1
|
Rokeby ACE, Natale BV, Natale DRC. Cannabinoids and the placenta: Receptors, signaling and outcomes. Placenta 2023; 135:51-61. [PMID: 36965349 DOI: 10.1016/j.placenta.2023.03.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/06/2023] [Accepted: 03/09/2023] [Indexed: 03/12/2023]
Abstract
Cannabis use during pregnancy is increasing. The improvement of pregnancy-related symptoms including morning sickness and management of mood and stress are among the most reported reasons for its use. Δ9-tetrahydrocannabinol (Δ9-THC) and cannabidiol (CBD) are the most abundant cannabinoids found within the cannabis flower. The concentration of these components has drastically increased in the past 20 years. Additionally, many edibles contain only one cannabinoid and are marketed to achieve a specific goal, meaning there are an increasing number of pregnancies that are exposed to isolated cannabinoids. Both Δ9-THC and CBD cross the placenta and can impact the fetus directly, but the receptors through which cannabinoids act are also expressed throughout the placenta, suggesting that the effects of in-utero cannabinoid exposure may include indirect effects from the placenta. In-utero cannabis research focuses on short and long-term fetal health and development; however, these studies include little to no placenta analysis. Prenatal cannabinoid exposure is linked to small for gestational age and fetal growth-restricted babies. Compromised placental development is also associated with fetal growth restriction and the few studies (clinical and animal models) that included placental analysis, identify changes in placental vasculature and function in these cannabinoid-exposed pregnancies. In vitro studies further support cannabinoid impact on cell function in the different populations that comprise the placenta. In this article, we aim to summarize how phytocannabinoids can impact placental development and function. Specifically, the cannabinoids and their actions at the different receptors are described, with receptor localization throughout the human and murine placenta discussed. Findings from studies that included placental analysis and how cannabinoid signaling may modulate critical developmental processing including cell proliferation, angiogenesis and migration are described. Considering the current research, prenatal cannabinoid exposure may significantly impact placental development, and, as such, identifying windows of placental vulnerability for each cannabinoid will be critical to elucidate the etiology of fetal outcome studies.
Collapse
Affiliation(s)
- Abbey C E Rokeby
- Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Bryony V Natale
- Department of Obstetrics and Gynaecology, Queen's University, Kingston, ON, Canada
| | - David R C Natale
- Department of Obstetrics and Gynaecology, Queen's University, Kingston, ON, Canada; Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada.
| |
Collapse
|
2
|
Calvillo-Robledo A, Cervantes-Villagrana RD, Morales P, Marichal-Cancino BA. The oncogenic lysophosphatidylinositol (LPI)/GPR55 signaling. Life Sci 2022; 301:120596. [PMID: 35500681 DOI: 10.1016/j.lfs.2022.120596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/22/2022] [Accepted: 04/26/2022] [Indexed: 10/18/2022]
Abstract
GPR55 is a class A orphan G protein-coupled receptor that has drawn important therapeutic attention in the last decade because of its role in pathophysiological processes including vascular functions, metabolic dysfunction, neurodegenerative disorders, or bone turnover among others. Several cannabinoids of phytogenic, endogenous, and synthetic nature have shown to modulate this receptor leading to propose it as a member of the endocannabinoid system. The putative endogenous GPR55 ligand is L-α-lysophosphatidylinositol (LPI) and it has been associated with several processes that control cell survival and tumor progression. The relevance of GPR55 in cancer is currently being extensively studied in vitro and in vivo using diverse cancer models. The LPI/GPR55 axis has been reported to participate in pro-oncogenic processes including cellular proliferation, differentiation, migration, invasion, and metastasis being altered in several cancer cells via G12/13 and Gq signaling. Moreover, GRP55 and its bioactive lipid have been proposed as potential biomarkers for cancer diagnosis. Indeed, GPR55 overexpression or high expression has been shown to correlate with cancer aggressiveness in specific tumors including acute myeloid leukemia, uveal melanoma, low grade glioma and renal cancer. This review aims to analyze and summarize current evidence on the cancerogenic role of the LPI/GPR55 axis providing a critical view of the therapeutic prospects of this promising target.
Collapse
Affiliation(s)
- Argelia Calvillo-Robledo
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Ciudad Universitaria, 20131 Aguascalientes, Ags., Mexico
| | | | - Paula Morales
- Instituto de Química Médica, CSIC, 28006 Madrid, Spain
| | - Bruno A Marichal-Cancino
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Ciudad Universitaria, 20131 Aguascalientes, Ags., Mexico.
| |
Collapse
|
3
|
Cannabis and Cannabinoids in Reproduction and Fertility: Where We Stand. Reprod Sci 2021; 29:2429-2439. [PMID: 33970442 DOI: 10.1007/s43032-021-00588-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/15/2021] [Indexed: 12/25/2022]
Abstract
Although cannabis use is increasing in general population, their prevalence among young adults is remarkably high. In recent years, their medical use gained a renewed interest. However, it can underline the reputation of cannabis being a harmless drug. Between cannabinoids, uniquely found on the cannabis plant, Δ9-tetrahydrocannabinol (THC) is the well-studied compound. It is responsible for the psychoactive effects via central cannabinoid receptors. Nevertheless, cannabinoids interact with other chemical signalling systems such as the hypothalamic-pituitary-gonadal axis. THC indirectly decreases gonadotropin-releasing hormone (GnRH) secretion by the hypothalamus. The consequences are diverse, and several key hormones are affected. THC disturbs important reproductive events like folliculogenesis, ovulation and sperm maturation and function. Although generally accepted that cannabinoid consumption impacts male and female fertility, prevailing evidence remains largely on pre-clinical studies. Here, we introduce cannabinoids and the endocannabinoid system, and we review the most prominent clinical evidence about cannabis consumption in reproductive potential and teratogenicity.
Collapse
|
4
|
Taylor AH, Tortolani D, Ayakannu T, Konje JC, Maccarrone M. (Endo)Cannabinoids and Gynaecological Cancers. Cancers (Basel) 2020; 13:E37. [PMID: 33375539 PMCID: PMC7795647 DOI: 10.3390/cancers13010037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/18/2020] [Accepted: 12/22/2020] [Indexed: 12/20/2022] Open
Abstract
Gynaecological cancers can be primary neoplasms, originating either from the reproductive tract or the products of conception, or secondary neoplasms, representative of metastatic disease. For some of these cancers, the exact causes are unknown; however, it is recognised that the precise aetiopathogeneses for most are multifactorial and include exogenous (such as diet) and endogenous factors (such as genetic predisposition), which mutually interact in a complex manner. One factor that has been recognised to be involved in the pathogenesis and progression of gynaecological cancers is the endocannabinoid system (ECS). The ECS consists of endocannabinoids (bioactive lipids), their receptors, and metabolic enzymes responsible for their synthesis and degradation. In this review, the impact of plant-derived (Cannabis species) cannabinoids and endocannabinoids on gynaecological cancers will be discussed within the context of the complexity of the proteins that bind, transport, and metabolise these compounds in reproductive and other tissues. In particular, the potential of endocannabinoids, their receptors, and metabolic enzymes as biomarkers of specific cancers, such as those of the endometrium, will be addressed. Additionally, the therapeutic potential of targeting selected elements of the ECS as new action points for the development of innovative drugs will be presented.
Collapse
Affiliation(s)
- Anthony H. Taylor
- Endocannabinoid Research Group, Reproductive Sciences Section, Department of Cancer Studies and Molecular Medicine, University of Leicester, Leicester LE1 7RH, UK; (A.H.T.); (T.A.)
- Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Daniel Tortolani
- European Centre for Brain Research, IRCCS Santa Lucia Foundation, 00164 Rome, Italy;
| | - Thangesweran Ayakannu
- Endocannabinoid Research Group, Reproductive Sciences Section, Department of Cancer Studies and Molecular Medicine, University of Leicester, Leicester LE1 7RH, UK; (A.H.T.); (T.A.)
- Gynaecology Oncology Cancer Centre, Liverpool Women’s NHS Foundation Trust, Liverpool Women’s Hospital, Liverpool L8 7SS, UK
- Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 3GB, UK
| | - Justin C. Konje
- Endocannabinoid Research Group, Reproductive Sciences Section, Department of Cancer Studies and Molecular Medicine, University of Leicester, Leicester LE1 7RH, UK; (A.H.T.); (T.A.)
| | - Mauro Maccarrone
- European Centre for Brain Research, IRCCS Santa Lucia Foundation, 00164 Rome, Italy;
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| |
Collapse
|
5
|
Cecconi S, Rapino C, Di Nisio V, Rossi G, Maccarrone M. The (endo)cannabinoid signaling in female reproduction: What are the latest advances? Prog Lipid Res 2019; 77:101019. [PMID: 31862482 DOI: 10.1016/j.plipres.2019.101019] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/11/2019] [Accepted: 11/04/2019] [Indexed: 02/06/2023]
Abstract
Cannabis extracts like marijuana have the highest consumption rate worldwide. Yet, their societal acceptance as recreational and therapeutic drugs could represent a serious hazard to female human reproduction, because cannabis ingredients [termed (phyto)cannabinoids] can perturb an endogenous system of lipid signals known as endocannabinoids. Accumulated evidence on animal models and humans has demonstrated a crucial role of these endogenous signals on different aspects of female reproduction, where they act through an ensamble of proteins that synthesize, transport, degrade and traffic them. Several reports have recently evidenced the potential role of endocannabinoids as biomarkers of female infertility for disease treatment and prevention, as well as their possible epigenetic effects on pregnancy. The purpose of this review is to provide an update of data collected in the last decade on the effects of cannabinoids and endocannabinoids on female reproductive events, from development and maturation of follicles and oocytes, to fertilization, oviductal transport, implantation and labor. In this context, a particular attention has been devoted to the ovary and the production of fertilizable oocytes, because recent studies have addressed this hot topic with conflicting results among species.
Collapse
Affiliation(s)
- Sandra Cecconi
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy.
| | - Cinzia Rapino
- Faculty of Veterinary Medicine, University of Teramo, 64100 Teramo, Italy.
| | - Valentina Di Nisio
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy.
| | - Gianna Rossi
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy.
| | - Mauro Maccarrone
- Department of Medicine, Campus Bio-Medico University of Rome, 00128 Rome, Italy; European Center for Brain Research (CERC)/Santa Lucia Foundation, Via del Fosso di Fiorano, 64 - 00143 Rome, Italy.
| |
Collapse
|
6
|
Raup-Konsavage WM, Johnson M, Legare CA, Yochum GS, Morgan DJ, Vrana KE. Synthetic Cannabinoid Activity Against Colorectal Cancer Cells. Cannabis Cannabinoid Res 2018; 3:272-281. [PMID: 30671539 PMCID: PMC6340378 DOI: 10.1089/can.2018.0065] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Introduction: Colorectal cancer (CRC) is a leading cause of cancer-related deaths worldwide, and new therapeutic strategies are still required. Here we screened a synthetic cannabinoid library to identify compounds that uniformly reduce the viability of seven CRC cell lines. Material and Methods: Seven distinct CRC cell lines were treated with 10 μM cannabinoid compounds (from a library of 370 molecules) for 48 h, and cell viability was subsequently measured with MTS assay. Dose–response curves were conducted for compounds that were found to reproducibly reduce cell viability of one or more cell lines. Results: We identified 10 compounds from the library that were able to reduce cell viability of CRC cell lines (with an IC50 ≤ 30 μM). Of these compounds, seven were specific for CRC cells, and six were effective in all CRC cell lines tested. Treatment with traditional phytocannabinoids (THC or CBD) was either ineffective or much less potent and only partially efficacious. Treatment with antagonists for the known cannabinoid receptors (alone or in combination) failed to block the activity of the most potent of identified compounds. Conclusion: We identified three families of cannabinoid compounds that reduce CRC cell viability through a noncanonical receptor mechanism. Future modification of these compounds may lead to the development of novel therapies to treat this disease.
Collapse
Affiliation(s)
- Wesley M Raup-Konsavage
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Megan Johnson
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Christopher A Legare
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Gregory S Yochum
- Department of Biochemistry and Molecular Biology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Daniel J Morgan
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania.,Department of Anesthesiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Kent E Vrana
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| |
Collapse
|
7
|
Pyszniak M, Tabarkiewicz J, Łuszczki JJ. Endocannabinoid system as a regulator of tumor cell malignancy - biological pathways and clinical significance. Onco Targets Ther 2016; 9:4323-36. [PMID: 27486335 PMCID: PMC4958360 DOI: 10.2147/ott.s106944] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The endocannabinoid system (ECS) comprises cannabinoid receptors (CBs), endogenous cannabinoids, and enzymes responsible for their synthesis, transport, and degradation of (endo)cannabinoids. To date, two CBs, CB1 and CB2, have been characterized; however, orphan G-protein-coupled receptor GPR55 has been suggested to be the third putative CB. Several different types of cancer present abnormal expression of CBs, as well as other components of ECS, and this has been shown to correlate with the clinical outcome. Although most effects of (endo)cannabinoids are mediated through stimulation of classical CBs, they also interact with several molecules, either prosurvival or proapoptotic molecules. It should be noted that the mode of action of exogenous cannabinoids differs significantly from that of endocannabinoid and results from the studies on their activity both in vivo and in vitro could not be easily compared. This review highlights the main signaling pathways involved in the antitumor activity of cannabinoids and the influence of their activation on cancer cell biology. We also discuss changes in the expression pattern of the ECS in various cancer types that have an impact on disease progression and patient survival. A growing amount of experimental data imply possible exploitation of cannabinoids in cancer therapy.
Collapse
Affiliation(s)
- Maria Pyszniak
- Centre for Innovative Research in Medical and Natural Sciences, Faculty of Medicine; Department of Immunology, Faculty of Medicine, University of Rzeszów, Rzeszów; Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warszawa
| | - Jacek Tabarkiewicz
- Centre for Innovative Research in Medical and Natural Sciences, Faculty of Medicine; Department of Immunology, Faculty of Medicine, University of Rzeszów, Rzeszów
| | - Jarogniew J Łuszczki
- Department of Pathophysiology, Medical University of Lublin; Isobolographic Analysis Laboratory, Institute of Agricultural Medicine, Lublin, Poland
| |
Collapse
|
8
|
Kremshofer J, Siwetz M, Berghold VM, Lang I, Huppertz B, Gauster M. A role for GPR55 in human placental venous endothelial cells. Histochem Cell Biol 2015; 144:49-58. [PMID: 25869640 DOI: 10.1007/s00418-015-1321-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2015] [Indexed: 01/14/2023]
Abstract
Endocannabinoids and their G protein-coupled receptors have been suggested to play a key role in human pregnancy, by regulating important aspects such as implantation, decidualization, placentation and labor. G protein-coupled receptor 55 (GPR55) was previously postulated to be another cannabinoid receptor, since specific cannabinoids were shown to act independently of the classical cannabinoid receptors CB1 or CB2. Current knowledge about GPR55 expression and function in human placenta is very limited and motivated us to evaluate human placental GPR55 expression in relation to other human peripheral tissues and to analyze spatiotemporal GPR55 expression in human placenta. Gene expression analysis revealed low GPR55 levels in human placenta, when compared to spleen and lung, the organs showing highest GPR55 expression. Moreover, expression analysis showed 5.8 fold increased placental GPR55 expression at term compared to first trimester. Immunohistochemistry located GPR55 solely at the fetal endothelium of first trimester and term placentas. qPCR and immunocytochemistry consistently confirmed GPR55 expression in isolated primary placental arterial and venous endothelial cells. Incubation with L-α-lysophosphatidylinositol (LPI), the specific and functional ligand for GPR55, at a concentration of 1 µM, significantly enhanced migration of venous, but not arterial endothelial cells. LPI-enhanced migration was inhibited by the GPR55 antagonist O-1918, suggesting a role of the LPI-GPR55 axis in placental venous endothelium function.
Collapse
Affiliation(s)
- Julia Kremshofer
- Institute of Cell Biology, Histology and Embryology, Medical University Graz, Harrachgasse 21/VII, 8010, Graz, Austria
| | | | | | | | | | | |
Collapse
|
9
|
Chiurchiù V, Lanuti M, De Bardi M, Battistini L, Maccarrone M. The differential characterization of GPR55 receptor in human peripheral blood reveals a distinctive expression in monocytes and NK cells and a proinflammatory role in these innate cells. Int Immunol 2014; 27:153-60. [DOI: 10.1093/intimm/dxu097] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
10
|
Meccariello R, Battista N, Bradshaw HB, Wang H. Updates in reproduction coming from the endocannabinoid system. Int J Endocrinol 2014; 2014:412354. [PMID: 24550985 PMCID: PMC3914453 DOI: 10.1155/2014/412354] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 11/20/2013] [Accepted: 12/04/2013] [Indexed: 12/26/2022] Open
Abstract
The endocannabinoid system (ECS) is an evolutionarily conserved master system deeply involved in the central and local control of reproductive functions in both sexes. The tone of these lipid mediators-deeply modulated by the activity of biosynthetic and hydrolyzing machineries-regulates reproductive functions from gonadotropin discharge and steroid biosynthesis to the formation of high quality gametes and successful pregnancy. This review provides an overview on ECS and reproduction and focuses on the insights in the regulation of endocannabinoid production by steroids, in the regulation of male reproductive activity, and in placentation and parturition. Taken all together, evidences emerge that the activity of the ECS is crucial for procreation and may represent a target for the therapeutic exploitation of infertility.
Collapse
Affiliation(s)
- Rosaria Meccariello
- Dipartimento di Scienze Motorie e del Benessere, Università di Napoli Parthenope, via Medina 40, 80133 Napoli, Italy
- *Rosaria Meccariello:
| | - Natalia Battista
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
- European Center for Brain Research (CERC), Santa Lucia Foundation, 00143 Rome, Italy
| | - Heather B. Bradshaw
- Department of Psychological and Brain Sciences, The Kinsey Institute for Research in Sex, Gender, and Reproduction, Indiana University, Bloomington, IN 47405, USA
| | - Haibin Wang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
11
|
Melford SE, Taylor AH, Konje JC. Of mice and (wo)men: factors influencing successful implantation including endocannabinoids. Hum Reprod Update 2013; 20:415-28. [DOI: 10.1093/humupd/dmt060] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
12
|
Endogenous cannabinoids revisited: A biochemistry perspective. Prostaglandins Other Lipid Mediat 2013; 102-103:13-30. [DOI: 10.1016/j.prostaglandins.2013.02.002] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 02/20/2013] [Accepted: 02/21/2013] [Indexed: 12/13/2022]
|
13
|
Fonseca BM, Correia-da-Silva G, Almada M, Costa MA, Teixeira NA. The Endocannabinoid System in the Postimplantation Period: A Role during Decidualization and Placentation. Int J Endocrinol 2013; 2013:510540. [PMID: 24228028 PMCID: PMC3818851 DOI: 10.1155/2013/510540] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 09/04/2013] [Indexed: 01/08/2023] Open
Abstract
Although the detrimental effects of cannabis consumption during gestation are known for years, the vast majority of studies established a link between cannabis consumption and foetal development. The complex maternal-foetal interrelationships within the placental bed are essential for normal pregnancy, and decidua definitively contributes to the success of this process. Nevertheless, the molecular signalling network that coordinates strategies for successful decidualization and placentation are not well understood. The discovery of the endocannabinoid system highlighted new signalling mediators in various physiological processes, including reproduction. It is known that endocannabinoids present regulatory functions during blastocyst development, oviductal transport, and implantation. In addition, all the endocannabinoid machinery was found to be expressed in decidual and placental tissues. Additionally, endocannabinoid's plasmatic levels were found to fluctuate during normal gestation and to induce decidual cell death and disturb normal placental development. Moreover, aberrant endocannabinoid signalling during the period of placental development has been associated with pregnancy disorders. It indicates the existence of a possible regulatory role for these molecules during decidualization and placentation processes, which are known to be particularly vulnerable. In this review, the influence of the endocannabinoid system in these critical processes is explored and discussed.
Collapse
Affiliation(s)
- B. M. Fonseca
- Biologia da Inflamação e Reprodução, Instituto de Biologia Molecular e Celular (IBMC), Rua do Campo Alegre No. 823, 4150-180 Porto, Portugal
- Laboratório de Bioquímica, Departamento Ciências Biológicas, Faculdade de Farmácia da Universidade do Porto, Ciências Biológicas Rua de Jorge Viterbo Ferreira No. 228, 4050-313 Porto, Portugal
| | - G. Correia-da-Silva
- Biologia da Inflamação e Reprodução, Instituto de Biologia Molecular e Celular (IBMC), Rua do Campo Alegre No. 823, 4150-180 Porto, Portugal
- Laboratório de Bioquímica, Departamento Ciências Biológicas, Faculdade de Farmácia da Universidade do Porto, Ciências Biológicas Rua de Jorge Viterbo Ferreira No. 228, 4050-313 Porto, Portugal
| | - M. Almada
- Biologia da Inflamação e Reprodução, Instituto de Biologia Molecular e Celular (IBMC), Rua do Campo Alegre No. 823, 4150-180 Porto, Portugal
- Laboratório de Bioquímica, Departamento Ciências Biológicas, Faculdade de Farmácia da Universidade do Porto, Ciências Biológicas Rua de Jorge Viterbo Ferreira No. 228, 4050-313 Porto, Portugal
| | - M. A. Costa
- Biologia da Inflamação e Reprodução, Instituto de Biologia Molecular e Celular (IBMC), Rua do Campo Alegre No. 823, 4150-180 Porto, Portugal
- Laboratório de Bioquímica, Departamento Ciências Biológicas, Faculdade de Farmácia da Universidade do Porto, Ciências Biológicas Rua de Jorge Viterbo Ferreira No. 228, 4050-313 Porto, Portugal
| | - N. A. Teixeira
- Biologia da Inflamação e Reprodução, Instituto de Biologia Molecular e Celular (IBMC), Rua do Campo Alegre No. 823, 4150-180 Porto, Portugal
- Laboratório de Bioquímica, Departamento Ciências Biológicas, Faculdade de Farmácia da Universidade do Porto, Ciências Biológicas Rua de Jorge Viterbo Ferreira No. 228, 4050-313 Porto, Portugal
- *N. A. Teixeira:
| |
Collapse
|
14
|
Characterisation of the endocannabinoid system in rat haemochorial placenta. Reprod Toxicol 2012; 34:347-56. [DOI: 10.1016/j.reprotox.2012.05.036] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 05/03/2012] [Accepted: 05/11/2012] [Indexed: 01/12/2023]
|
15
|
Henstridge CM, Balenga NAB, Kargl J, Andradas C, Brown AJ, Irving A, Sanchez C, Waldhoer M. Minireview: recent developments in the physiology and pathology of the lysophosphatidylinositol-sensitive receptor GPR55. Mol Endocrinol 2011; 25:1835-48. [PMID: 21964594 PMCID: PMC5417173 DOI: 10.1210/me.2011-1197] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Accepted: 09/01/2011] [Indexed: 11/19/2022] Open
Abstract
Emerging data suggest that off-target cannabinoid effects may be mediated via novel seven-transmembrane spanning/G protein-coupled receptors. Due to its cannabinoid sensitivity, the G protein-coupled receptor 55 (GPR55) was recently proposed as a candidate; however, GPR55 is phylogenetically distinct from the traditional cannabinoid receptors, and the conflicting pharmacology, signaling, and functional data have prevented its classification as a novel cannabinoid receptor. Indeed, the most consistent and potent agonist to date is the noncannabinoid lysophospholipid, lysophosphatidylinositol. Here we present new human GPR55 mRNA expression data, providing supportive evidence of GPR55 expression in a vast array of tissues and cell types. Moreover, we summarize major recent developments in GPR55 research and aim to update the reader in the rapidly expanding fields of GPR55 pharmacology, physiology, and pathology.
Collapse
|