H-1126 Budapest, Hungary; (P.H.); (Z.P.)
- Department of Obstetrics and Gynecology, Semmelweis University, H-1088 Budapest, Hungary
| | - Sorin Draghici
- Department of Computer Science, Wayne State University College of Engineering, Detroit, MI 48202, USA;
| | - Offer Erez
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD 20692, and Detroit, MI 48201, USA; (R.R.); (Y.X.); (O.E.); (A.L.T.)
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Department of Obstetrics and Gynecology, Soroka University Medical Center, Ben-Gurion University of the Negev, Beer-Sheva 84101, Israel
| | - Adi Laurentiu Tarca
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD 20692, and Detroit, MI 48201, USA; (R.R.); (Y.X.); (O.E.); (A.L.T.)
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Martin Knöfler
- Department of Obstetrics and Gynecology, Reproductive Biology Unit, Medical University of Vienna, Vienna A-1090, Austria; (G.M.); (M.K.)
| | - Nandor Gabor Than
- Systems Biology of Reproduction Lendulet Group, Institute of Enzymology, Research Centre for Natural Sciences, H-1117 Budapest, Hungary; (A.S.); (Z.G.); (P.K.); (A.D.); (J.P.); (K.J.)
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD 20692, and Detroit, MI 48201, USA; (R.R.); (Y.X.); (O.E.); (A.L.T.)
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Maternity Private Clinic of Obstetrics and Gynecology, H-1126 Budapest, Hungary; (P.H.); (Z.P.)
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, H-1085 Budapest, Hungary
- Correspondence: ; Tel.: +36-1-382-6788
| |
Collapse
|
8
|
Abou-Kheir W, Barrak J, Hadadeh O, Daoud G. HTR-8/SVneo cell line contains a mixed population of cells. Placenta 2017; 50:1-7. [PMID: 28161053 DOI: 10.1016/j.placenta.2016.12.007] [Citation(s) in RCA: 158] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 11/28/2016] [Accepted: 12/05/2016] [Indexed: 01/13/2023]
Abstract
INTRODUCTION The placenta, a transient organ in humans, is essential for pregnancy maintenance and fetal development. Trophoblast and stromal cells are the main cell types present in human placenta. Trophoblast cells are derivatives of the trophectoderm layer and fulfill the endocrine, exchange, invasion and implantation processes of the placenta, whereas stromal cells are of extraembryonic mesenchymal origin and are important for villous formation and maintenance. Different cell lines were developed to study trophoblast functions including BeWo, JEG-3 and JAR from chorioncarcinoma while HTR-8/SVneo was developed using first trimester extravillous trophoblast infected with simian virus 40 large T antigen (SV40). These cell lines are largely used to study trophoblast functions including cell fusion, migration and invasion. Therefore, the purity of each cell lines is crucial in order to be able to use them as a model recapitulating trophoblast cells. METHODS HTR-8/SVneo, BeWo, JEG-3 and JAR were analyzed for epithelial and mesenchymal markers using immunofluorescence, real time PCR and Western blot. RESULTS Our results showed that HTR-8/SVneo cell line contains two populations of cells suggesting the presence of trophoblast and stromal/mesenchymal cells. While all cells in BeWo, JEG-3 and Jar are positive for the trophoblast/epithelial marker CK7, HTR-8/SVneo cells contained few clusters of CK7 positive cells. Interestingly, vimentin expression was detected in a subset of HTR-8/SVneo cells and was completely absent from all other tested placental cell lines. DISCUSSION Our results unveil the presence of a heterogeneous population of trophoblast and stromal cells within HTR-8/SVneo cell line. This mixed population of cells should be taken into consideration when using this cell line to study trophoblast functions.
Collapse
Affiliation(s)
- Wassim Abou-Kheir
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.
| | - Joanna Barrak
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Ola Hadadeh
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Georges Daoud
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.
| |
Collapse
|
9
|
Costa MA. Scrutinising the regulators of syncytialization and their expression in pregnancy-related conditions. Mol Cell Endocrinol 2016; 420:180-93. [PMID: 26586208 DOI: 10.1016/j.mce.2015.11.010] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 11/05/2015] [Accepted: 11/09/2015] [Indexed: 12/16/2022]
Abstract
The placenta is important for the success of gestation and foetal development. In fact, this specialized pregnancy organ is essential for foetal nourishment, support, and protection. In the placenta, there are different cell populations, including four subtypes of trophoblasts. Cytotrophoblasts fuse and differentiate into the multinucleated syncytiotrophoblast (syncytialization). Syncytialization is a hallmark of placentation and is highly regulated by numerous molecules with distinct roles. Placentas from pregnancies complicated by preeclampsia, intrauterine growth restriction or trisomy 21 have been associated with a defective syncytialization and an altered expression of its modulators. This work proposes to review the molecules that promote or inhibit both fusion and biochemical differentiation of cytotrophoblasts. Moreover, it will also analyse the syncytialization modulators abnormally expressed in pathological placentas, highlighting the molecules that may contribute to the aetiology of these diseases.
Collapse
Affiliation(s)
- M A Costa
- Faculdade de Farmácia, Universidade do Porto, Porto, Portugal.
| |
Collapse
|
10
|
Wang L, Li X, Zhao Y, Fang C, Lian Y, Gou W, Han T, Zhu X. Insights into the mechanism of CXCL12-mediated signaling in trophoblast functions and placental angiogenesis. Acta Biochim Biophys Sin (Shanghai) 2015; 47:663-72. [PMID: 26188201 DOI: 10.1093/abbs/gmv064] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 06/08/2015] [Indexed: 01/07/2023] Open
Abstract
The chemokine CXCL12 and its receptor CXCR4 are important signaling components required for human blastocyst implantation and the progression of pregnancy. Growing evidence indicates that the CXCL12/CXCR4 axis can regulate trophoblast function and uterine spiral artery remodeling, which plays a fundamental role in placentation and fetal outcome. The orphan receptor CXCR7 is also believed to partly regulate the function of the CXCL12/CXCR4 axis. Additionally, the CXCL12/CXCR4/CXCR7 axis can enhance the cross-talk between trophoblasts and decidual cells such as uterine natural killer cells and decidual stromal cells which are involved in regulation of trophoblast differentiation and invasion and placental angiogenesis. In addition, recent studies proved that CXCL12 expression is elevated in the placenta and mid-trimester amniotic fluid of pregnant women with preeclampsia, implying that dysregulation of CXCL12 plays a role in the pathogenesis of preeclampsia. Further understanding of the regulatory mechanisms of CXCL12-mediated signaling in trophoblast functions and placental angiogenesis may help to design novel therapeutic approaches for pregnancy-associated diseases.
Collapse
Affiliation(s)
- Liang Wang
- Department of Obstetrics and Gynecology, Tangdu Hospital, the Fourth Military Medical University, Xi'an 710038, China The First Student Brigade, The Fourth Military Medical University, Xi'an 710032, China
| | - Xueyi Li
- Department of Clinical Immunology, PLA Specialized Research Institute of Rheumatism & Immunity, Xi-jing Hospital, The Fourth Military Medical University, Xi'an 710032, China
| | - Yilin Zhao
- Department of Respiratory Medicine, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710038, China
| | - Chao Fang
- Institute of Neurosciences, School of Basic Medical Sciences, The Fourth Military Medical University, Xi'an 710032, China
| | - Yingli Lian
- Department of Obstetrics and Gynecology, Tangdu Hospital, the Fourth Military Medical University, Xi'an 710038, China
| | - Wenli Gou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Tao Han
- Department of Orthopedics, Hainan Branch of PLA General Hospital, Sanya 572013, China
| | - Xiaoming Zhu
- Department of Obstetrics and Gynecology, Tangdu Hospital, the Fourth Military Medical University, Xi'an 710038, China
| |
Collapse
|
11
|
Gong J, Gu HY, Wang X, Liang Y, Sun T, Liu PJ, Wang Y, Yan JC, Jiao ZJ. SRC kinase family inhibitor PP2 promotes DMSO-induced cardiac differentiation of P19 cells and inhibits proliferation. Int J Cardiol 2013; 167:1400-5. [DOI: 10.1016/j.ijcard.2012.04.067] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2011] [Revised: 02/21/2012] [Accepted: 04/08/2012] [Indexed: 10/28/2022]
|
12
|
Src family kinase inhibitor PP2 accelerates differentiation in human intestinal epithelial cells. Biochem Biophys Res Commun 2012; 430:1195-200. [PMID: 23274493 DOI: 10.1016/j.bbrc.2012.12.085] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 12/20/2012] [Indexed: 12/17/2022]
Abstract
The proto-oncogene Src is an important protein tyrosine kinase involved in signaling pathways that control cell adhesion, growth, migration and survival. Here, we investigated the involvement of Src family kinases (SFKs) in human intestinal cell differentiation. We first observed that Src activity peaked in early stages of Caco-2/15 cell differentiation. Inhibition of SFKs with PP2, a selective SFK inhibitor, accelerated the overall differentiation program. Interestingly, all polarization and terminal differentiation markers tested, including sucrase-isomaltase, lactase-phlorizin hydrolase and E and Li-cadherins were found to be significantly up-regulated after only 3 days of treatment in the newly differentiating cells. Further investigation of the effects of PP2 revealed a significant up-regulation of the two main intestinal epithelial cell-specific transcription factors Cdx2 and HNF1α and a reduction of polycomb PRC2-related epigenetic repressing activity as measured by a decrease in H3K27me3, two events closely related to the control of cell terminal differentiation in the intestine. Taken together, these data suggest that SFKs play a key role in the control of intestinal epithelial cell terminal differentiation.
Collapse
|
13
|
Thanapprapasr D, Hu W, Sood AK, Coleman RL. Moving beyond VEGF for anti-angiogenesis strategies in gynecologic cancer. Curr Pharm Des 2012; 18:2713-9. [PMID: 22390757 DOI: 10.2174/138161212800626201] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Accepted: 01/06/2012] [Indexed: 02/03/2023]
Abstract
Gynecologic cancer is a major burden in both developed and developing countries. Almost a half million deaths from gynecologic cancer are reported each year. Understanding the molecular biology of cancer is a principle resource leading to the identification of new potential therapeutic targets, which may be parlayed into novel therapeutic options in gynecologic cancer. Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase, which plays a pivotal role in many aspects of malignant growth including cancer cell survival, migration, invasion, angiogenesis and metastasis. Various human cancer tissues have demonstrated high expression of FAK or activated FAK, which has been correlated with survival of cancer patients. Among gynecologic cancers, reports have emerged demonstrating that FAK is involved in the pathogenesis of ovarian, endometrial, and cervical cancers. In addition, the polycomb group protein enhancer of Zeste homologue 2 (EZH2), Dll4/notch and EphA2 has also emerged as important regulators of endothelial cell biology and angiogenesis. Herein, we review the role of these new targets in tumor angiogenesis and the rationale for further clinical development.
Collapse
Affiliation(s)
- Duangmani Thanapprapasr
- Department of Gynecologic Oncology, University of Texas, M.D. Anderson Cancer Center, 1155 Herman Pressler Dr. CPB 6.3271, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
14
|
Leduc K, Bourassa V, Asselin É, Leclerc P, Lafond J, Reyes-Moreno C. Leukemia Inhibitory Factor Regulates Differentiation of Trophoblastlike BeWo Cells Through the Activation of JAK/STAT and MAPK3/1 MAP Kinase-Signaling Pathways1. Biol Reprod 2012; 86:54. [DOI: 10.1095/biolreprod.111.094334] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
15
|
da Conceição AO, de Oliveira FF, de Oliveira RA, de J da S Junior A, Takser L, Reyes-Moreno C, Lafond J. Lantana macrophylla Schauer (Verbenaceae) ethanolic extract induces activation of ERK1/2 and p38 MAPKs pathway and Ca2+ imbalance in human trophoblasts derived cell lines. Food Chem Toxicol 2011; 50:1001-12. [PMID: 22222932 DOI: 10.1016/j.fct.2011.12.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Revised: 10/13/2011] [Accepted: 12/16/2011] [Indexed: 01/13/2023]
Abstract
Lantana macrophylla Schauer (Verbenaceae) a medicinal plant used to treat menstrual and respiratory disorders was investigated. The ethanolic extract from leaves was subjected to phytochemical and biological analysis. BeWo and JEG-3 cells were used to evaluate human chorionic gonadotropin hormone (hCG) production, syncytial formation, Ca2+ uptake and Ca2+ handling protein expression. The cAMP production and the mitogen-activated protein kinases (MAPKs) phosphorylation were also investigated. Phytochemical analysis yield three triterpenes: oleanolic, ursolic and latonolic acid. Viability assay showed no significant cytotoxic effect. A significant decrease in hCG production but not a disturbance on BeWo cell fusion were observed. The cAMP pathway was not affected by L. macrophylla extract alone; although the cAMP production inducted by forskolin was diminished. Both ERK1/2 and p38 MAPKs pathways were activated. Increased intracellular Ca2+ concentration ([Ca2+]i) was observed after 24 h treatment in a time and dose dependent manner; however only L. macrophylla at 10 μg/mL induced increased [Ca2+]i after 10 min treatment. CaBP28K and PMCA1/4 were modulated at protein and mRNA levels, respectively. This study showed for the first time the effect of triterpenoids from L. macrophylla leaves on trophoblasts-like cells and indicates a potential toxic effect of this plant in the placental development and fetal growth.
Collapse
Affiliation(s)
- Aline O da Conceição
- Laboratoire de Physiologie Materno-foetale, Département des Sciences Biologiques, Centre de Recherches Biomédicales, Université du Québec à Montréal, Montréal, Québec, Canada
| | | | | | | | | | | | | |
Collapse
|
16
|
Activation of erythropoietin-producing hepatocellular receptor A2 attenuates cell adhesion of human fallopian tube epithelial cells via focal adhesion kinase dephosphorylation. Mol Cell Biochem 2011; 361:259-65. [DOI: 10.1007/s11010-011-1111-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2011] [Accepted: 10/07/2011] [Indexed: 10/16/2022]
|
17
|
Yuan L, Yu Y, Sanders MA, Majumdar APN, Basson MD. Schlafen 3 induction by cyclic strain regulates intestinal epithelial differentiation. Am J Physiol Gastrointest Liver Physiol 2010; 298:G994-G1003. [PMID: 20299602 PMCID: PMC4865113 DOI: 10.1152/ajpgi.00517.2009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Accepted: 03/12/2010] [Indexed: 01/31/2023]
Abstract
The intestinal epithelium is subjected to repetitive deformation during normal gut function by peristalsis and villous motility. In vitro, cyclic strain promotes intestinal epithelial proliferation and induces an absorptive phenotype characterized by increased dipeptidyl dipeptidase (DPPIV) expression. Schlafen 3 is a novel gene recently associated with cellular differentiation. We sought to evaluate whether Schlafen 3 mediates the effects of strain on the differentiation of intestinal epithelial cell (IEC)-6 in the absence or presence of cyclic strain. Strain increased Schlafen 3 mRNA and protein. In cells transfected with a control-nontargeting siRNA, strain increased DPPIV-specific activity. However, Schlafen 3 reduction by siRNA decreased basal DPPIV and prevented any stimulation of DPPIV activity by strain. Schlafen 3 reduction also prevented DPPIV induction by sodium butyrate (1 mM) or transforming growth factor (TGF)-beta (0.1 ng/ml), two unrelated differentiating stimuli. However, Schlafen-3 reduction by siRNA did not prevent the mitogenic effect of strain or that of EGF. Blocking Src and phosphatidyl inositol (PI3)-kinase prevented strain induction of Schlafen 3, but Schlafen 3 induction required activation of p38 but not ERK. These results suggest that cyclic strain induces an absorptive phenotype characterized by increased DPPIV activity via Src-, p38-, and PI3-kinase-dependent induction of Schlafen 3 in rat IEC-6 cells on collagen, whereas Schlafen 3 may also be a key factor in the induction of intestinal epithelial differentiation by other stimuli such as sodium butyrate or TGF-beta. The induction of Schlafen 3 or its human homologs may modulate intestinal epithelial differentiation and preserve the gut mucosa during normal gut function.
Collapse
Affiliation(s)
- Lisi Yuan
- 1200 E. Michigan Ave., Suite 655, Dept. of Surgery, Michigan State Univ., Lansing, MI 48912, USA
| | | | | | | | | |
Collapse
|
18
|
Yun S, Lee SH, Kang YH, Jeong M, Kim MJ, Kim MS, Piao ZH, Suh HW, Kim TD, Myung PK, Yoon SR, Choi I. YC-1 enhances natural killer cell differentiation from hematopoietic stem cells. Int Immunopharmacol 2010; 10:481-6. [PMID: 20116458 DOI: 10.1016/j.intimp.2010.01.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Revised: 01/19/2010] [Accepted: 01/19/2010] [Indexed: 10/19/2022]
Abstract
NK cells play crucial roles in innate immunity and adaptive immunity. The detailed mechanisms, however, governing NK cell development remains unclear. In this study, we report that YC-1 significantly enhances NK cell populations differentiated from human umbilical cord blood hematopoietic stem cells (HSCs). NK cells increased by YC-1 display both phenotypic and functional features of fully mature NK (mNK) cells, but YC-1 does not affect the activation of mNK cells. YC-1 did not affect cGMP production and phosphorylation of STAT-5 which is essential for IL-15R signaling. On the other hand, YC-1 increased p38 MAPK phosphorylation during NK cell differentiation. Furthermore, p38 inhibitor SB203580 inhibited the differentiation of NK cells enhanced by YC-1. Taken together, these data suggest that YC-1 enhances NK cell differentiation through the activation of p38 MAPK which is involved in NK cell differentiation.
Collapse
Affiliation(s)
- Sohyun Yun
- Cell Therapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-gu, Daejeon 305-806, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Chaturvedi LS, Saad SA, Bakshi N, Marsh HM, Basson MD. Strain matrix-dependently dissociates gut epithelial spreading and motility. J Surg Res 2009; 156:217-23. [PMID: 19691992 PMCID: PMC2749895 DOI: 10.1016/j.jss.2009.03.050] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Revised: 03/18/2009] [Accepted: 03/22/2009] [Indexed: 01/26/2023]
Abstract
BACKGROUND Repetitive deformation enhances intestinal epithelial migration across tissue fibronectin (tFN) via Src but inhibits migration across collagen. Since cell spreading generally precedes motility, we compared the effects of cyclic strain on Caco-2 spreading and migration on tFN, collagen-I, and plasma fibronectin (pFN), and investigated the role of Src in deformation-influenced spreading and migration. MATERIALS AND METHODS Human Caco-2 intestinal epithelial cells on tFN, collagen-I or pFN were subjected to an average 10% strain at 10 cycles/min for 2 h. Src was inhibited with 10muM PP2 or Src was reduced with siRNA. Parallel studies assessed deformation effects on monolayer wound closure. RESULTS Deformation, Src-inhibition or reduction each inhibited spreading on tFN but Src-inhibition or reduction prevented further inhibition of spreading by deformation without preventing further inhibition of motility. Deformation did not alter spreading on collagen-I or pFN, but inhibited wound closure. CONCLUSIONS Although cell spreading generally precedes and parallels motility, repetitive deformation regulates motility independently of spreading. Since deformation activates Src, the ability of Src blockade to mimic strain-associated inhibition of spreading on tFN suggests that this effect occurs by a separate mechanism that may also require basal Src activity. Further delineation of the mechanisms by which strain disparately modulates spreading and motility may permit acceleration of mucosal healing by targeted interventions to separately promote spreading and epithelial motility.
Collapse
Affiliation(s)
- Lakshmi S. Chaturvedi
- Departments of Surgery, John D. Dingell VA Medical Center
- Departments of Surgery, Wayne State University
| | - Samira A. Saad
- Departments of Surgery, John D. Dingell VA Medical Center
- Departments of Surgery, Wayne State University
| | - Neil Bakshi
- Departments of Surgery, John D. Dingell VA Medical Center
- Departments of Surgery, Wayne State University
| | - Harold M. Marsh
- Departments of Surgery, John D. Dingell VA Medical Center
- Departments of Surgery, Wayne State University
| | - Marc D. Basson
- Departments of Surgery, Michigan State University
- Departments of Surgery, John D. Dingell VA Medical Center
| |
Collapse
|