1
|
Marzioni D, Piani F, Di Simone N, Giannubilo SR, Ciavattini A, Tossetta G. Importance of STAT3 signaling in preeclampsia (Review). Int J Mol Med 2025; 55:58. [PMID: 39918020 PMCID: PMC11878484 DOI: 10.3892/ijmm.2025.5499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 01/20/2025] [Indexed: 03/06/2025] Open
Abstract
Placentation is a key process that is tightly regulated that ensures the normal placenta and fetal development. Preeclampsia (PE) is a hypertensive pregnancy‑associated disorder characterized by increased oxidative stress and inflammation. STAT3 signaling plays a key role in modulating important processes such as cell proliferation, differentiation, invasion and apoptosis. The present review aimed to analyse the role of STAT3 signaling in PE pregnancies, discuss the main natural and synthetic compounds involved in modulation of this signaling both in vivo and in vitro and summarize the main cellular modulators of this signaling to identify possible therapeutic targets and treatments to improve the outcome of PE pregnancies.
Collapse
Affiliation(s)
- Daniela Marzioni
- Department of Experimental and Clinical Medicine, Polytechnic University of Marche, I-60126 Ancona, Italy
| | - Federica Piani
- Hypertension and Cardiovascular Risk Research Center, Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, I-40126 Bologna, Italy
| | - Nicoletta Di Simone
- Department of Biomedical Sciences, Humanitas University, I-20072 Milan, Italy
- Scientific Institutes for Hospitalization and Care (IRCCS), Humanitas Research Hospital, I-20089 Rozzano, Italy
| | | | - Andrea Ciavattini
- Department of Clinical Sciences, Polytechnic University of Marche, I-60123 Ancona, Italy
| | - Giovanni Tossetta
- Department of Experimental and Clinical Medicine, Polytechnic University of Marche, I-60126 Ancona, Italy
| |
Collapse
|
2
|
Deng F, Lei J, Qiu J, Zhao C, Wang X, Li M, Sun M, Zhang M, Gao Q. DNA methylation landscape in pregnancy-induced hypertension: progress and challenges. Reprod Biol Endocrinol 2024; 22:77. [PMID: 38978060 PMCID: PMC11229300 DOI: 10.1186/s12958-024-01248-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 06/24/2024] [Indexed: 07/10/2024] Open
Abstract
Gestational hypertension (PIH), especially pre-eclampsia (PE), is a common complication of pregnancy. This condition poses significant risks to the health of both the mother and the fetus. Emerging evidence suggests that epigenetic modifications, particularly DNA methylation, may play a role in initiating the earliest pathophysiology of PIH. This article describes the relationship between DNA methylation and placental trophoblast function, genes associated with the placental microenvironment, the placental vascular system, and maternal blood and vascular function, abnormalities of umbilical cord blood and vascular function in the onset and progression of PIH, as well as changes in DNA methylation in the progeny of PIH, in terms of maternal, fetal, and offspring. We also explore the latest research on DNA methylation-based early detection, diagnosis and potential therapeutic strategies for PIH. This will enable the field of DNA methylation research to continue to enhance our understanding of the epigenetic regulation of PIH genes and identify potential therapeutic targets.
Collapse
Affiliation(s)
- Fengying Deng
- Key Laboratory of Maternal & Fetal Medicine of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, 250014, China
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou, 215006, P. R. China
| | - Jiahui Lei
- Key Laboratory of Maternal & Fetal Medicine of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, 250014, China
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou, 215006, P. R. China
| | - Junlan Qiu
- Department of Oncology and Hematology, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, Jiangsu, 215153, P.R. China
| | - Chenxuan Zhao
- Key Laboratory of Maternal & Fetal Medicine of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, 250014, China
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou, 215006, P. R. China
| | - Xietong Wang
- Key Laboratory of Maternal & Fetal Medicine of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, 250014, China
| | - Min Li
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou, 215006, P. R. China
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Soochow University, Suzhou, 215006, P. R. China
| | - Miao Sun
- Key Laboratory of Maternal & Fetal Medicine of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, 250014, China.
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou, 215006, P. R. China.
| | - Meihua Zhang
- Key Laboratory of Maternal & Fetal Medicine of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, 250014, China.
| | - Qinqin Gao
- Key Laboratory of Maternal & Fetal Medicine of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, 250014, China.
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou, 215006, P. R. China.
| |
Collapse
|
3
|
Shojaei Z, Jafarpour R, Mehdizadeh S, Bayatipoor H, Pashangzadeh S, Motallebnezhad M. Functional prominence of natural killer cells and natural killer T cells in pregnancy and infertility: A comprehensive review and update. Pathol Res Pract 2022; 238:154062. [PMID: 35987030 DOI: 10.1016/j.prp.2022.154062] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 07/27/2022] [Accepted: 08/05/2022] [Indexed: 10/15/2022]
Abstract
During pregnancy, complicated connections are formed between a mother and a fetus. In a successful pregnancy, the maternal-fetal interface is affected by dynamic changes, and the fetus is protected against the mother's immune system. Natural killer (NK) cells are one of the immune system cells in the female reproductive system that play an essential role in the physiology of pregnancy. NK cells not only exist in peripheral blood (PB) but also can exist in the decidua. Studies have suggested multiple roles for these cells, including decidualization, control of trophoblast growth and invasion, embryo acceptance and maintenance by the mother, and facilitation of placental development during pregnancy. Natural killer T (NKT) cells are another group of NK cells that play a crucial role in the maintenance of pregnancy and regulation of the immune system during pregnancy. Studies show that NK and NKT cells are not only effective in maintaining pregnancy but also can be involved in infertility-related diseases. This review focuses on NK and NKT cells biology and provides a detailed description of the functions of these cells in implantation, placentation, and immune tolerance during pregnancy and their role in pregnancy complications.
Collapse
Affiliation(s)
- Zeinab Shojaei
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Immunology Research Center, Institute of Immunology and Infectious Disease, Iran University of Medical Sciences, Tehran, Iran
| | - Roghayeh Jafarpour
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Immunology Research Center, Institute of Immunology and Infectious Disease, Iran University of Medical Sciences, Tehran, Iran
| | - Saber Mehdizadeh
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Immunology Research Center, Institute of Immunology and Infectious Disease, Iran University of Medical Sciences, Tehran, Iran
| | - Hashem Bayatipoor
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Immunology Research Center, Institute of Immunology and Infectious Disease, Iran University of Medical Sciences, Tehran, Iran
| | - Salar Pashangzadeh
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Immunology Research Center, Institute of Immunology and Infectious Disease, Iran University of Medical Sciences, Tehran, Iran
| | - Morteza Motallebnezhad
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Immunology Research Center, Institute of Immunology and Infectious Disease, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Balahmar RM, Ranganathan B, Ebegboni V, Alamir J, Rajakumar A, Deepak V, Sivasubramaniam S. Analyses of selected tumour-associated factors expression in normotensive and preeclamptic placenta. Pregnancy Hypertens 2022; 29:36-45. [PMID: 35717832 DOI: 10.1016/j.preghy.2022.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 06/04/2022] [Accepted: 06/07/2022] [Indexed: 10/18/2022]
Abstract
INTRODUCTION Human placenta is often considered a controlled-tumour because of shared properties such as invasion and angiogenesis. We assessed the status of a few selected tumour-associated factors (TAFs) in late onset pre-eclamptic (PE) and normotensive (NT) placentae, to understand their involvement in trophoblast invasion. These molecules include aldehyde dehydrogenase (ALDH3A1), aurora kinases (AURK-A/C), platelet derived growth factor receptor-α (PDGFRα), jagged-1 (JAG1) and twist related protein-1 (TWIST1). METHODS The expression of TAF was compared in 13 NT and 11 PE (late onset) placentae using immunoblotting/immunohistochemistry. We then used a novel spheroidal cell model developed from transformed human first trimester trophoblast cell lines HTR8/SVneo and TEV-1 to determine the expression and localization of these six factors during invasion. We also compared the expression of these TAFs during migration and invasion. RESULTS Our results suggest that expressions of ALDH3A1, AURK-A, PDGFRα, and TWIST1 are significantly upregulated in PE placentae (p < 0.05) when compared to NT placentae, whereas AURK-C and JAG1 are down-regulated (p < 0.05). The protein expression pattern of all the six factors were found to be similar in spheroids in comparison to their parental counterparts. The invasive potential of the spheroids was also enhanced when compared with the parental cells. DISCUSSION Collectively, data from our present study suggests that these TAFs are involved in placental invasion and their altered expressions may be regarded as a compensatory mechanism against reduced invasion.
Collapse
Affiliation(s)
- Reham M Balahmar
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, United Kingdom
| | - Bhuvaneshwari Ranganathan
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, United Kingdom
| | - Vernon Ebegboni
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, United Kingdom
| | - Jumanah Alamir
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, United Kingdom
| | - Augustine Rajakumar
- Department of Gynecology & Obstetrics(3), Emory University School of Medicine, Atlanta, GA 30033, USA
| | - Venkataraman Deepak
- School of Human Sciences, College of Life and Natural Sciences, University of Derby, Kedleston Road, Derby DE22 1GB, United Kingdom.
| | - Shiva Sivasubramaniam
- School of Human Sciences, College of Life and Natural Sciences, University of Derby, Kedleston Road, Derby DE22 1GB, United Kingdom.
| |
Collapse
|
5
|
Tantengco OAG, Richardson L, Lee A, Kammala A, Silva MDC, Shahin H, Sheller-Miller S, Menon R. Histocompatibility Antigen, Class I, G (HLA-G)'s Role during Pregnancy and Parturition: A Systematic Review of the Literature. Life (Basel) 2021; 11:life11101061. [PMID: 34685432 PMCID: PMC8537334 DOI: 10.3390/life11101061] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/18/2021] [Accepted: 10/05/2021] [Indexed: 12/13/2022] Open
Abstract
Introduction: Immune homeostasis of the intrauterine cavity is vital for pregnancy maintenance. At term or preterm, fetal and maternal tissue inflammation contributes to the onset of labor. Though multiple immune-modulating molecules are known, human leukocyte antigen (HLA)-G is unique to gestational tissues and contributes to maternal–fetal immune tolerance. Several reports on HLA-G’s role exist; however, ambiguity exists regarding its functional contributions during pregnancy and parturition. To fill these knowledge gaps, a systematic review (SR) of the literature was conducted to better understand the expression, localization, function, and regulation of HLA-G during pregnancy and parturition. Methods: A SR of the literature on HLA-G expression and function reported in reproductive tissues during pregnancy, published between 1976–2020 in English, using three electronic databases (SCOPE, Medline, and ClinicalTrials.gov) was conducted. The selection of studies, data extraction, and quality assessment were performed in duplicate by two independent reviewers. Manuscripts were separated into three categories: (1) expression and localization of HLA-G, (2) regulators of HLA-G, and (3) the mechanistic roles of HAL-G. Data were extracted, analyzed, and summarized. Results: The literature search yielded 2554 citations, 117 of which were selected for full-text evaluation, and 115 were included for the final review based on our inclusion/exclusion criteria. HLA-G expression and function were mostly studied in placental tissue and/or cells and peripheral blood immune cells, while only 13% of the studies reported data on amniotic fluid/cord blood and fetal membranes. Measurements of soluble and membranous HLA-G were determined mostly by RNA-based methods and protein by immunostaining, Western blot, or flow cytometric analyses. HLA-G was reported to regulate inflammation and inhibit immune-cell-mediated cytotoxicity and trophoblast invasion. Clinically, downregulation of HLA-G is reported to be associated with poor placentation in preeclampsia and immune cell infiltration during ascending infection. Conclusions: This SR identified several reports supporting the hypothesized role of immune regulation in gestational tissues during pregnancy. A lack of rigor and reproducibility in the experimental approaches and models in several reports make it difficult to fully elucidate the mechanisms of action of HLA-G in immune tolerance during pregnancy.
Collapse
Affiliation(s)
- Ourlad Alzeus G. Tantengco
- Division of Basic and Translational Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX 77551, USA; (O.A.G.T.); (L.R.); (A.L.); (A.K.); (M.d.C.S.); (H.S.); (S.S.-M.)
- Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines Manila, Manila 1101, Philippines
| | - Lauren Richardson
- Division of Basic and Translational Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX 77551, USA; (O.A.G.T.); (L.R.); (A.L.); (A.K.); (M.d.C.S.); (H.S.); (S.S.-M.)
| | - Alan Lee
- Division of Basic and Translational Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX 77551, USA; (O.A.G.T.); (L.R.); (A.L.); (A.K.); (M.d.C.S.); (H.S.); (S.S.-M.)
| | - Ananthkumar Kammala
- Division of Basic and Translational Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX 77551, USA; (O.A.G.T.); (L.R.); (A.L.); (A.K.); (M.d.C.S.); (H.S.); (S.S.-M.)
| | - Mariana de Castro Silva
- Division of Basic and Translational Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX 77551, USA; (O.A.G.T.); (L.R.); (A.L.); (A.K.); (M.d.C.S.); (H.S.); (S.S.-M.)
- Department of Pathology, Botucatu Medical School, Universidade Estadual Paulista, UNESP, Botucatu 18618-687, São Paulo, Brazil
| | - Hend Shahin
- Division of Basic and Translational Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX 77551, USA; (O.A.G.T.); (L.R.); (A.L.); (A.K.); (M.d.C.S.); (H.S.); (S.S.-M.)
| | - Samantha Sheller-Miller
- Division of Basic and Translational Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX 77551, USA; (O.A.G.T.); (L.R.); (A.L.); (A.K.); (M.d.C.S.); (H.S.); (S.S.-M.)
| | - Ramkumar Menon
- Division of Basic and Translational Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX 77551, USA; (O.A.G.T.); (L.R.); (A.L.); (A.K.); (M.d.C.S.); (H.S.); (S.S.-M.)
- Correspondence:
| |
Collapse
|
6
|
Mikhailova V, Khokhlova E, Grebenkina P, Salloum Z, Nikolaenkov I, Markova K, Davidova A, Selkov S, Sokolov D. NK-92 cells change their phenotype and function when cocultured with IL-15, IL-18 and trophoblast cells. Immunobiology 2021; 226:152125. [PMID: 34365089 DOI: 10.1016/j.imbio.2021.152125] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 07/02/2021] [Accepted: 07/20/2021] [Indexed: 02/03/2023]
Abstract
NK cell development is affected by their cellular microenvironment and cytokines, including IL-15 and IL-18. NK cells can differentiate in secondary lymphoid organs, liver and within the uterus in close contact with trophoblast cells. The aim was to evaluate changes in the NK cell phenotype and function in the presence of IL-15, IL-18 and JEG-3, a trophoblast cell line. When cocultured with JEG-3 cells, IL-15 caused an increase in the number of NKG2D+ NK-92 cells and the intensity of CD127 expression. IL-18 stimulates an increase in the amount of NKp44+ NK-92 cells and in the intensity of NKp44 expression by pNK in the presence of trophoblast cells. NK-92 cell cytotoxic activity against JEG-3 cells increased only in presence of IL-18. Data on changes in the cytotoxic activity of NK-92 cells against JEG-3 cells in the presence of IL-15 and IL-18 indicate the modulation of NK cell function both by the cytokine microenvironment and directly by target cells. IL-15 and IL-18 were present in conditioned media (CM) from 1st and 3rd trimester placentas. In the presence of 1st trimester CM and JEG-3 cells, NK-92 cells showed an increase in the intensity of NKG2D expression. In the presence of 3rd trimester CM and JEG-3 cells, a decrease in the expression of NKG2D by NK-92 cells was observed. Thus, culturing of NK-92 cells with JEG-3 trophoblast cells stimulated a pronounced change in the NK cell phenotype, bringing it closer to the decidual NK cell-like phenotype.
Collapse
Affiliation(s)
- Valentina Mikhailova
- Department of Immunology and Intercellular Interactions, Federal State Budgetary Scientific Institution, Research Institute of Obstetrics, Gynecology, and Reproductology named after D.O. Ott, Russia
| | - Evgeniia Khokhlova
- Department of Immunology and Intercellular Interactions, Federal State Budgetary Scientific Institution, Research Institute of Obstetrics, Gynecology, and Reproductology named after D.O. Ott, Russia
| | - Polina Grebenkina
- Department of Immunology and Intercellular Interactions, Federal State Budgetary Scientific Institution, Research Institute of Obstetrics, Gynecology, and Reproductology named after D.O. Ott, Russia
| | - Zeina Salloum
- Department of Immunology and Intercellular Interactions, Federal State Budgetary Scientific Institution, Research Institute of Obstetrics, Gynecology, and Reproductology named after D.O. Ott, Russia
| | - Igor Nikolaenkov
- Department of Obstetrics, Federal State Budgetary Scientific Institution, Research Institute of Obstetrics, Gynecology, and Reproductology named after D.O. Ott, Russia
| | - Kseniya Markova
- Department of Immunology and Intercellular Interactions, Federal State Budgetary Scientific Institution, Research Institute of Obstetrics, Gynecology, and Reproductology named after D.O. Ott, Russia
| | - Alina Davidova
- Department of Immunology and Intercellular Interactions, Federal State Budgetary Scientific Institution, Research Institute of Obstetrics, Gynecology, and Reproductology named after D.O. Ott, Russia
| | - Sergey Selkov
- Department of Immunology and Intercellular Interactions, Federal State Budgetary Scientific Institution, Research Institute of Obstetrics, Gynecology, and Reproductology named after D.O. Ott, Russia
| | - Dmitriy Sokolov
- Department of Immunology and Intercellular Interactions, Federal State Budgetary Scientific Institution, Research Institute of Obstetrics, Gynecology, and Reproductology named after D.O. Ott, Russia
| |
Collapse
|
7
|
Attia JVD, Dessens CE, van de Water R, Houvast RD, Kuppen PJK, Krijgsman D. The Molecular and Functional Characteristics of HLA-G and the Interaction with Its Receptors: Where to Intervene for Cancer Immunotherapy? Int J Mol Sci 2020; 21:ijms21228678. [PMID: 33213057 PMCID: PMC7698525 DOI: 10.3390/ijms21228678] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/06/2020] [Accepted: 11/13/2020] [Indexed: 12/12/2022] Open
Abstract
Human leukocyte antigen G (HLA-G) mediates maternal-fetal immune tolerance. It is also considered an immune checkpoint in cancer since it may mediate immune evasion and thus promote tumor growth. HLA-G is, therefore, a potential target for immunotherapy. However, existing monoclonal antibodies directed against HLA-G lack sufficient specificity and are not suitable for immune checkpoint inhibition in a clinical setting. For this reason, it is essential that alternative approaches are explored to block the interaction between HLA-G and its receptors. In this review, we discuss the structure and peptide presentation of HLA-G, and its interaction with the receptors Ig-like transcript (ILT) 2, ILT4, and Killer cell immunoglobulin-like receptor 2DL4 (KIR2DL4). Based on our findings, we propose three alternative strategies to block the interaction between HLA-G and its receptors in cancer immunotherapy: (1) prevention of HLA-G dimerization, (2) targeting the peptide-binding groove of HLA-G, and (3) targeting the HLA-G receptors. These strategies should be an important focus of future studies that aim to develop immune checkpoint inhibitors to block the interaction between HLA-G and its receptors for the treatment of cancer.
Collapse
|
8
|
Chen J, Liu X, Zeng Z, Li J, Luo Y, Sun W, Gong Y, Zhang J, Wu Q, Xie C. Immunomodulation of NK Cells by Ionizing Radiation. Front Oncol 2020; 10:874. [PMID: 32612950 PMCID: PMC7308459 DOI: 10.3389/fonc.2020.00874] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 05/04/2020] [Indexed: 12/19/2022] Open
Abstract
Natural killer (NK) cells play a critical role in the antitumor immunity. Ionizing radiation (IR) has a pronounced effect on modifying NK cell biology, while the molecular mechanisms remain elusive. In this review, we briefly introduce the anti-tumor activity of NK cells and summarize the impact of IR on NK cells both directly and indirectly. On one hand, low-dose ionizing radiation (LDIR) activates NK functions while high-dose ionizing radiation (HDIR) is likely to partially impair NK functions, which can be reversed by interleukin (IL)-2 pretreatment. On the other hand, NK functions may be adjusted by other immune cells and the alternated malignant cell immunogenicity under the settings of IR. Various immune cells, such as the tumor-associated macrophage (TAM), dendritic cell (DC), regulatory T cell (Treg), myeloid-derived suppressor cell (MDSC), and tumor exhibited ligands, such as the natural killer group 2 member D ligand (NKG2DL), natural cytotoxicity receptors (NCR) ligand, TNF-related apoptosis-inducing ligand-receptor (TRAIL-R), and FAS, have been involved in this process. Better understanding the molecular basis is a promising way in which to augment NK-cell-based antitumor immunity in combination with IR.
Collapse
Affiliation(s)
- Jiarui Chen
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xingyu Liu
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zihang Zeng
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jiali Li
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yuan Luo
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Wenjie Sun
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yan Gong
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
- Human Genetics Resource Preservation Center of Hubei Province, Human Genetics Resource Preservation Center of Wuhan University, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Junhong Zhang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Qiuji Wu
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Conghua Xie
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
9
|
Valencia-Ortega J, Saucedo R, Peña-Cano MI, Hernández-Valencia M, Cruz-Durán JG. Immune tolerance at the maternal-placental interface in healthy pregnancy and pre-eclampsia. J Obstet Gynaecol Res 2020; 46:1067-1076. [PMID: 32428989 DOI: 10.1111/jog.14309] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/17/2020] [Accepted: 04/30/2020] [Indexed: 12/15/2022]
Abstract
AIM The objective of this review is to describe the immunological mechanisms which facilitate maternal tolerance at the maternal-placental interface, and to discuss how these mechanisms are disrupted in pre-eclampsia. METHODS A literature review was performed based on the analysis of papers available on PubMed. The most important and relevant studies regarding the immunological mechanisms which facilitate maternal tolerance in healthy pregnancy and pre-eclampsia are presented in this article. RESULTS The maternal-placental interface is the site where the immune tolerance begins and develops. Within the innate immunity, natural killer cells, macrophages and dendritic cells play a pivotal role in tolerance through regulation of inflammation. On the other hand, within the adaptive immunity, the correct increase of regulatory T cells is crucial for ensuring immune tolerance toward placental cells. Disturbances in maternal tolerance can lead to the appearance of pregnancy complications such as pre-eclampsia, which has a considerable impact on perinatal morbidity and mortality. CONCLUSION Our partial knowledge of immunological mechanisms involved in tolerance at the maternal-placental interface indicates that pre-eclampsia is characterized by alterations of this maternal immune tolerance, which could represent the origin of the disease.
Collapse
Affiliation(s)
- Jorge Valencia-Ortega
- Endocrine Research Unit, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Renata Saucedo
- Endocrine Research Unit, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - María I Peña-Cano
- Faculty of Chemistry, Universidad Autónoma del Estado de México, Toluca, Mexico
| | - Marcelino Hernández-Valencia
- Endocrine Research Unit, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - José G Cruz-Durán
- UMAE Hospital de Gineco-Obstetricia No. 3, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| |
Collapse
|
10
|
Basak S, Srinivas V, Mallepogu A, Duttaroy AK. Curcumin stimulates angiogenesis through VEGF and expression of HLA‐G in first‐trimester human placental trophoblasts. Cell Biol Int 2020; 44:1237-1251. [DOI: 10.1002/cbin.11324] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 02/16/2020] [Indexed: 12/26/2022]
Affiliation(s)
- Sanjay Basak
- Department of Nutrition, Faculty of MedicineUniversity of Oslo POB 1046, Blindern N‐0316 Oslo Norway
- ICMR‐National Institute of Nutrition Hyderabad Telangana 500007 India
| | | | - Aswani Mallepogu
- ICMR‐National Institute of Nutrition Hyderabad Telangana 500007 India
| | - Asim K. Duttaroy
- Department of Nutrition, Faculty of MedicineUniversity of Oslo POB 1046, Blindern N‐0316 Oslo Norway
| |
Collapse
|
11
|
Raguema N, Moustadraf S, Bertagnolli M. Immune and Apoptosis Mechanisms Regulating Placental Development and Vascularization in Preeclampsia. Front Physiol 2020; 11:98. [PMID: 32116801 PMCID: PMC7026478 DOI: 10.3389/fphys.2020.00098] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 01/27/2020] [Indexed: 12/31/2022] Open
Abstract
Preeclampsia is the most severe type of hypertensive disorder of pregnancy, affecting one in 10 pregnancies worldwide and increasing significantly maternal and neonatal morbidity and mortality. Women developing preeclampsia display an array of symptoms encompassing uncontrolled hypertension and proteinuria, with neurological symptoms including seizures at the end of pregnancy. The main causes of preeclampsia are still unknown. However, abnormal placentation and placenta vascularization seem to be common features in preeclampsia, also leading to fetal growth restriction mainly due to reduced placental blood flow and chronic hypoxia. An over activation of maternal immunity cells against the trophoblasts, the main cells forming the placenta, has been recently shown as an important mechanism triggering trophoblast apoptosis and death. This response will further disrupt the remodeling of maternal uterine arteries, in a first stage, and the formation of new placental vessels in a later stage. A consequent chronic hypoxia stress will further contribute to increase placental stress and exacerbate systemic circulatory changes in the mother. The molecular mechanisms driving these processes of apoptosis and anti-angiogenesis are also not well-understood. In this review, we group main evidences suggesting potential targets and molecules that should be better investigated in preeclampsia. This knowledge will contribute to improve therapies targeting a better placenta formation, having a positive impact on maternal disease prevention and on fetal development.
Collapse
Affiliation(s)
- Nozha Raguema
- Laboratory of Maternal-Child Health, Centre de Recherche de l'Hôpital du Sacré-Coeur de Montréal, Centre Intégré Universitaire de Santé et de Services Sociaux du Nord-de-l'Île-de-Montréal, Montreal, QC, Canada
| | - Sarah Moustadraf
- Laboratory of Maternal-Child Health, Centre de Recherche de l'Hôpital du Sacré-Coeur de Montréal, Centre Intégré Universitaire de Santé et de Services Sociaux du Nord-de-l'Île-de-Montréal, Montreal, QC, Canada
| | - Mariane Bertagnolli
- Laboratory of Maternal-Child Health, Centre de Recherche de l'Hôpital du Sacré-Coeur de Montréal, Centre Intégré Universitaire de Santé et de Services Sociaux du Nord-de-l'Île-de-Montréal, Montreal, QC, Canada
| |
Collapse
|
12
|
Kofod L, Lindhard A, Hviid TVF. Implications of uterine NK cells and regulatory T cells in the endometrium of infertile women. Hum Immunol 2018; 79:693-701. [PMID: 29990511 DOI: 10.1016/j.humimm.2018.07.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 07/02/2018] [Accepted: 07/06/2018] [Indexed: 02/03/2023]
Abstract
A range of studies have shown that the complex process of implantation and an establishment of a pregnancy also involves immune factors. Disturbances in these underlying immune mechanisms might lead to implantation and pregnancy failure and may be involved in the pathogenesis of unexplained infertility. Several studies have reported that imbalances in uterine NK (uNK) cell abundance are associated with infertility; however, controversies exist. An increased amount of CD56+ uNK cells along with a decrease in CD16+ uNK cells have been associated with normal fertility in some studies. Very few studies of FoxP3+ regulatory T cells (Tregs) in the pre-implantation endometrium have been performed. Results are sparse and controversial, studies reporting both increased and decreased numbers of Tregs, respectively, in women suffering from infertility. In conclusion, studies imply that uNK cells, Tregs and HLA-G carry pivotal roles regarding the establishment of a healthy pregnancy, and that abnormal immune mechanisms involving these parameters may be associated with infertility. However, more research in early phases of the reproductive cycle, such as investigating the conditions in the endometrium before implantation, is needed to further clarify the underlying mechanisms.
Collapse
Affiliation(s)
- Louise Kofod
- Centre for Immune Regulation and Reproductive Immunology (CIRRI), The ReproHealth Research Consortium ZUH, Department of Clinical Biochemistry, Zealand University Hospital, and Department of Clinical Medicine, University of Copenhagen, Denmark
| | - Anette Lindhard
- The Fertility Clinic, The ReproHealth Research Consortium ZUH, Department of Gynaecology and Obstetrics, Zealand University Hospital, and Department of Clinical Medicine, University of Copenhagen, Denmark
| | - Thomas Vauvert F Hviid
- Centre for Immune Regulation and Reproductive Immunology (CIRRI), The ReproHealth Research Consortium ZUH, Department of Clinical Biochemistry, Zealand University Hospital, and Department of Clinical Medicine, University of Copenhagen, Denmark.
| |
Collapse
|
13
|
Luo S, Pei J, Li X, Gu W. Decreased expression of JHDMID in placenta is associated with preeclampsia through HLA-G. J Hum Hypertens 2018; 32:448-454. [PMID: 29662139 DOI: 10.1038/s41371-018-0062-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 12/16/2017] [Accepted: 02/09/2018] [Indexed: 01/22/2023]
Abstract
The exact mechanism of preeclampsia (PE) remains unclear, accumulating researches have indicated multiple epigenetic factors relate to PE and histone methylation plays a crucial role in modifying the gene expression. So we aimed to confirm that abnormal expression of histone demethylase JHDM1D contributes to PE and lower expression of HLA-G in PE. We tested the expression of JHDM1D, H3K9me2, and H3K27me2 in the placentas of PE and normal control (NC)women who had a healthy pregnancy with Immunohistochemistry and we found that JHDM1D, H3K9me2, and H3K27me2 were all mainly expressed in the nuclei of the extra-villous trophoblasts (EVTs). JHDM1D was lower expressed in PE than in NC placentas, corresponding with the mRNA level and protein level with qTR-PCR and western blot, while H3K9me2 and H3K27me2 were higher expressed in PE. We further investigated the biological functions of JHDM1D in HTR-8/SVneo cells. We found that siJHDM1D inhibited cell growth after 24 h of the transfection and reduced the invasion, while increasing the apoptosis of HTR-8/SVneo. We then constructed the siJHDM1D stable cell line and confirmed with CHIP-qPCR that siJHDM1D inhibited the expression of HLA-G through increased the enrichment of H3K9me2 and H3K27me2 in the JHDM1D bounding region of HLA-G. Taken together, our study confirms that decreased expression of JHDM1D is associated with PE through down-regulating HLA-G and casts new light to the diagnosis and therapy of PE.
Collapse
Affiliation(s)
- Shouling Luo
- The Department of Obstetrics, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Jiangnan Pei
- The Department of Obstetrics, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Xiaotian Li
- The Department of Obstetrics, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Weirong Gu
- The Department of Obstetrics, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China.
| |
Collapse
|
14
|
Uterine NK cells and macrophages in pregnancy. Placenta 2017; 56:44-52. [DOI: 10.1016/j.placenta.2017.03.001] [Citation(s) in RCA: 208] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 02/27/2017] [Accepted: 03/01/2017] [Indexed: 11/23/2022]
|
15
|
Minn AJ. Interferons and the Immunogenic Effects of Cancer Therapy. Trends Immunol 2016; 36:725-737. [PMID: 26604042 DOI: 10.1016/j.it.2015.09.007] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 09/17/2015] [Accepted: 09/17/2015] [Indexed: 01/04/2023]
Abstract
Much of our understanding on resistance mechanisms to conventional cancer therapies such as chemotherapy and radiation has focused on cell intrinsic properties that antagonize the detrimental effects of DNA and other cellular damage. However, it is becoming clear that the immune system and/or innate immune signaling pathways can integrate with these intrinsic mechanisms to profoundly influence treatment efficacy. In this context, recent evidence indicates that interferon (IFN) signaling has an important role in this integration by influencing immune and intrinsic/non-immune determinants of therapy response. However, IFN signaling can be both immunostimulatory and immunosuppressive, and the factors determining these outcomes in different disease settings are unclear. Here I discuss the regulation and molecular events in cancer that are associated with these dichotomous functions.
Collapse
Affiliation(s)
- Andy J Minn
- Department of Radiation Oncology and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
16
|
Gallegos CE, Michelin S, Dubner D, Carosella ED. Immunomodulation of classical and non-classical HLA molecules by ionizing radiation. Cell Immunol 2016; 303:16-23. [PMID: 27113815 DOI: 10.1016/j.cellimm.2016.04.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 04/13/2016] [Accepted: 04/16/2016] [Indexed: 01/06/2023]
Abstract
Radiotherapy has been employed for the treatment of oncological patients for nearly a century, and together with surgery and chemotherapy, radiation oncology constitutes one of the three pillars of cancer therapy. Ionizing radiation has complex effects on neoplastic cells and on tumor microenvironment: beyond its action as a direct cytotoxic agent, tumor irradiation triggers a series of alterations in tumoral cells, which includes the de novo synthesis of particular proteins and the up/down-regulation of cell surface molecules. Additionally, ionizing radiation may induce the release of "danger signals" which may, in turn lead to cellular and molecular responses by the immune system. This immunomodulatory action of ionizing radiation highlights the importance of the combined use (radiotherapy plus immunotherapy) for cancer healing. Major histocompatibility complex antigens (also called Human Leukocyte Antigens, HLA in humans) are one of those molecules whose expression is modulated after irradiation. This review summarizes the modulatory properties of ionizing radiation on the expression of HLA class I (classical and non-classical) and class II molecules, with special emphasis in non-classical HLA-I molecules.
Collapse
Affiliation(s)
- Cristina E Gallegos
- Radiopathology Laboratory, Nuclear Regulatory Authority (ARN), Buenos Aires, Argentina; Instituto de Ciencias Biológicas y Biomédicas del Sur (INBIOSUR), Universidad Nacional del Sur (UNS), CONICET, Toxicology laboratory, Bahía Blanca, Argentina(2).
| | - Severino Michelin
- Radiopathology Laboratory, Nuclear Regulatory Authority (ARN), Buenos Aires, Argentina
| | - Diana Dubner
- Radiopathology Laboratory, Nuclear Regulatory Authority (ARN), Buenos Aires, Argentina
| | - Edgardo D Carosella
- CEA, Institute of Emerging Diseases and Innovative Therapies (iMETI), Research Division in Hematology and Immunology (SRHI), Paris, France; University Paris Diderot, Sorbonne Paris Cité, UMR E-5 Institut Universitaire d'Hematologie, Saint-Louis Hospital, Paris, France
| |
Collapse
|
17
|
Conrad ML, Freitag N, Diessler ME, Hernandez R, Barrientos G, Rose M, Casas LA, Barbeito CG, Blois SM. Differential Spatiotemporal Patterns of Galectin Expression are a Hallmark of Endotheliochorial Placentation. Am J Reprod Immunol 2015; 75:317-25. [PMID: 26589652 DOI: 10.1111/aji.12452] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 10/20/2015] [Indexed: 02/03/2023] Open
Abstract
PROBLEM Galectins influence the progress of pregnancy by regulating key processes associated with embryo-maternal cross talk, including angiogenesis and placentation. Galectin family members exert multiple roles in the context of hemochorial and epitheliochorial placentation; however, the galectin prolife in endotheliochorial placenta remains to be investigated. METHOD OF STUDY Here, we used immunohistochemistry to analyze galectin (gal)-1, gal-3 and gal-9 expression during early and late endotheliochorial placentation in two different species (dogs and cats). RESULTS We found that during early feline gestation, all three galectin members were more strongly expressed on trophoblast and maternal vessels compared to the decidua. This was accompanied by an overall decrease of gal-1, gal-3 and gal-9 expressions in late feline gestation. In canine early pregnancy, we observed that gal-1 and gal-9 were expressed strongly in cytotrophoblast (CTB) cells compared to gal-3, and no galectin expression was observed in syncytiotrophoblast (STB) cells. Progression of canine gestation was accompanied by increased gal-1 and gal-3 expressions on STB cells, whereas gal-9 expression remained similar in CTB and STB. CONCLUSION These data suggest that both the maternal and fetal compartments are characterized by a spatiotemporal regulation of galectin expression during endotheliochorial placentation. This strongly suggests the involvement of the galectin family in important developmental processes during gestation including immunemodulation, trophoblast invasion and angiogenesis. A conserved functional role for galectins during mammalian placental development emerges from these studies.
Collapse
Affiliation(s)
- Melanie L Conrad
- Division of General Internal and Psychosomatic Medicine, Reproductive Medicine Research Group, Charité Center for Internal Medicine and Dermatology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Nancy Freitag
- Division of General Internal and Psychosomatic Medicine, Reproductive Medicine Research Group, Charité Center for Internal Medicine and Dermatology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Mónica E Diessler
- Cátedra de Histología y Embriología, Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - Rocío Hernandez
- Cátedra de Histología y Embriología, Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - Gabriela Barrientos
- Division of General Internal and Psychosomatic Medicine, Reproductive Medicine Research Group, Charité Center for Internal Medicine and Dermatology, Charité-Universitätsmedizin Berlin, Berlin, Germany.,CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas), Buenos Aires, Argentina
| | - Matthias Rose
- Division of General Internal and Psychosomatic Medicine, Reproductive Medicine Research Group, Charité Center for Internal Medicine and Dermatology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | | - Claudio G Barbeito
- Cátedra de Histología y Embriología, Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina.,CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas), Buenos Aires, Argentina
| | - Sandra M Blois
- Division of General Internal and Psychosomatic Medicine, Reproductive Medicine Research Group, Charité Center for Internal Medicine and Dermatology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
18
|
Barrientos G, Toro A, Moschansky P, Cohen M, Garcia MG, Rose M, Maskin B, Sánchez-Margalet V, Blois SM, Varone CL. Leptin promotes HLA-G expression on placental trophoblasts via the MEK/Erk and PI3K signaling pathways. Placenta 2015; 36:419-26. [PMID: 25649687 DOI: 10.1016/j.placenta.2015.01.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 12/19/2014] [Accepted: 01/13/2015] [Indexed: 11/17/2022]
Abstract
INTRODUCTION The development of the human haemochorial placenta requires complex regulatory mechanisms to protect invasive trophoblast cells from cytotoxic responses elicited by maternal immune cells. Leptin, the adipocyte derived hormone encoded by the Lep gene, is synthesized by placental trophoblasts and exerts pleiotropic effects on the immune system, including the promotion of inflammation and the activation of T cell responses. METHODS To address its possible involvement in the modulation of maternal immune responses during pregnancy, we investigated the effect of leptin on the expression of the class Ib histocompatibility antigen HLA-G as one of the chief immunosuppressive strategies used by trophoblast cells. RESULTS In vitro incubation of the trophoblast derived Swan 71 and JEG-3 cell lines with 25-50 ng/ml recombinant leptin significantly boosted HLA-G mRNA and protein expression, and this effect was abrogated upon pharmacological inhibition of the PI3K-Akt and MEK-Erk signaling pathways. A similar stimulatory effect of leptin was observed in term placental tissue explants, though 10-fold higher doses were required for stimulation. Further, JEG-3 cells treated with a leptin antisense oligodeoxynucleotide displayed decreased HLA-G expression levels, which were partially recovered by addition of stimulating doses of exogenous hormone. Immunofluorescence and qPCR analysis confirmed leptin biosynthesis in placental tissue, further showing that invasive extravillous trophoblast cells were a main source of this hormone during the first trimester of normal pregnancies. DISCUSSION Taken together, our results show that leptin acts as an autocrine/paracrine signal promoting HLA-G expression in placental trophoblasts suggesting an important role in the regulation of immune evasion mechanisms at the fetal maternal interface.
Collapse
Affiliation(s)
- G Barrientos
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IQUIBICEN CONICET, Buenos Aires, Argentina
| | - A Toro
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IQUIBICEN CONICET, Buenos Aires, Argentina
| | - P Moschansky
- Charité Center 12 Internal Medicine and Dermatology, Reproductive Medicine Research Group, Medicine University Berlin, Germany
| | - M Cohen
- Laboratoire d'Hormonologie, Department of Gynaecology and Obstetrics, Geneva, Switzerland
| | - M G Garcia
- Gene Therapy Laboratory, Facultad de Ciencias Biomédicas, Universidad Austral, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Derqui-Buenos Aires, Argentina
| | - M Rose
- Charité Center 12 Internal Medicine and Dermatology, Reproductive Medicine Research Group, Medicine University Berlin, Germany
| | - B Maskin
- Hospital Nacional Profesor Alejandro Posadas, Buenos Aires, Argentina
| | - V Sánchez-Margalet
- Departamento de Bioquímica Médica y Biología Molecular, Hospital Universitario Virgen Macarena, Facultad de Medicina, Universidad de Sevilla, Sevilla, Spain
| | - S M Blois
- Charité Center 12 Internal Medicine and Dermatology, Reproductive Medicine Research Group, Medicine University Berlin, Germany.
| | - C L Varone
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IQUIBICEN CONICET, Buenos Aires, Argentina.
| |
Collapse
|
19
|
Bulmer JN, Lash GE. The Role of Uterine NK Cells in Normal Reproduction and Reproductive Disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 868:95-126. [PMID: 26178847 DOI: 10.1007/978-3-319-18881-2_5] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The human endometrium contains a substantial population of leucocytes which vary in distribution during the menstrual cycle and pregnancy. An unusual population of natural killer (NK) cells, termed uterine NK (uNK) cells, are the most abundant of these cells in early pregnancy. The increase in number of uNK cells in the mid-secretory phase of the cycle with further increases in early pregnancy has focused attention on the role of uNK cells in early pregnancy. Despite many studies, the in vivo role of these cells is uncertain. This chapter reviews current information regarding the role of uNK cells in healthy human pregnancy and evidence indicating their importance in various reproductive and pregnancy problems. Studies in humans are limited by the availability of suitable tissues and the limitations of extrapolation from animal models.
Collapse
Affiliation(s)
- Judith N Bulmer
- Reproductive and Vascular Biology Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK,
| | | |
Collapse
|
20
|
Mesdag V, Salzet M, Vinatier D. Le trophoblaste : chef d’orchestre de la tolérance immunologique maternelle. ACTA ACUST UNITED AC 2014; 43:657-70. [DOI: 10.1016/j.jgyn.2014.06.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2013] [Revised: 06/07/2014] [Accepted: 06/18/2014] [Indexed: 12/11/2022]
|
21
|
The many faces of human leukocyte antigen-G: relevance to the fate of pregnancy. J Immunol Res 2014; 2014:591489. [PMID: 24741608 PMCID: PMC3987982 DOI: 10.1155/2014/591489] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 01/17/2014] [Indexed: 02/06/2023] Open
Abstract
Pregnancy is an immunological paradox, where fetal antigens encoded by polymorphic genes inherited from the father do not provoke a maternal immune response. The fetus is not rejected as it would be theorized according to principles of tissue transplantation. A major contribution to fetal tolerance is the human leukocyte antigen (HLA)-G, a nonclassical HLA protein displaying limited polymorphism, restricted tissue distribution, and a unique alternative splice pattern. HLA-G is primarily expressed in placenta and plays multifaceted roles during pregnancy, both as a soluble and a membrane-bound molecule. Its immunomodulatory functions involve interactions with different immune cells and possibly regulation of cell migration during placental development. Recent findings include HLA-G contributions from the father and the fetus itself. Much effort has been put into clarifying the role of HLA-G during pregnancy and pregnancy complications, such as preeclampsia, recurrent spontaneous abortions, and subfertility or infertility. This review aims to clarify the multifunctional role of HLA-G in pregnancy-related disorders by focusing on genetic variation, differences in mRNA stability between HLA-G alleles, differences in HLA-G isoform expression, and possible differences in functional activity. Furthermore, we highlight important observations regarding HLA-G genetics and expression in preeclampsia that future research should address.
Collapse
|
22
|
Liu X, Gu W, Li X. HLA-G regulates the invasive properties of JEG-3 choriocarcinoma cells by controlling STAT3 activation. Placenta 2013; 34:1044-52. [PMID: 24054889 DOI: 10.1016/j.placenta.2013.07.070] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 07/28/2013] [Accepted: 07/31/2013] [Indexed: 11/29/2022]
Abstract
The expression of human leucocyte antigen-G (HLA-G) in trophoblasts plays a crucial role in successful embryonic implantation, and reduced HLA-G expression might contribute to adverse obstetric outcomes. In this study, we silenced HLA-G expression using RNA interference in JEG-3 cells, resulting in a notably attenuated invasion capacity of the cells in a Transwell assay; however, no alterations in cell proliferation or apoptosis were observed. The down-regulation of HLA-G dampened the activation of signal transducer and activator of transcription 3 (STAT3), whereas the up-regulation of HLA-G promoted STAT3 activation and invasion in JEG-3 cells treated with human galectin-1. Most importantly, interleukin-6 (IL-6), but not galectin-1, was shown to rescue invasion deficiency in a dose-dependent manner. Thus, we demonstrate that HLA-G is able to regulate JEG-3 cell invasion by influencing STAT3 activation, which may underlie the implantation defects accompanying HLA-G hypo-expression in pre-eclampsia.
Collapse
Affiliation(s)
- X Liu
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, PR China; Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, PR China
| | | | | |
Collapse
|
23
|
Wong BS, Lam KK, Lee CL, Wong VH, Lam MP, Chu IK, Yeung WS, Chiu PC. Adrenomedullin Enhances Invasion of Human Extravillous Cytotrophoblast-Derived Cell Lines by Regulation of Urokinase Plasminogen Activator Expression and S-Nitrosylation1. Biol Reprod 2013; 88:34. [DOI: 10.1095/biolreprod.112.103903] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
24
|
Abstract
Preeclampsia (PE) manifested by hypertension and proteinuria complicates 3% to 8% of pregnancies and is a leading cause of fetal-maternal morbidity and mortality worldwide. It may lead to intrauterine growth restriction, preterm delivery, and long-term sequelae in women and fetuses, and consequently cause socioeconomic burden to the affected families and society as a whole. Balanced immune responses are required for the maintenance of successful pregnancy. Although not a focus of most studies, decidual cells, the major resident cell type at the fetal-maternal interface, have been shown to modulate the local immune balance by interacting with other cell types, such as bone marrow derived-immune cells, endothelial cells, and invading extravillous trophoblasts. Accumulating evidence suggests that an imbalanced innate immunity, facilitated by decidual cells, plays an important role in the pathogenesis of PE. Thus, this review will discuss the role of innate immunity and the potential contribution of decidual cells in the pathogenesis of PE.
Collapse
Affiliation(s)
- Chang-Ching Yeh
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT 06520-8063, USA
| | | | | |
Collapse
|
25
|
Effects of SAC on oxidative stress and NO availability in placenta: potential benefits to preeclampsia. Placenta 2012; 33:487-94. [PMID: 22405339 DOI: 10.1016/j.placenta.2012.02.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Revised: 01/25/2012] [Accepted: 02/15/2012] [Indexed: 01/18/2023]
Abstract
Preeclampsia (PE) is a major cause of fetal growth restriction and perinatal mortality, which involves oxidative stress and vasodilator signaling disorder. S-allyl-L-cysteine (SAC) is one of the most abundant compounds in garlic extracts, and possesses several biological activities. This research was designed to investigate the protective effects of SAC against H(2)O(2)-induced oxidative insults, as well as the effects on NO/cGMP signaling pathway in placenta. We used TEV-1 cells and placental explants to detect the effects of SAC. TEV-1 cells and human placental explants were separately exposed to SAC, H(2)O(2), or a combination of H(2)O(2) and SAC. Intracellular ROS was detected by flow cytometry; the NO level was detected by an NO metabolites (NOx) assay; the cGMP level was simultaneously measured by the method of radioimmunoassay; the expression of eNOS in TEV-1 cells was measured by immunochemistry and Western blot. Our findings showed that H(2)O(2) treatment increased ROS productions in TEV-1 cells and significantly decreased cGMP and NO level either in TEV-1 cells or explants compared to the control groups (p < 0.05). The expression of eNOS in TEV-1 cells also significantly decreased in H(2)O(2) treated group compared to the control group (p < 0.05). Co-treatment of H(2)O(2) and SAC significantly decreased ROS productions, and increased NO, cGMP and eNOS level compared to the H(2)O(2) treated alone groups (p < 0.05), which were all reverted back to near control levels. Further more, SAC treatment increased NO and cGMP level of TEV-1 cells and explants in a dose-dependent manner even at non-oxidative stress status (p < 0.05). However, when the TEV-1 cells were cultured in the presence of NOS inhibitor (L-NAME) and NO donor (SNP), additional SAC treatment still significantly increased the NO level in comparison with SAC non-treated group (p < 0.05). In conclusion, these results demonstrate that ROS (H(2)O(2)-mediated) can induce insults to NO/cGMP pathway, while SAC could antagonize this insult. And SAC also possesses the ability to increase NO and cGMP level at non-oxidative stress status in TEV-1 cells and placenta explants. SAC is therefore hypothesized to be a potential drug for PE treatment.
Collapse
|
26
|
Yan WH. Human leukocyte antigen-G in cancer: are they clinically relevant? Cancer Lett 2011; 311:123-30. [PMID: 21843913 DOI: 10.1016/j.canlet.2011.07.019] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Revised: 07/13/2011] [Accepted: 07/14/2011] [Indexed: 01/21/2023]
Abstract
The immunotolerant human leukocyte antigen (HLA)-G has direct inhibitory effects on natural killer cells (NK), dendritic cells (DC), T cells and can induce tolerant regulatory cells. The expression of HLA-G has been correlated with the tolerance of the fetus, the acceptance of organ transplants, and the immune escape of tumor cells and virus-infected cells. In the context of malignancies, aberrant induction of HLA-G expression has been extensively investigated and its clinical relevance has been postulated. We here focus on the HLA-G expression in malignancies and its relevance to tumor cell immune escaping and disease progression.
Collapse
Affiliation(s)
- Wei-Hua Yan
- Medical Research Center, Taizhou Hospital of Zhejiang Province, Wenzhou Medical College, Linhai, Zhejiang, People's Republic of China.
| |
Collapse
|
27
|
Zidi I, Ben Amor N. Nanoparticles targeting HLA-G for gene therapy in cancer. Med Oncol 2011; 29:1384-90. [PMID: 21499927 DOI: 10.1007/s12032-011-9942-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Accepted: 03/31/2011] [Indexed: 12/21/2022]
Abstract
Cancer cells are aided by immune-tolerant functions of HLA-G to escape the immune surveillance. In general, cancer cells can express membranous HLA-G, secrete soluble HLA-G, produce HLA-G positive exosomes, and can be subjected to proteolytic cleavage by matrix metalloproteinases releasing shedding HLA-G1 in stressful conditions. Thus, the downregulation of HLA-G either in transcripts or proteins may affect positively cancer therapy. The aim of this study was to examine the molecular nanoparticles targeting HLA-G. Special focus was accorded to RNA interference particles. Although numerous studies have reported the importance of HLA-G gene expression modulation by nanoparticles, no studies have investigated clinically their efficiency in this modulation.
Collapse
Affiliation(s)
- Ines Zidi
- Laboratory of Biochemistry, Research Unit 02/UR/09-01, Higher Institute of Biotechnology of Monastir, BP 74, Avenue Tahar Haddad, 5000 Monastir, Tunisia.
| | | |
Collapse
|
28
|
Lash GE, Bulmer JN. Do uterine natural killer (uNK) cells contribute to female reproductive disorders? J Reprod Immunol 2011; 88:156-64. [PMID: 21334072 DOI: 10.1016/j.jri.2011.01.003] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Revised: 12/23/2010] [Accepted: 01/12/2011] [Indexed: 01/30/2023]
Abstract
The most abundant immune cells in the uterine decidua around the time of implantation and early placental development are the uterine natural killer (uNK) cells. Altered numbers of uNK cells have been associated with several human reproductive disorders, including recurrent miscarriage, recurrent implantation failure, uterine fibroids, sporadic miscarriage, fetal growth restriction and preeclampsia. Understanding of the function of uNK cells in non-pregnant and pregnant endometrium is now increasing; the potential contribution of altered numbers and function of uNK cells to reproductive disorders is the focus of this review.
Collapse
Affiliation(s)
- Gendie E Lash
- Reproductive and Vascular Biology Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom.
| | | |
Collapse
|
29
|
Dahl M, Hviid TVF. Human leucocyte antigen class Ib molecules in pregnancy success and early pregnancy loss. Hum Reprod Update 2011; 18:92-109. [DOI: 10.1093/humupd/dmr043] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
30
|
Ziegler A, Santos PSC, Kellermann T, Uchanska-Ziegler B. Self/nonself perception, reproduction and the extended MHC. SELF NONSELF 2010; 1:176-191. [PMID: 21487476 DOI: 10.4161/self.1.3.12736] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Accepted: 06/21/2010] [Indexed: 01/01/2023]
Abstract
Self/nonself perception governs mate selection in most eukaryotic species. It relies on a number of natural barriers that act before, during and after copulation. These hurdles prevent a costly investment into an embryo with potentially suboptimal genetic and immunological properties and aim at discouraging fertilization when male and female gametes exhibit extensive sharing of alleles. Due to the fact that several genes belonging to the extended major histocompatibility complex (xMHC) carry out crucial immune functions and are the most polymorphic within vertebrate genomes, it is likely that securing heterozygosity and the selection of rare alleles within this gene complex contributes to endowing the offspring with an advantage in fighting infections. Apart from MHC class I and II antigens, the products of several other genes within the xMHC are candidates for participating in mate choice, especially since the respective loci are subject to long-range linkage disequilibrium which may aid to preserve functionally connected alleles within a given haplotype. Among these loci are polymorphic odorant receptor genes that are expressed not only in the olfactory epithelium, but also within male reproductive tissues. They may thus not only be of importance in olfaction-influenced mate choice, by recognizing MHC-dependent individual-specific olfactory signals, but could also guide spermatozoa along chemical gradients to their target, the oocyte. By focusing on the human HLA complex and genes within its vicinity, we show here that the products of several xMHC-specified molecules might be involved in self/nonself perception during reproduction. Although the molecular details are often unknown, the existence of highly diverse, yet intertwined pre- and post-copulatory barriers suggests that xMHC-encoded proteins may be important for various stages of mate choice, germ cell development, as well as embryonic and foetal life in mammals and other vertebrates. Many of these genes should thus be regarded as crucial not only within the immune system, but also in reproduction.
Collapse
Affiliation(s)
- Andreas Ziegler
- Institut für Immungenetik; Charité-Universitätsmedizin Berlin; Campus Benjamin Franklin; Freie Universität Berlin; Berlin, Germany
| | | | | | | |
Collapse
|