1
|
Lialios P, Alimperti S. Role of E-cadherin in epithelial barrier dysfunction: implications for bacterial infection, inflammation, and disease pathogenesis. Front Cell Infect Microbiol 2025; 15:1506636. [PMID: 40007608 PMCID: PMC11850337 DOI: 10.3389/fcimb.2025.1506636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 01/15/2025] [Indexed: 02/27/2025] Open
Abstract
Epithelial barriers serve as critical defense lines against microbial infiltration and maintain tissue homeostasis. E-cadherin, an essential component of adherens junctions, has emerged as a pivotal molecule that secures epithelial homeostasis. Lately, its pleiotropic role beyond barrier function, including its involvement in immune responses, has become more evident. Herein, we delve into the intricate relationship between (dys)regulation of epithelial homeostasis and the versatile functionality of E-cadherin, describing complex mechanisms that underlie barrier integrity and disruption in disease pathogenesis such as bacterial infection and inflammation, among others. Clinical implications of E-cadherin perturbations in host pathophysiology are emphasized; downregulation, proteolytic phenomena, abnormal localization/signaling and aberrant immune reactions are linked with a broad spectrum of pathology beyond infectious diseases. Finally, potential therapeutic interventions that may harness E-cadherin to mitigate barrier-associated tissue damage are explored. Overall, this review highlights the crucial role of E-cadherin in systemic health, offering insights that could pave the way for strategies to reinforce/restore barrier integrity and treat related diseases.
Collapse
Affiliation(s)
- Peter Lialios
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC, United States
- Center for Biological and Biomedical Engineering, Georgetown University, Washington, DC, United States
| | - Stella Alimperti
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC, United States
- Center for Biological and Biomedical Engineering, Georgetown University, Washington, DC, United States
| |
Collapse
|
2
|
Zhu JG, Xie P, Zheng MD, Meng Y, Wei ML, Liu Y, Liu TW, Gong DQ. Dynamic changes in protein concentrations of keratins in crop milk and related gene expression in pigeon crops during different incubation and chick rearing stages. Br Poult Sci 2023; 64:100-109. [PMID: 36069156 DOI: 10.1080/00071668.2022.2119836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
1. The objective of this study was to examine the keratin composition of crop milk, the variation of epithelial thickness and keratin (K) gene expression in samples from young pigeon during incubation and chick rearing.2. Crop milk was collected from 1-, 3- and 5-day-old squab crops for keratin content analysis. Results showed that K4 accounted for the highest proportion of all detected keratins.3. In total, 42 pairs of adult pigeons were allocated to seven groups according to different stages to collect crop samples. Gene expression studies showed that the K3 gene expression was maximised at rearing Day 15 (15) and R1 in males and females, respectively. K6a gene level was the greatest at R15 in females, whereas it peaked at incubation Day 4 (I4) in males. The K12, K13, K23 and K80 gene levels were inhibited at the peak period of crop milk formation in comparison with I4. In females, K cochleal expression peaked at I10, whereas it was the greatest at R25 in males. K4 and K14 gene expression was the highest at I10 in females, while K4 and K14 were minimised at I17 and R7 in males, respectively. Gene expressions of K5, K8, K19 and K20 in males and K19 in females were maximised at R1. The K5, K20 and K75 gene levels in females peaked at R7. K75 and K8 expressions in males and females reached a maximum value at R25 and I17, respectively.4. The epithelial thickness of male and female crops reached their greatest levels at R1 and had the highest correlation with K19.5. These results emphasised the importance of keratinisation in crop milk formation, and different keratins probably play various roles during this period. The K19 was probably a marker for pigeon crop epithelium development. The sex of the parent pigeon affected keratin gene expression profiles.
Collapse
Affiliation(s)
- J G Zhu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huaian, Huaiyin, China
| | - P Xie
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huaian, Huaiyin, China
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huaian, Huaiyin, China
| | - M D Zheng
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Y Meng
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - M L Wei
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huaian, Huaiyin, China
| | - Y Liu
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huaian, Huaiyin, China
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huaian, Huaiyin, China
| | - T W Liu
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huaian, Huaiyin, China
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huaian, Huaiyin, China
| | - D Q Gong
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
3
|
Atigan A, Tan S, Cetin H, Guler OT, Ozdamar S, Karakaya YA. CD97 expression level and its effect on cell adhesion in Preeclampsia. BMC Pregnancy Childbirth 2022; 22:967. [PMID: 36572878 PMCID: PMC9791749 DOI: 10.1186/s12884-022-05280-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 12/02/2022] [Indexed: 12/27/2022] Open
Abstract
OBJECTIVES Cellular interactions and cell adhesion underlie preeclampsia (PE). The aim of the current study is to investigate the role of cell adhesion molecules such as CD97, neural (N)-cadherin, epithelial (E) -cadherin and integrin beta-4 in PE. METHODS This prospective study included 20 pregnant women with PE and a control group of 16 healthy pregnant women who were matched for age, gestational age, gravida and parity. Standard blood tests and placental cell adhesion molecule immunohistochemical staining were examined. RESULTS The creatinine, uric acid and lactate dehydrogenase (LDH) levels from standard blood tests were found to be statistically higher in the PE group (p = 0.002, p = 0.000, p = 0.001; respectively). In the PE group, the CD97 maternal serum level was statistically significantly lower, as was its immunohistochemical expression in placental sections (p = 0.028, p = 0.000; respectively). The E-cadherin expression score was statistically higher in the PE group compared to the control group (3,65 ± 1,84 vs 2,06 ± 1,76 respectively; p = 0.003). The N-cadherin expression score was statistically lower in the PE group compared to the control group (1,50 ± 0,82 vs 2,43 ± 1,59 respectively; p = 0.049). Integrin beta-4 was not statistically different between groups. CONCLUSIONS Cellular interaction may be responsible for PE as in cancer. A balance in intercellular communication, as researched in cancer therapy, may offer the solution in PE.
Collapse
Affiliation(s)
- Ayhan Atigan
- grid.440448.80000 0004 0384 3505Department of Obstetrics and Gynecology, Faculty of Medicine, Karabuk University, School of Medicine, Karabuk, Turkey
| | - Semih Tan
- grid.411742.50000 0001 1498 3798Department of Histology and Embryology, Faculty of Medicine, Pamukkale University, Denizli, Turkey
| | - Hulya Cetin
- grid.411742.50000 0001 1498 3798Department of Histology and Embryology, Faculty of Medicine, Pamukkale University, Denizli, Turkey
| | - Omer Tolga Guler
- grid.411742.50000 0001 1498 3798Department of Obstetrics and Gynecology, Faculty of Medicine, Pamukkale University, Denizli, Turkey
| | - Saim Ozdamar
- grid.411742.50000 0001 1498 3798Department of Histology and Embryology, Faculty of Medicine, Pamukkale University, Denizli, Turkey
| | - Yeliz Arman Karakaya
- grid.411742.50000 0001 1498 3798Department of Pathology, Faculty of Medicine, Pamukkale University, Denizli, Turkey
| |
Collapse
|
4
|
Yang HY, Jiang L. The involvement of long noncoding RNA APOA1-AS in the pathogenesis of preeclampsia. Hum Exp Toxicol 2022; 41:9603271211066586. [PMID: 35130745 DOI: 10.1177/09603271211066586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVE Long noncoding RNAs (lncRNAs) are involved in preeclampsia (PE), and apolipoprotein A-1 antisense RNA (APOA1-AS) and has been found to be associated with a number of diseases. Our study aims to understand the involvement of APOA1-AS in PE. METHODS Clinically, APOA1-AS expression in early-onset severe PE (EOSPE) patients and healthy controls was detected by real-time quantitative polymerase chain reaction. In vitro experiments were divided into control [coculturing trophoblasts with human uterine microvascular endothelial cells (UtMVECs)], TNF-α [coculturing trophoblasts with UtMVECs treated with tumor necrosis factor-α (TNF-α)], and TNF-α + control siRNA/APOA1-AS siRNA groups (UtMVECs transfected with control siRNA/APOA1-AS siRNA were cocultured with trophoblasts in the presence of TNF-α). The animals were divided into normal group, PE group (PE model was established by administrating nitro-L-arginine methyl ester (L-NAME) in rats), PE + control siRNA group (PE rats were treated with control siRNA), and PE + APOA1-AS siRNA group (PE rats were treated with APOA1-AS siRNA). RESULTS Increased APOA1-AS was found in the placental tissues of EOSPE patients. APOA1-AS siRNA abolished the decreased integration of trophoblasts into UtMVEC networks induced by TNF-α. Furthermore, APOA1-AS siRNA improved pregnancy outcomes in PE rats with increased expression of vascular endothelial growth factor, placental growth factor, and fms-like tyrosine kinase receptor (Flt-1) but decreased expression of E-cadherin, intercellular cell adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1). CONCLUSION Downregulation of APOA1-AS protected against TNF-α-induced inhibition of trophoblast integration into endothelial networks, thus exerting protective effects against PE rats.
Collapse
Affiliation(s)
- Hai-Yan Yang
- Department of Obstetrics, 519688Yantaishan Hospital, Yantai, China
| | - Ling Jiang
- Department of Obstetrics, 519688Yantaishan Hospital, Yantai, China
| |
Collapse
|
5
|
Panahabadi S, Heindel K, Mueller A, Holdenrieder S, Kipfmueller F. Increased circulating cytokeratin 19 fragment levels in preterm neonates receiving mechanical ventilation are associated with poor outcome. Am J Physiol Lung Cell Mol Physiol 2021; 321:L1036-L1043. [PMID: 34585605 DOI: 10.1152/ajplung.00176.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Invasive mechanical ventilation and oxygen toxicity are postnatal contributors to chronic lung disease of prematurity, also known as bronchopulmonary dysplasia (BPD). Cyfra 21-1 is a soluble fragment of cytokeratin 19, which belongs to the cytoskeleton stabilizing epithelial intermediate filaments. As a biomarker of structural integrity, Cyfra 21-1 might be associated with airway injury and lung hypoplasia in neonates. Serum Cyfra 21-1 concentrations for 80 preterm and 80 healthy term newborns were measured within 48 h after birth. Preterm infants with the combined endpoint BPD/mortality had significantly higher Cyfra 21-1 levels compared with those without fulfilling BPD/mortality criteria (P = 0.01). Also, severe RDS (>grade III) was associated with higher Cyfra levels (P = 0.01). Total duration of oxygen therapy was more than five times longer in neonates with high Cyfra 21-1 levels (P = 0.01). Infants with higher Cyfra 21-1 values were more likely to receive mechanical ventilation (50% vs. 17.5%). However, the duration of mechanical ventilation was similar between groups. The median Cyfra value was 1.93 ng/mL (IQR: 1.68-2.53 ng/mL) in healthy term neonates and 8.5 ng/mL (IQR: 3.6-16.0 ng/mL) in preterm infants. Using ROC analysis, we calculated a Cyfra cutoff > 8.5 ng/mL to predict BPD/death with an AUC of 0.795 (P = 0.004), a sensitivity of 88.9%, and a specificity of 55%. Mortality was predicted with a cutoff > 17.4 ng/mL (AUC: 0.94; P = 0.001), a sensitivity of 100%, and a specificity of 84%. These findings suggest that Cyfra 21-1 concentration might be useful to predict poor outcome in premature infants.
Collapse
Affiliation(s)
- Sarah Panahabadi
- Department of Neonatology and Pediatric Intensive Care, Children's Hospital, University of Bonn, Bonn, Germany.,Department of Neuroradiology, University Hospital Bonn, Bonn, Germany
| | - Katrin Heindel
- Department of Neonatology and Pediatric Intensive Care, Children's Hospital, University of Bonn, Bonn, Germany
| | - Andreas Mueller
- Department of Neonatology and Pediatric Intensive Care, Children's Hospital, University of Bonn, Bonn, Germany
| | - Stefan Holdenrieder
- Institute for Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany.,Institute for Laboratory Medicine, German Heart Center of the State of Bavaria and the Technical University Munich, Munich, Germany
| | - Florian Kipfmueller
- Department of Neonatology and Pediatric Intensive Care, Children's Hospital, University of Bonn, Bonn, Germany
| |
Collapse
|
6
|
Kang Q, Li W, Xiao J, Yu N, Fan L, Sha M, Ma S, Wu J, Chen S. Identification of potential crucial genes associated with early-onset preeclampsia via bioinformatic analysis. Pregnancy Hypertens 2021; 24:27-36. [PMID: 33640831 DOI: 10.1016/j.preghy.2021.02.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 01/04/2021] [Accepted: 02/16/2021] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Early-onset preeclampsia is a pregnancy complication associated with high maternal and perinatal morbidity, mortality. Intense efforts have been made to elucidate the pathogenesis, but the molecular mechanism is still elusive. This study aimed to identify potential key genes related to early-onset preeclampsia, and to obtain a better understanding of the molecular mechanisms of this disease. METHODS We performed a multi-step integrative bioinformatics analysis of microarray dataset GSE74341 downloaded from Gene Expression Omnibus (GEO) database including 7 early-onset preeclampsia and 5 gestational age matched normotensive controls. The differentially expressed genes (DEGs) were identified using the "limma" package, and their potential functions were predicted by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. Furthermore, the protein-protein interaction network (PPI) was obtained from the STRING database and the PPI network was visualized by Cytoscape software. Then, hub modules and hub genes were screened out from the PPI network, and enrichment analysis was performed for them. Also, validation of hub genes expression in early-onset PE was down by using microarray dataset GSE44711. RESULTS A total of 628 DEGs (256 down- and 372 up-regulated) were identified in early-onset PE compared to controls. A total of 4 significant hub modules and 26 significant hub genes were identified. CONCLUSION In conclusion, the DEGs related to cell-cell or cell-extracellular matrix interaction (ITGA5, SPP1, LUM, VCAN, APP), placenta metabolic or oxidative stress (CCR7, NT5E, CYBB) were predicted to be newly potential crucial genes that may play significant roles in the pathogenesis of early-onset PE.
Collapse
Affiliation(s)
- Qingling Kang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Wei Li
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Juan Xiao
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Nan Yu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Lei Fan
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Menghan Sha
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Songyan Ma
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Jianli Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Suhua Chen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China.
| |
Collapse
|
7
|
Zhou C, Song C, Huang X, Chen S, Long Y, Zeng S, Yang H, Jiang M. Early Prediction Model of Gestational Hypertension by Multi-Biomarkers Before 20 Weeks Gestation. Diabetes Metab Syndr Obes 2021; 14:2441-2451. [PMID: 34103953 PMCID: PMC8178612 DOI: 10.2147/dmso.s309725] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 04/28/2021] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND Gestational hypertension (GH), a hypertensive disorder of pregnancy (HDP), is a leading cause of maternal and fetal mortality due to the lack of clarity on its exact etiology and clinically feasible prediction models. This study was performed to discover novel biomarkers before 20 weeks gestation and thereby construct an early GH prediction model. METHODS This study was designed based on differentially expressed protein screening followed by clinical validation. In the screening phase, a nested case-controlled study was conducted by plasma proteomic analyses using label-free LC-MS/MS and plasma samples from seven pre-GH cases before 20-week gestation and seven age- and gestational week-matched controls. In the validation phase, 10 proteins with differential expression in the screening phase were validated by ELISA or electrochemiluminescence in an independent study consisting of 29 pre-GH cases before 20-week gestation and 29 matched controls. RESULTS In the screening phase, 149 proteins were found to be differentially expressed between the two groups and were predominantly involved in complement and coagulation cascades, platelet degranulation and positive regulation of cell motility. Further validation showed that serpin family C member 1 (SERPINC1), serpin family A member 5 (SERPINA5), complement factor H-related protein 5 (CFHR5), clusterin, cytokeratin 18 (CK18) and histidine-rich glycoprotein (HRG) levels were significantly higher in women who later developed GH compared to women with uncomplicated pregnancies (P<0.05). Binary logistic regression analysis was used to determine the combination efficacy of models for early prediction of GH. The model with a combination of SERPINC1, CK18 and HRG had a significantly better discriminatory power (AUC = 0.91, 95% CI 0.83-0.98) compared to the models with those proteins alone as independent predictors of GH. CONCLUSION Plasma levels of SERPINC1, SERPINA5, CFHR5, clusterin, CK18 and HRG are potential novel predictive biomarkers of GH, and a prediction model using a combination of SERPINC1, CK18 and HRG has good discriminatory performance for GH before 20 weeks gestation.
Collapse
Affiliation(s)
- Cheng Zhou
- Laboratory of Molecular Diagnostics, Southern Medical University Affiliated Maternal & Child Health Hospital of Foshan, Foshan, 528000, People’s Republic of China
| | - Chunlin Song
- Laboratory of Molecular Diagnostics, Southern Medical University Affiliated Maternal & Child Health Hospital of Foshan, Foshan, 528000, People’s Republic of China
| | - Xiang Huang
- Laboratory of Molecular Diagnostics, Southern Medical University Affiliated Maternal & Child Health Hospital of Foshan, Foshan, 528000, People’s Republic of China
| | - Shufen Chen
- Laboratory of Molecular Diagnostics, Southern Medical University Affiliated Maternal & Child Health Hospital of Foshan, Foshan, 528000, People’s Republic of China
| | - Yan Long
- Department of Laboratory, Guangzhou Women and Children’s Medical Centre, Guangzhou Medical University, Guangzhou, 510623, People’s Republic of China
| | - Shanshui Zeng
- Department of Laboratory, Guangzhou Women and Children’s Medical Centre, Guangzhou Medical University, Guangzhou, 510623, People’s Republic of China
| | - Hongling Yang
- Department of Laboratory, Guangzhou Women and Children’s Medical Centre, Guangzhou Medical University, Guangzhou, 510623, People’s Republic of China
- Correspondence: Hongling Yang; Min Jiang Department of Laboratory, Guangzhou Women and Children’s Medical Centre, Guangzhou Medical University, No. 9, Jinsui Road, Guangzhou, 510623, People’s Republic of ChinaTel +86-20-38857723; +86-20-38076256 Email ;
| | - Min Jiang
- Department of Laboratory, Guangzhou Women and Children’s Medical Centre, Guangzhou Medical University, Guangzhou, 510623, People’s Republic of China
| |
Collapse
|
8
|
Adu-Gyamfi EA, Czika A, Gorleku PN, Ullah A, Panhwar Z, Ruan LL, Ding YB, Wang YX. The Involvement of Cell Adhesion Molecules, Tight Junctions, and Gap Junctions in Human Placentation. Reprod Sci 2020; 28:305-320. [PMID: 33146876 DOI: 10.1007/s43032-020-00364-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 10/19/2020] [Indexed: 02/06/2023]
Abstract
Placentation is a major determinant of the success of pregnancy. It is regulated by several factors such as cell adhesion molecules, tight junctions, and gap junctions. The cell adhesion molecules are integrins, cadherins, immunoglobulins, nectins, and selectins. The tight junctions are composed of claudins, occludin, and junction adhesion molecule proteins while the gap junctions are composed of connexins of varying molecular weights. During placentation, some of these molecules regulate trophoblast proliferation, trophoblast fusion, trophoblast migration, trophoblast invasion, trophoblast-endothelium adhesion, glandular remodeling, and spiral artery remodeling. There is a dysregulated placental expression of some of these molecules during obstetric complications. We have, hereby, indicated the expression patterns of the subunits of each of these molecules in the various trophoblast subtypes and in the decidua, and have highlighted their involvement in physiological and pathological placentation. The available evidence points to the relevance of these molecules as distinguishing markers of the various trophoblast lineages and as potential therapeutic targets in the management of malplacentation-mediated diseases.
Collapse
Affiliation(s)
- Enoch Appiah Adu-Gyamfi
- Department of Reproductive Sciences, School of Basic Medicine, Chongqing Medical University, Chongqing, 400016, People's Republic of China.
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Box 197, No. 1 Yixueyuan Rd, Chongqing, 400016, People's Republic of China.
| | - Armin Czika
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Box 197, No. 1 Yixueyuan Rd, Chongqing, 400016, People's Republic of China
| | - Philip Narteh Gorleku
- Department of Medical Imaging, School of Medical Sciences, University of Cape Coast, Cape Coast, Republic of Ghana
| | - Amin Ullah
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Box 197, No. 1 Yixueyuan Rd, Chongqing, 400016, People's Republic of China
| | - Zulqarnain Panhwar
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Box 197, No. 1 Yixueyuan Rd, Chongqing, 400016, People's Republic of China
| | - Ling-Ling Ruan
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Box 197, No. 1 Yixueyuan Rd, Chongqing, 400016, People's Republic of China
| | - Yu-Bin Ding
- Department of Reproductive Sciences, School of Basic Medicine, Chongqing Medical University, Chongqing, 400016, People's Republic of China.
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Box 197, No. 1 Yixueyuan Rd, Chongqing, 400016, People's Republic of China.
| | - Ying-Xiong Wang
- Department of Reproductive Sciences, School of Basic Medicine, Chongqing Medical University, Chongqing, 400016, People's Republic of China.
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Box 197, No. 1 Yixueyuan Rd, Chongqing, 400016, People's Republic of China.
| |
Collapse
|
9
|
Drewlo S, Johnson E, Kilburn BA, Kadam L, Armistead B, Kohan-Ghadr HR. Irisin induces trophoblast differentiation via AMPK activation in the human placenta. J Cell Physiol 2020; 235:7146-7158. [PMID: 32020629 DOI: 10.1002/jcp.29613] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 01/22/2020] [Indexed: 12/15/2022]
Abstract
Irisin, an adipokine, regulates differentiation and phenotype in various cell types including myocytes, adipocytes, and osteoblasts. Circulating irisin concentration increases throughout human pregnancy. In pregnancy disorders such as preeclampsia and gestational diabetes mellitus, circulating irisin levels are reduced compared to healthy controls. To date, there are no data on the role and molecular function of irisin in the human placenta or its contribution to pathophysiology. Aberrant trophoblast differentiation is involved in the pathophysiology of preeclampsia. The current study aimed to assess the molecular effects of irisin on trophoblast differentiation and function. First-trimester placental explants were cultured and treated with low (10 nM) and high (50 nM) physiological doses of irisin. Treatment with irisin dose-dependently increased both in vitro placental outgrowth (on Matrigel™) and trophoblast cell-cell fusion. Adenosine monophosphate-activated protein kinase (AMPK) signaling, an important regulator of cellular energy homeostasis that is involved in trophoblast differentiation and pathology, was subsequently investigated. Here, irisin exposure induced placental AMPK activation. To determine the effects of irisin on trophoblast differentiation, two trophoblast-like cell lines, HTR-8/SVneo and BeWo, were treated with irisin and/or a specific AMPK inhibitor (Compound C). Irisin-induced AMPK phosphorylation in HTR-8/SVneo cells. Additionally, as part of the differentiation process, integrin switching from α6 to α1 occurred as well as increased invasiveness. Overall, irisin promoted differentiation in villous and extravillous cell-based models via AMPK pathway activation. These findings provide evidence that exposure to irisin promotes differentiation and improves trophoblast functions in the human placenta that are affected in abnormal placentation.
Collapse
Affiliation(s)
- Sascha Drewlo
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, Michigan
| | - Eugenia Johnson
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, Michigan
| | - Brian A Kilburn
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan
| | - Leena Kadam
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan
| | - Brooke Armistead
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, Michigan
| | - Hamid-Reza Kohan-Ghadr
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, Michigan
| |
Collapse
|
10
|
Zhu H, Niu X, Li Q, Zhao Y, Chen X, Sun H. Circ_0085296 suppresses trophoblast cell proliferation, invasion, and migration via modulating miR-144/E-cadherin axis. Placenta 2020; 97:18-25. [PMID: 32792057 DOI: 10.1016/j.placenta.2020.06.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 05/14/2020] [Accepted: 06/01/2020] [Indexed: 12/25/2022]
Abstract
BACKGROUND Circular RNAs (circRNAs) have been revealed to be important regulators in the biological behavior of cells, and aberrant circRNAs may be associated with the etiology of pre-eclampsia (PE). However, the role and underlying molecular mechanisms of circ_0085296 in PE remain unclear. METHODS The expression of circ_0085296, microRNA (miR)-144, and E-cadherin was detected using quantitative real-time polymerase chain reaction and western blot, respectively. Cell proliferation, migration, and invasion were analyzed by cell counting kit-8, colony formation and transwell assay. The interaction between miR-144 and circ_0085296 or E-cadherin was analyzed by the dual-luciferase reporter assay and pull-down assay. RESULTS Circ_0085296 was elevated in PE placental tissues, knockdown of circ_0085296 promoted trophoblast cell proliferation, invasion, and migration, while circ_0085296 up-regulation showed opposite effects. MiR-144 was down-regulated in PE placental tissues, and restoration of miR-144 induced proliferation, invasion, and migration in trophoblast cells. Further mechanistic analysis found miR-144 directly bound to circ_0085296 and E-cadherin, and circ_0085296 functioned as a sponge of miR-144 to regulate E-cadherin expression. Furthermore, miR-144 inhibition or E-cadherin overexpression attenuated the effectsof circ_0085296 on cell processes in trophoblast cells. CONCLUSION Circ_0085296 inhibited trophoblast cell proliferation, invasion, and migration via regulating miR-144/E-cadherin axis, providing a novel insight into the pathogenesis of PE and a new prospective therapeutic target for PE patients.
Collapse
Affiliation(s)
- Hailing Zhu
- Department of Pediatric, The Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| | - Xia Niu
- Department of Pediatric, The Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| | - Qinghua Li
- Department of Pediatric, The Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| | - Yuehua Zhao
- Department of Pediatric, The Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| | - Xue Chen
- Department of Pediatric, The Sunshine Union Hospital, Weifang, Shandong, China
| | - Hesheng Sun
- Department of Pediatric, The Sunshine Union Hospital, Weifang, Shandong, China.
| |
Collapse
|
11
|
Duan FM, Fu LJ, Wang YH, Adu-Gyamfi EA, Ruan LL, Xu ZW, Xiao SQ, Chen XM, Wang YX, Liu TH, Ding YB. THBS1 regulates trophoblast fusion through a CD36-dependent inhibition of cAMP, and its upregulation participates in preeclampsia. Genes Dis 2020; 8:353-363. [PMID: 33997182 PMCID: PMC8093648 DOI: 10.1016/j.gendis.2020.05.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 05/11/2020] [Accepted: 05/29/2020] [Indexed: 02/06/2023] Open
Abstract
Preeclampsia is a pregnancy complication which threatens the survival of mothers and fetuses. It originates from abnormal placentation, especially insufficient fusion of the cytotrophoblast cells to form the syncytiotrophoblast. In this study, we found that THBS1, a matricellular protein that mediates cell-to-cell and cell-to-matrix interactions, is downregulated during the fusion of primary cytotrophoblast and BeWo cells, but upregulated in the placenta of pregnancies complicated by preeclampsia. Also, THBS1 was observed to interact with CD36, a membrane signal receptor and activator of the cAMP signaling pathway, to regulate the fusion of cytotrophoblast cells. Overexpression of THBS1 inhibited the cAMP signaling pathway and reduced the BeWo cells fusion ratio, while the effects of THBS1 were abolished by a CD36-blocking antibody. Our results suggest that THBS1 signals through a CD36-mediated cAMP pathway to regulate syncytialization of the cytotrophoblast cells, and that its upregulation impairs placental formation to cause preeclampsia. Thus, THBS1 can serve as a therapeutic target regarding the mitigation of abnormal syncytialization and preeclampsia.
Collapse
Affiliation(s)
- Fu-Mei Duan
- School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, PR China
| | - Li-Juan Fu
- Department of Herbal Medicine, School of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, 400016, PR China
| | - Yong-Heng Wang
- The Joint International Research Laboratory of Reproduction and Development, Ministry of Education, Chongqing, 400016, PR China
| | - Enoch Appiah Adu-Gyamfi
- The Joint International Research Laboratory of Reproduction and Development, Ministry of Education, Chongqing, 400016, PR China
| | - Ling-Ling Ruan
- Department of Herbal Medicine, School of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, 400016, PR China
| | - Zeng-Wei Xu
- School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, PR China
| | - Shi-Quan Xiao
- The Joint International Research Laboratory of Reproduction and Development, Ministry of Education, Chongqing, 400016, PR China.,Department of Reproductive Medicine, The Third Affiliated Hospital, Chongqing Medical University, Chongqing, 401120, PR China
| | - Xue-Mei Chen
- School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, PR China.,The Joint International Research Laboratory of Reproduction and Development, Ministry of Education, Chongqing, 400016, PR China
| | - Ying-Xiong Wang
- School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, PR China.,The Joint International Research Laboratory of Reproduction and Development, Ministry of Education, Chongqing, 400016, PR China
| | - Tai-Hang Liu
- Department of Bioinformatics, The School of Basic Medicine, Chongqing Medical University, Chongqing, 400016, PR China.,The Joint International Research Laboratory of Reproduction and Development, Ministry of Education, Chongqing, 400016, PR China
| | - Yu-Bin Ding
- School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, PR China.,The Joint International Research Laboratory of Reproduction and Development, Ministry of Education, Chongqing, 400016, PR China
| |
Collapse
|
12
|
Lu W, Ma YY, Shao QQ, Liang J, Qi TT, Huang Y, Wang QJ. ROS/p53/miR‑335‑5p/Sp1 axis modulates the migration and epithelial to mesenchymal transition of JEG‑3 cells. Mol Med Rep 2019; 21:1208-1216. [PMID: 31894323 PMCID: PMC7003020 DOI: 10.3892/mmr.2019.10901] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 11/18/2019] [Indexed: 11/07/2022] Open
Abstract
Differential expression of microRNA (miR)-335-5p, a key tumor suppressor, has been detected in pre-eclampsia (PE) placentas. However, the role of miR-335-5p in the pathogenesis of PE and the factor modulating its aberrant expression remain unknown. The present study used JEG-3 cells in vitro to investigate these mechanisms. The role of miR-335-5p in proliferation, apoptosis and migration of JEG-3 cells was investigated using MTT, Annexin V-FITC/PI, Transwell migration and wound healing assays, respectively. miR-335-5p expression levels were analyzed using reverse transcription-quantitative PCR. The expression levels of E-cadherin, N-cadherin, Snail, specificity protein 1 (Sp1) and p53 were assessed using western blot analysis. Cell viability analysis was performed using the Cell Counting Kit-8 assay. The intracellular reactive oxygen species (ROS) levels were detected using a 2,7-dichlorodihydrofluorescein diacetate assay. The present results suggested that miR-335-5p did not affect the proliferation or apoptotic rate of JEG-3 cells. Overexpression of miR-335-5p significantly inhibited the migration of JEG-3 cells, decreased the expression levels of Sp1, N-cadherin and Snail, and increased E-cadherin expression. Sp1 silencing produced similar results in JEG-3 cells. H2O2 significantly increased the intracellular ROS levels and miR-335-5p expression, whereas N-acetyl-cysteine pretreatment prior to H2O2 treatment reversed the increases in miR-335-5p expression. Knockdown of p53 significantly decreased the expression levels of miR-335-5p in JEG-3 cells and in H2O2-treated cells. The present results suggested that miR-335-5p expression levels in trophoblast cells could be increased by ROS in a p53-dependent manner, leading to the downregulation of Sp1 and subsequent inhibition of epithelial to mesenchymal transition and cell migration. The present results may provide novel evidence on the etiology of PE.
Collapse
Affiliation(s)
- Wei Lu
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Yu-Yan Ma
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Qian-Qian Shao
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Institute of Basic Medical Sciences, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Jie Liang
- Central Sterile Supply Department, People's Hospital of Fangzi, Weifang, Shandong 261200, P.R. China
| | - Tong-Tong Qi
- School of Pharmaceutical Science, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Yi Huang
- School of Pharmaceutical Science, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Qing-Jie Wang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Institute of Basic Medical Sciences, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
13
|
Lin Q, Chen XY, Liu WF, Zhu PW, Shi WQ, Li B, Yuan Q, Min YL, Liu JM, Shao Y. Diagnostic value of CA-153 and CYFRA 21-1 in predicting intraocular metastasis in patients with metastatic lung cancer. Cancer Med 2019; 9:1279-1286. [PMID: 31218849 PMCID: PMC7013068 DOI: 10.1002/cam4.2354] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/26/2019] [Accepted: 06/02/2019] [Indexed: 12/22/2022] Open
Abstract
Lung cancer is prone to metastasis to various organs. Although intraocular metastasis (IOM) occurs at a later stage than metastasis to other organs, it often adversely affects the quality of life and suggests a poor prognosis. In this study, we selected 1608 patients with lung cancer who had metastasis to at least one site and explored clinical differences between those with IOM and non‐IOM (NIOM). An independent t test and chi‐squared test were used to analyze the clinical features of the patients. The statistically significant parameters were analyzed by binary logistic regression to determine the risk factors for IOM. A receiver operating characteristic curve was constructed to assess their diagnostic value in IOM. The results showed that no significant differences were noted in age, gender, and pathological type between the IOM and NIOM groups. However, the IOM group had higher levels of alpha‐fetoprotein, carcinoembryonic antigen, cancer antigen (CA)‐125, CA‐153, cytokeratin fragment 19 (CYFRA 21‐1), and total prostate‐specific antigen, compared with the NIOM group. Binary logistic regression indicated that CA‐153 and CYFRA 21‐1 were risk factors for IOM in patients with MLC (P < 0.05). Area under the curve of CA‐153, CYFRA 21‐1 and their combination were 0.791, 0.860, and 0.872 respectively. The cutoff values for CA‐153 and CYFRA 21‐1 were 22.2 U/mL and 6.785 ng/mL. In conclusion, both CA‐153 and CYFRA 21‐1 were independent risk factors for IOM in patients with metastatic lung cancer (MLC), whereas the combination of CA‐153 and CYFRA 21‐1 assessment yields the most value in the detection of IOM in patients with MLC.
Collapse
Affiliation(s)
- Qi Lin
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Ocular Disease Clinical Research Center, Nanchang, Jiangxi, People's Republic of China
| | - Xuan-Yin Chen
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Wen-Feng Liu
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Ocular Disease Clinical Research Center, Nanchang, Jiangxi, People's Republic of China
| | - Pei-Wen Zhu
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Ocular Disease Clinical Research Center, Nanchang, Jiangxi, People's Republic of China
| | - Wen-Qing Shi
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Ocular Disease Clinical Research Center, Nanchang, Jiangxi, People's Republic of China
| | - Biao Li
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Ocular Disease Clinical Research Center, Nanchang, Jiangxi, People's Republic of China
| | - Qing Yuan
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Ocular Disease Clinical Research Center, Nanchang, Jiangxi, People's Republic of China
| | - You-Lan Min
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Ocular Disease Clinical Research Center, Nanchang, Jiangxi, People's Republic of China
| | - Jia-Ming Liu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Yi Shao
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Ocular Disease Clinical Research Center, Nanchang, Jiangxi, People's Republic of China
| |
Collapse
|
14
|
Wan XP, Xie P, Bu Z, Zou XT, Gong DQ. Prolactin induces lipid synthesis of organ-cultured pigeon crops. Poult Sci 2019; 98:1842-1853. [PMID: 30590797 DOI: 10.3382/ps/pey540] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 12/01/2018] [Indexed: 12/29/2022] Open
Abstract
The objective of this research was to examine the effects of prolactin (PRL) on the lipid synthesis of organ-cultured pigeon crops in vitro. In experiment 1, the histology, activities of enzymes, and expression of genes involved in metabolism and apoptosis of organ-cultured pigeon crops were analyzed over a 7-d culture period. The results showed that cultured crops maintained their structural integrity for up to 3 d in vitro. Beyond 3 d, caspase-3 activity and Bak1 gene expression increased with day of culture, whereas the activities of succinate dehydrogenase, Na+-K+-ATPase, Ca2+-Mg2+-ATPase, total ATPase, and gene expression of Bcl-2 and CK-19 diminished (P < 0.05). In experiment 2, the crops were cultured for 24, 36, and 48 h in medium containing 0, 25, or 50 ng/mL PRL, respectively, and the accumulation of lipid droplets, lipid content, and expression of fatty acid transportation- and lipogenesis-related genes were analyzed. The results showed that the crops with PRL supplements showed higher amounts of lipid droplets than those of the controls, and the droplets were mainly located in the basal nutritive layer in response to PRL. The efficacy of inducing lipid accumulation increased as the concentration of PRL increased. Crops with 50 ng/mL PRL incubated for 36 h displayed the maximal lipid content. Increasing the concentration of PRL from 0 to 50 ng/mL resulted in a dose-dependent increase in the expression of acetyl-CoA carboxylase, fatty acid synthase, fatty acid translocase, fatty acid binding protein 5, acyl-CoA binding protein, and peroxisome proliferator-activated receptor γ genes after incubation for 36 h (P < 0.05). Therefore, our results indicated that the organ-cultured pigeon crops maintained good viability for up to 3 d in vitro. Furthermore, PRL induced the lipid synthesis of organ-cultured pigeon crops in a dose- and time-dependent manner, which was related to the increased expression of genes involved in fatty acid transportation and lipogenesis.
Collapse
Affiliation(s)
- X P Wan
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huaian 223300, China.,Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - P Xie
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huaian 223300, China.,College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Z Bu
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou 225125, China
| | - X T Zou
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - D Q Gong
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
15
|
Decreased expression of fibroblast growth factor 13 in early-onset preeclampsia is associated with the increased trophoblast permeability. Placenta 2018; 62:43-49. [DOI: 10.1016/j.placenta.2017.12.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 11/30/2017] [Accepted: 12/12/2017] [Indexed: 12/13/2022]
|
16
|
McNally R, Alqudah A, Obradovic D, McClements L. Elucidating the Pathogenesis of Pre-eclampsia Using In Vitro Models of Spiral Uterine Artery Remodelling. Curr Hypertens Rep 2017; 19:93. [PMID: 29063290 PMCID: PMC5653699 DOI: 10.1007/s11906-017-0786-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
PURPOSE OF REVIEW The aim of the study is to perform a critical assessment of in vitro models of pre-eclampsia using complementary human and cell line-based studies. Molecular mechanisms involved in spiral uterine artery (SUA) remodelling and trophoblast functionality will also be discussed. RECENT FINDINGS A number of proteins and microRNAs have been implicated as key in SUA remodelling, which could be explored as early biomarkers or therapeutic targets for prevention of pre-eclampsia. Various 2D and 3D in vitro models involving trophoblast cells, endothelial cells, immune cells and placental tissue were discussed to elucidate the pathogenesis of pre-eclampsia. Nevertheless, pre-eclampsia is a multifactorial disease, and the mechanisms involved in its pathogenesis are complex and still largely unknown. Further studies are required to provide better understanding of the key processes leading to inappropriate placental development which is the root cause of pre-eclampsia. This new knowledge could identify novel biomarkers and treatment strategies.
Collapse
Affiliation(s)
- Ross McNally
- Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Abdelrahim Alqudah
- Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Danilo Obradovic
- Institute of Pathology, University of Belgrade, Belgrade, 11,000, Serbia
| | - Lana McClements
- Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK.
| |
Collapse
|
17
|
Lan X, Fu LJ, Hu ZY, Feng Q, Liu XQ, Zhang X, Chen XM, He JL, Wang YX, Ding YB. Methylated oligonucleotide (MON)-induced promoter hypermethylation is associated with repression of CDH1 expression and contributes to the migration and invasion of human trophoblast cell lines. Reprod Fertil Dev 2017; 29:1509-1520. [PMID: 27439778 DOI: 10.1071/rd16031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 06/20/2016] [Indexed: 01/08/2023] Open
Abstract
DNA cytosine-5 methylation plays a vital role in regulating the expression of E-cadherin, which is encoded by the CDH1 gene. In this study, we characterised the DNA methylation and expression pattern of CDH1 in an extravillous trophoblast cell line (HTR-8/SVneo) and two trophoblast cell lines -- JEG-3 and JAR. Promoter hypermethylation with reduced E-cadherin expression in HTR-8/SVneo cells and promoter hypomethylation with increased E-cadherin expression in JEG-3 and JAR cells were observed. Demethylation treatment significantly restored E-cadherin expression, contributing to decreases in the motility and invasiveness of HTR-8/SVneo cells. Sense-methylated oligonucleotides (MONs) labelled with Cy5 and complementary to a region of the human CDH1 promoter were designed, with the cytosines in 5'-cytosine-phosphate-guanine-3' (CpG) dinucleotides being replaced by methylated cytosines. Following MON transfection into JEG-3 cells, the level of CDH1 promoter DNA methylation as well as cell motility and invasiveness were increased and gene expression was significantly repressed. Our results indicate that MON-mediated DNA methylation of the CDH1 promoter and subsequent alterations in gene expression may contribute to trophoblast motility and invasion, suggesting a potential method for controlling the biological function of trophoblasts in vitro through epigenetic modification.
Collapse
Affiliation(s)
- Xi Lan
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, No.1 Yixueyuan Rd, Chongqing, 400016, P.R. China
| | - Li-Juan Fu
- School of Traditional Chinese Medicine, Chongqing Medical University, No.1 Yixueyuan Rd, Chongqing, 400016, P.R. China
| | - Zhuo-Ying Hu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Rd, Chongqing, 400016, P.R. China
| | - Qian Feng
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, No.1 Yixueyuan Rd, Chongqing, 400016, P.R. China
| | - Xue-Qing Liu
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, No.1 Yixueyuan Rd, Chongqing, 400016, P.R. China
| | - Xue Zhang
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, No.1 Yixueyuan Rd, Chongqing, 400016, P.R. China
| | - Xue-Mei Chen
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, No.1 Yixueyuan Rd, Chongqing, 400016, P.R. China
| | - Jun-Lin He
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, No.1 Yixueyuan Rd, Chongqing, 400016, P.R. China
| | - Ying-Xiong Wang
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, No.1 Yixueyuan Rd, Chongqing, 400016, P.R. China
| | - Yu-Bin Ding
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, No.1 Yixueyuan Rd, Chongqing, 400016, P.R. China
| |
Collapse
|
18
|
Kuessel L, Zeisler H, Ristl R, Binder J, Pateisky P, Schmid M, Marschalek J, Perkmann T, Haslacher H, Husslein H. The usefulness of CYFRA 21-1 to diagnose and predict preeclampsia: a nested case-control study. BMC Pregnancy Childbirth 2016; 16:339. [PMID: 27809797 PMCID: PMC5096295 DOI: 10.1186/s12884-016-1132-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Accepted: 10/25/2016] [Indexed: 02/06/2023] Open
Abstract
Background The ability to identify patients at risk for developing preeclampsia is important for preventing morbidity and mortality in both the mother and child. Although CYFRA 21–1 (a fragment of Cytokeratin 19) is considered a promising biomarker for diagnosing preeclampsia, little is known regarding the levels of CYFRA 21–1 during pregnancy. Here, we measured serum CYFRA 21–1 levels in women with an uneventful pregnancy and in women whose pregnancy was complicated by preeclampsia. Furthermore we evaluated whether maternal CYFRA 21–1 levels can be used to predict and/or diagnose preeclampsia. Methods Longitudinal, sequential blood samples were collected prospectively at seven predetermined visits during pregnancy. Maternal CYFRA 21–1 levels were measured in 50 women with an uneventful pregnancy (control group) and in 10 asymptomatic women whose pregnancy was later complicated by preeclampsia (PE_long group). In addition, CYFRA 21–1 levels were measured from a single sample collected from a separate group of 50 pregnant women with symptomatic preeclampsia (PE_state group). Results The CYFRA 21–1 levels were significantly higher in the PE_state group compared to the control group (p < 0.001). In the PE_long group, CYFRA 21–1 levels were lower from gestational week 11 through 17, but were higher than the control group from gestational weeks 18 through 36. Out of the ROC curves that were calculated to investigate the predictive and diagnostic properties of CYFRA 21–1 levels for preeclampsia, the ROC curve for diagnosing preeclampsia in gestational week 28–32 showed the largest AUC of 0.92, at a cut-off point of 3.1 ng/ml, leading to sensitivity of 92 % and specificity of 80 %. Conclusions The elevated serum levels of CYFRA 21–1 observed in both groups of women with preeclampsia may reflect endothelial damage and/or dysfunction. Our results suggest that maternal serum CYFRA 21–1 is a promising biomarker for diagnosing preeclampsia. Although its value for predicting the long-term occurrence of subsequent preeclampsia may be limited, our findings indicate a trend towards elevated maternal CYFRA 21–1 levels preceding the short-term occurrence of preeclampsia in asymptomatic women. Additional prospective longitudinal studies are needed in order to determine the value of measuring maternal serum CYFRA 21–1 in predicting preeclampsia.
Collapse
Affiliation(s)
- Lorenz Kuessel
- Department of Gynecology and Obstetrics, Medical University of Vienna, Waehringerguertel 18-20, A-1090, Vienna, Austria
| | - Harald Zeisler
- Department of Gynecology and Obstetrics, Medical University of Vienna, Waehringerguertel 18-20, A-1090, Vienna, Austria.
| | - Robin Ristl
- Section for Medical Statistics, Center for Medical Statistics, Informatics, and Intelligent Systems, Medical University of Vienna, Vienna, Austria
| | - Julia Binder
- Department of Gynecology and Obstetrics, Medical University of Vienna, Waehringerguertel 18-20, A-1090, Vienna, Austria.,Fetal Medicine Unit, St George's Hospital, Blackshaw Road, London, SW17 0QT, UK
| | - Petra Pateisky
- Department of Gynecology and Obstetrics, Medical University of Vienna, Waehringerguertel 18-20, A-1090, Vienna, Austria
| | - Maximilian Schmid
- Department of Gynecology and Obstetrics, Medical University of Vienna, Waehringerguertel 18-20, A-1090, Vienna, Austria
| | - Julian Marschalek
- Department of Gynecology and Obstetrics, Medical University of Vienna, Waehringerguertel 18-20, A-1090, Vienna, Austria
| | - Thomas Perkmann
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Helmuth Haslacher
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Heinrich Husslein
- Department of Gynecology and Obstetrics, Medical University of Vienna, Waehringerguertel 18-20, A-1090, Vienna, Austria
| |
Collapse
|
19
|
Du L, Kuang L, He F, Tang W, Sun W, Chen D. Mesenchymal-to-epithelial transition in the placental tissues of patients with preeclampsia. Hypertens Res 2016; 40:67-72. [DOI: 10.1038/hr.2016.97] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Revised: 04/17/2016] [Accepted: 06/14/2016] [Indexed: 12/18/2022]
|
20
|
Costa MA. Scrutinising the regulators of syncytialization and their expression in pregnancy-related conditions. Mol Cell Endocrinol 2016; 420:180-93. [PMID: 26586208 DOI: 10.1016/j.mce.2015.11.010] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 11/05/2015] [Accepted: 11/09/2015] [Indexed: 12/16/2022]
Abstract
The placenta is important for the success of gestation and foetal development. In fact, this specialized pregnancy organ is essential for foetal nourishment, support, and protection. In the placenta, there are different cell populations, including four subtypes of trophoblasts. Cytotrophoblasts fuse and differentiate into the multinucleated syncytiotrophoblast (syncytialization). Syncytialization is a hallmark of placentation and is highly regulated by numerous molecules with distinct roles. Placentas from pregnancies complicated by preeclampsia, intrauterine growth restriction or trisomy 21 have been associated with a defective syncytialization and an altered expression of its modulators. This work proposes to review the molecules that promote or inhibit both fusion and biochemical differentiation of cytotrophoblasts. Moreover, it will also analyse the syncytialization modulators abnormally expressed in pathological placentas, highlighting the molecules that may contribute to the aetiology of these diseases.
Collapse
Affiliation(s)
- M A Costa
- Faculdade de Farmácia, Universidade do Porto, Porto, Portugal.
| |
Collapse
|
21
|
Zhang N, Wang WS, Li WJ, Liu C, Wang Y, Sun K. Reduction of progesterone, estradiol and hCG secretion by perfluorooctane sulfonate via induction of apoptosis in human placental syncytiotrophoblasts. Placenta 2015; 36:575-80. [PMID: 25748801 DOI: 10.1016/j.placenta.2015.02.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 02/12/2015] [Accepted: 02/14/2015] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Perfluorooctane sulfonate (PFOS) is widely used as surfactants, lubricants, adhesives, fire retardants and propellants. Animal experiments have shown that PFOS can potentially influence reproductive function. The objective of the present study was to investigate the effects of PFOS on the endocrine function of human placental syncytiotrophoblasts. METHODS Primary human placental cytotrophoblasts were isolated from term placenta. After syncytialization, the levels of aromatase and apoptosis-related proteins including caspase3, Bcl-2 and Bax were examined after treatment with PFOS from 0.0001 μM to 1 μM or PFOS (0.1 μM) in the presence and absence of apoptosis inhibitor Z-VAD-FMK (30 μM) for 24 h. RESULTS PFOS suppressed aromatase level and the secretion of estradiol, hCG and progesterone in a concentration-dependent manner from 0.0001 μM to 1 μM with a significant inhibition at 0.001 μM and above in human placental syncytiotrophoblasts. Furthermore PFOS reduced cell viability and induced apoptosis in human placental syncytiotrophoblasts as revealed by increases of pro-apoptosis proteins such as Bax and cleaved-caspase3, and decreases of pro-caspase3 and anti-apoptosis protein Bcl-2. The apoptosis induced by PFOS was further illustrated by increased DNA fragmentation and nuclear condensation. Blocking apoptosis with pan-caspase inhibitor Z-VAD-FMK, the impairment of placental endocrine function by PFOS was restored. DISCUSSION These results indicate that PFOS may disrupt the secretion of hCG, progesterone and estradiol by human placental syncytiotrophoblasts via induction of apoptosis.
Collapse
Affiliation(s)
- N Zhang
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, PR China; Department of Obstetrics and Gynecology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, PR China
| | - W S Wang
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, PR China
| | - W J Li
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, PR China
| | - C Liu
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, PR China
| | - Y Wang
- Department of Obstetrics and Gynecology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, PR China.
| | - K Sun
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, PR China.
| |
Collapse
|