1
|
Zhao YJ, Zhang SY, Wei YY, Li HH, Lei W, Wang K, Kumar S, Zhou C, Zheng J. An endogenous aryl hydrocarbon receptor ligand dysregulates endothelial functions, transcriptome, and phosphoproteome. Am J Physiol Cell Physiol 2025; 328:C954-C966. [PMID: 39907700 DOI: 10.1152/ajpcell.00849.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 11/21/2024] [Accepted: 01/29/2025] [Indexed: 02/06/2025]
Abstract
We have reported that an endogenous aryl hydrocarbon receptor (AhR) ligand, 2-(1'H-indole-3'-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE), inhibits functions of human umbilical vein endothelial cells (HUVECs) and induces preeclampsia (PE)-like symptoms in rats. Herein, we tested the hypothesis that ITE impairs endothelial functions via disturbing transcriptome and phosphoproteome in HUVECs. We measured AhR activity in human maternal and umbilical vein sera from PE and normotensive (NT) pregnancies. The serum-induced changes in CYP1A1/B1 mRNA (indexes of AhR activation) in HUVECs were quantified using quantitative reverse transcription polymerase chain reaction (RT-qPCR). ITE's effects on endothelial proliferation and monolayer integrity in female and male HUVECs were determined. We profiled ITE-induced changes in transcriptome and phosphoproteome in HUVECs using RNA-seq and bottom-up phosphoproteomics, respectively. After 12 h of treatment, umbilical vein sera from PE increased CYP1A1 mRNA (1.7-fold of NT) in HUVECs, which was blocked by CH223191, an AhR antagonist. ITE dose-dependently inhibited endothelial proliferation (76%-87% of control) and time-dependently reduced endothelial integrity with a maximum inhibition (∼10%) at 40 h. ITE induced 140 and 80 differentially expressed genes in female and male HUVECs, respectively. ITE altered phosphorylation of 92 and 105 proteins at 4 and 24 h, respectively, in HUVECs. These ITE-dysregulated genes and phosphoproteins were enriched in biological functions and pathways that are relevant to heart, liver, and kidney diseases, vascular functions, and inflammatory responses. Thus, endogenous AhR ligands may impair endothelial functions by disturbing transcriptome and phosphoproteome. These AhR ligand-dysregulated genes and phosphoproteins may be therapeutic and cell sex-specific targets for PE-induced endothelial dysfunction.NEW & NOTEWORTHY Preeclampsia elevates AhR agonistic activities in fetal circulation and alters immune cell gene signatures of human umbilical vein endothelial cells (HUVECs). An endogenous AhR ligand (ITE) decreases cell proliferation and monolayer integrity in HUVECs in vitro. ITE dysregulates transcriptome in HUVECs in a fetal sex-specific manner. ITE also disrupts phosphoproteome in HUVECs. These ITE-dysregulated genes and phosphoproteins are highly relevant to diseases of the heart, vascular function, and inflammatory responses.
Collapse
Affiliation(s)
- Ying-Jie Zhao
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Rheumatology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Si-Yan Zhang
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Ying-Ying Wei
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Maternal Fetal Medicine, School of Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Tongji University, Shanghai, People's Republic of China
| | - Hui-Hui Li
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Obstetrics and Gynecology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Wei Lei
- Cardiovascular Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, People's Republic of China
| | - Kai Wang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Maternal Fetal Medicine, School of Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Tongji University, Shanghai, People's Republic of China
| | - Sathish Kumar
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Chi Zhou
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, Arizona, United States
| | - Jing Zheng
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
2
|
Tang Q, Ke Q, Chen Q, Zhang X, Su J, Ning C, Fang L. Flexible, Breathable, and Self-Powered Patch Assembled of Electrospun Polymer Triboelectric Layers and Polypyrrole-Coated Electrode for Infected Chronic Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2023; 15:17641-17652. [PMID: 37009854 DOI: 10.1021/acsami.3c00500] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Chronic wound healing is often impaired by bacterial infection and weak trans-epithelial potential. Patches with electrical stimulation and bactericidal activity may solve this problem. However, inconvenient power and resistant antibiotics limit their application. Here, we proposed a self-powered and intrinsic bactericidal patch based on a triboelectric nanogenerator (TENG). Electrospun polymer tribo-layers and a chemical vapor-deposited polypyrrole electrode are assembled as the TENG, offering the patch excellent flexibility, breathability, and wettability. Electrical stimulations by harvesting mechanical motions and positive charges on the polypyrrole surface kill over 96% of bacteria due to their synergistic effects on cell membrane disruption. Moreover, the TENG patch promotes infected diabetic rat skin wounds to heal within 2 weeks. Cell culture and animal tests suggest that electrical stimulation enhances gene expression of growth factors for accelerated wound healing. This work provides new insights into the design of wearable and multifunctional electrotherapy devices for chronic wound treatment.
Collapse
Affiliation(s)
- Qiwen Tang
- School of Materials Science and Engineering, South China University of Technology, Wushan 381, Tianhe District, Guangzhou 510641, China
| | - Qi Ke
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou 510006, China
| | - Qi Chen
- Guangdong Provincial Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou 510006, China
| | - Xinyi Zhang
- Guangdong Provincial Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou 510006, China
| | - Jianyu Su
- China-Singapore International Joint Research Institute, China-Singapore Smart Park, Huangpu District, Guangzhou 510555, China
| | - Chengyun Ning
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou 510006, China
| | - Liming Fang
- School of Materials Science and Engineering, South China University of Technology, Wushan 381, Tianhe District, Guangzhou 510641, China
- China-Singapore International Joint Research Institute, China-Singapore Smart Park, Huangpu District, Guangzhou 510555, China
- Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, South China University of Technology, Wushan 381, Tianhe District, Guangzhou 510641, China
| |
Collapse
|
3
|
Genome-wide association analysis reveals the genetic locus for high reproduction trait in Chinese Arbas Cashmere goat. Genes Genomics 2020; 42:893-899. [PMID: 32506265 DOI: 10.1007/s13258-020-00937-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 04/24/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Litter size is the most important reproductive trait which plays a crucial role in goat production. Therefore, improvement of litter size trait has been of increasing interest in goat industry as small improvement in litter size may lead to large profit. The recent Cashmere goat breeding program produced a high-reproductive genetic line of Arbas Cashmere goat. But the genetic mechanism of high reproduction rate remains largely unknown in this Chinese native goat breed. To address this question, we performed a genome-wide association studies (GWAS) using two groups of goats varying in fecundity. OBJECTIVES Our study was aimed to investigate the significant SNPs and genes associated with high reproduction trait in Inner Mongolia Arbas Cashmere Goat. METHODS We used logistic model association to perform GWAS using 47 goats from high fecundity group (~ 190%) and 314 goats from low fecundity group (~ 130%) of the Arbas Cashmere goat breed. RESULTS We identified 66 genomic regions associated with genome wide significant level wherein six loci were found to be associated with reproduction traits. Further analysis showed that five key candidate genes including KISS1, KHDRBS2, WNT10B, SETDB2 and PPP3CA genes are involved in goat fecundity trait. Gene ontology enrichment analysis revealed that several biological pathways could be involved in the variation of fecundity in female goats. CONCLUSIONS The identified significant SNPs or genes provide useful information about the underlying genetic control of fecundity trait which will be helpful to use them in goat breeding programs for improving the reproductive efficiency of goats.
Collapse
|
4
|
E GX, Zhao YJ, Huang YF. Selection signatures of litter size in Dazu black goats based on a whole genome sequencing mixed pools strategy. Mol Biol Rep 2019; 46:5517-5523. [DOI: 10.1007/s11033-019-04904-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 06/01/2019] [Indexed: 12/19/2022]
|
5
|
Zou Q, Zhao Y, Li H, Wang X, Liu A, Zhong X, Yan Q, Li Y, Zhou C, Zheng J. GNA11 differentially mediates fibroblast growth factor 2- and vascular endothelial growth factor A-induced cellular responses in human fetoplacental endothelial cells. J Physiol 2018; 596:2333-2344. [PMID: 29659033 PMCID: PMC6002203 DOI: 10.1113/jp275677] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 04/09/2018] [Indexed: 12/18/2022] Open
Abstract
KEY POINTS Fetoplacental vascular growth is critical to fetal growth. Fibroblast growth factor 2 (FGF2) and vascular endothelial growth factor A (VEGFA) are two major regulators of fetoplacental vascular growth. G protein α subunit 11 (GNA11) transmits signals from many external stimuli to the cellular interior and may mediate endothelial function. It is not known whether GNA11 mediates FGF2- and VEGFA-induced endothelial cell responses under physiological chronic low O2 . In the present study, we show that knockdown of GNA11 significantly decreases FGF2- and VEGFA-induced fetoplacental endothelial cell migration but not proliferation and permeability. Such decreases in endothelial migration are associated with increased phosphorylation of phospholipase C-β3. The results of the present study suggest differential roles of GNA11 with respect to mediating FGF2- and VEGFA-induced fetoplacental endothelial function. ABSTRACT During pregnancy, fetoplacental angiogenesis is dramatically increased in association with rapidly elevated blood flow. Any disruption of fetoplacental angiogenesis may lead to pregnancy complications such as intrauterine growth restriction. Fibroblast growth factor 2 (FGF2) and vascular endothelial growth factor A (VEGFA) are crucial regulators of fetoplacental angiogenesis. G protein α subunits q (GNAq) and 11 (GNA11) are two members of the Gαq/11 subfamily involved in mediating vascular growth and basal blood pressure. However, little is known about the roles of GNA11 alone with respect to mediating the FGF2- and VEGFA-induced fetoplacental endothelial function. Using a cell model of human umbilical cord vein endothelial cells cultured under physiological chronic low O2 (3% O2 ), we showed that GNA11 small interfering RNA (siRNA) dramatically inhibited (P < 0.05) FGF2- and VEGFA-stimulated fetoplacental endothelial migration (by ∼36% and ∼50%, respectively) but not proliferation and permeability. GNA11 siRNA also elevated (P < 0.05) FGF2- and VEGFA-induced phosphorylation of phospholipase C-β3 (PLCβ3) at S537 in a time-dependent fashion but not mitogen-activated protein kinase 3/1 (ERK1/2) and v-akt murine thymoma viral oncogene homologue 1 (AKT1). These data suggest that GNA11 mediates FGF2- and VEGFA-stimulated fetoplacental endothelial cell migration partially via altering the activation of PLCβ3.
Collapse
Affiliation(s)
- Qing‐yun Zou
- Department of Obstetrics and GynecologyUniversity of Wisconsin‐MadisonMadisonWIUSA
| | - Ying‐jie Zhao
- Department of Obstetrics and GynecologyUniversity of Wisconsin‐MadisonMadisonWIUSA
- Department of Rheumatology, Qilu HospitalShandong UniversityJinanShandongChina
| | - Hua Li
- Department of Obstetrics and GynecologyUniversity of Wisconsin‐MadisonMadisonWIUSA
- Department of Rheumatology and ImmunologyAffiliated Hospital of Qingdao UniversityQingdaoShandongChina
| | - Xiang‐zhen Wang
- Department of Obstetrics and GynecologyUniversity of Wisconsin‐MadisonMadisonWIUSA
- Department of Obstetrics and GynecologyNanshan District Maternal and Child Healthcare HospitalShenzhenGuangdongChina
| | - Ai‐xia Liu
- Department of Obstetrics and GynecologyUniversity of Wisconsin‐MadisonMadisonWIUSA
- Department of Reproductive EndocrinologyZhejiang UniversityHangzhouZhejiangChina
| | - Xin‐qi Zhong
- Department of Obstetrics and GynecologyUniversity of Wisconsin‐MadisonMadisonWIUSA
- Department of Pediatrics3rd Affiliated Hospital of Guangzhou Medical UniversityGuangzhouGuangdongChina
| | - Qin Yan
- Department of Obstetrics and GynecologyUniversity of Wisconsin‐MadisonMadisonWIUSA
- Department of Gynecology, Shanghai First Maternity and Infant HospitalTongji University School of MedicineShanghaiChina
| | - Yan Li
- Department of Obstetrics and GynecologyUniversity of Wisconsin‐MadisonMadisonWIUSA
| | - Chi Zhou
- Department of Obstetrics and GynecologyUniversity of Wisconsin‐MadisonMadisonWIUSA
| | - Jing Zheng
- Department of Obstetrics and GynecologyUniversity of Wisconsin‐MadisonMadisonWIUSA
- Cardiovascular Medicine CenterAffiliated Hospital of Guangdong Medical UniversityZhanjiangGuangdongChina
| |
Collapse
|
6
|
Wang Q, Li J, Wu W, Shen R, Jiang H, Qian Y, Tang Y, Bai T, Wu S, Wei L, Zang Y, Zhang J, Wang L. Smad4-dependent suppressor pituitary homeobox 2 promotes PPP2R2A-mediated inhibition of Akt pathway in pancreatic cancer. Oncotarget 2016; 7:11208-22. [PMID: 26848620 PMCID: PMC4905467 DOI: 10.18632/oncotarget.7158] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 01/23/2016] [Indexed: 12/14/2022] Open
Abstract
The importance of Pituitary homeobox 2 (Pitx2) in malignancy remains enigmatic, and Pitx2 has not been previously implicated in pancreatic ductal adenocarcinoma (PDAC). In this study, we performed gene expression profiling of human PDAC tissues and identified Pitx2 as a promising candidate. Pitx2 expression was decreased from 2.6- to 19-fold in human PDAC tissues from microarray units. Immunochemistry staining showed that Pitx2 expression was moderate to intense in normal pancreatic and pancreatic intraepithelial neoplastic lesions, whereas low in human PDAC tissues. The Pitx2 levels correlated with overall patient survival post-operatively in PDAC. Induction of Pitx2 expression partly inhibited the malignant phenotype of PDAC cells. Interestingly, low Pitx2 expression was correlated with Smad4 mutant inactivation, but not with Pitx2 DNA-methylation. Furthermore, Smad4 protein bound to Pitx2 promoter and stimulated Pitx2 expression in PDAC. In addition, Pitx2 protein bound to the promoter of the protein phosphatase 2A regulatory subunit B55α (PPP2R2A) and upregulated PPP2R2A expression, which may activate dephosphorylation of Akt in PDAC. These findings provide new mechanistic insights into Pitx2 as a tumor suppressor in the downstream of Smad4. And Pitx2 protein promotes PPP2R2A expression which may inhibit Akt pathway. Therefore, we propose that the Smad4-Pitx2-PPP2R2A axis, a new signaling pathway, suppresses the pancreatic carcinogenesis.
Collapse
Affiliation(s)
- Qi Wang
- Department of Gastroenterology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Juanjuan Li
- Department of Gastroenterology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Wei Wu
- Department of Gastroenterology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ruizhe Shen
- Department of Gastroenterology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - He Jiang
- Department of Gastroenterology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yuting Qian
- Department of Gastroenterology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yanping Tang
- Department of Gastroenterology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Tingting Bai
- Department of Gastroenterology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Sheng Wu
- Department of Gastroenterology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Lumin Wei
- Department of Gastroenterology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yi Zang
- Department of Gastroenterology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ji Zhang
- State Key Laboratory of Medical Genomics and Sino-French Research Center for Life Sciences and Genomics, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Lifu Wang
- Department of Gastroenterology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
7
|
Wang K, Li Y, Jiang YZ, Dai CF, Patankar MS, Song JS, Zheng J. An endogenous aryl hydrocarbon receptor ligand inhibits proliferation and migration of human ovarian cancer cells. Cancer Lett 2013; 340:63-71. [PMID: 23851185 DOI: 10.1016/j.canlet.2013.06.026] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 06/20/2013] [Accepted: 06/23/2013] [Indexed: 11/28/2022]
Abstract
The aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor mediates many biological processes. Herein, we investigated if 2-(1'H-indole-3'-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE, an endogenous AhR ligand) regulated proliferation and migration of human ovarian cancer cells via AhR. We found that AhR was widely present in many histotypes of ovarian cancer tissues. ITE suppressed OVCAR-3 cell proliferation and SKOV-3 cell migration in vitro, which were blocked by AhR knockdown. ITE also suppressed OVCAR-3 cell growth in mice. These data suggest that the ITE might potentially be used for therapeutic intervention for at least a subset of human ovarian cancer.
Collapse
Affiliation(s)
- Kai Wang
- Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 200040, PR China.,Department of Obstetrics and Gynecology, University of Wisconsin, Madison, WI 53715, United States
| | - Yan Li
- Department of Obstetrics and Gynecology, University of Wisconsin, Madison, WI 53715, United States
| | - Yi-Zhou Jiang
- Department of Obstetrics and Gynecology, University of Wisconsin, Madison, WI 53715, United States
| | - Cai-Feng Dai
- Department of Obstetrics and Gynecology, University of Wisconsin, Madison, WI 53715, United States.,Qilu Hospital of Shandong University, Jinan 250012, Shandong, PR China
| | - Manish S Patankar
- Department of Obstetrics and Gynecology, University of Wisconsin, Madison, WI 53715, United States
| | - Jia-Sheng Song
- AhR Pharmaceuticals, Inc., Madison, WI 53719, United States
| | - Jing Zheng
- Department of Obstetrics and Gynecology, University of Wisconsin, Madison, WI 53715, United States.,Department of Cardiovascular Medicine, Affiliated Hospital of Guangdong Medical College, Zhanjiang 524001, Guangdong, PR China
| |
Collapse
|
8
|
Abstract
During normal pregnancy, dramatically increased placental blood flow is critical for fetal growth and survival as well as neonatal birth weights and survivability. This increased blood flow results from angiogenesis, vasodilatation, and vascular remodeling. Locally produced growth factors including fibroblast growth factor 2 (FGF2) and vascular endothelial growth factor A (VEGFA) are key regulators of placental endothelial functions including cell proliferation, migration, and vasodilatation. However, the precise signaling mechanisms underlying such regulation in fetoplacental endothelium are less well defined, specifically with regard to the interactions amongst protein kinases (PKs), protein phosphatase, and nitric oxide (NO). Recently, we and other researchers have obtained solid evidence showing that different signaling mechanisms participate in FGF2- and VEGFA-regulated fetoplacental endothelial cell proliferation and migration as well as NO production. This review will briefly summarize currently available data on signaling mediating fetoplacental angiogenesis with a specific emphasis on PKs, ERK1/2, AKT1, and p38 MAPK and protein phosphatases, PPP2 and PPP3.
Collapse
Affiliation(s)
- Kai Wang
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 200040, China
| | - Jing Zheng
- Department of Obstetrics and Gynecology, University of Wisconsin, Madison, WI 53715
- Address correspondence and reprint requests to: Jing Zheng, Ph.D., Departments of Obstetrics and Gynecology, Perinatal Research Laboratories, University of Wisconsin, PAB1 Meriter Hospital, 202 S Park St., Madison, WI 53715. Phone: (608) 417-6314 Fax: (608) 257-1304.
| |
Collapse
|