1
|
MacDonald-Ramos K, Vega-Sánchez R. Maternal adiposity is associated with inflammatory gene expression in leukocytes at term human pregnancy: A pilot study. Mol Genet Genomic Med 2020; 9:e1570. [PMID: 33305914 PMCID: PMC8077112 DOI: 10.1002/mgg3.1570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 08/19/2020] [Accepted: 11/20/2020] [Indexed: 11/14/2022] Open
Abstract
Background Human labor is associated with an inflammatory process that takes place at the maternal–fetal interface, where leukocytes infiltrate and contribute to the local production of effector molecules such as cytokines, chemokines, MMPs, etc. This process may be altered by a low‐grade chronic inflammation, characteristic of obesity, resulting in adverse pregnancy outcomes. In this cross‐sectional pilot study, we analyzed the relationship between maternal adiposity and inflammation‐related gene expression in leukocytes from six healthy women with term pregnancies without labor. Methods We estimated maternal adiposity and examined the relative expression of 211 inflammation‐related genes in maternal peripheral blood leukocytes (MAT), placental intervillous blood leukocytes (PLA), and choriodecidual leukocytes (CHD) by real‐time qPCR. Finally, we analyzed the correlation between maternal adiposity and gene expression. Results Participants’ adiposity ranged from 27.6% to 61.1% (n = 6). The expression of 23 genes significantly differed (p < 0.05) in MAT, PLA, and CHD leukocytes, most of which code for chemokines and proinflammatory cytokines. Importantly, increasing maternal adiposity correlated (r > 0.7) mostly positively with the expression of genes related to activation, migration, infiltration, and proinflammation in MAT (36 genes) and PLA (31 genes). In contrast, in CHD leukocytes maternal adiposity correlated only negatively with seven genes, involved in migration and infiltration. Conclusion Our findings suggest that during term pregnancy, increased maternal adiposity may enhance the priming of peripheral leukocytes, while in choriodecidua it may alter leukocyte recruitment and proinflammatory activity. Maternal adiposity must be considered an important variable in further studies that analyze inflammation‐related gene expression in pregnant women.
Collapse
Affiliation(s)
- Karla MacDonald-Ramos
- Department of Nutrition and Bioprogramming, Instituto Nacional de Perinatologia, Mexico City, Mexico
| | - Rodrigo Vega-Sánchez
- Department of Nutrition and Bioprogramming, Instituto Nacional de Perinatologia, Mexico City, Mexico
| |
Collapse
|
2
|
Kupsco A, Gonzalez G, Baker BH, Knox JM, Zheng Y, Wang S, Chang D, Schwartz J, Hou L, Wang Y, Baccarelli AA. Associations of smoking and air pollution with peripheral blood RNA N 6-methyladenosine in the Beijing truck driver air pollution study. ENVIRONMENT INTERNATIONAL 2020; 144:106021. [PMID: 32791345 PMCID: PMC7572654 DOI: 10.1016/j.envint.2020.106021] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 07/25/2020] [Accepted: 07/27/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Post-transcriptional modifications of RNA constitute fundamental mechanisms of gene regulation. N6-methyladenosine (m6A) is critical for health and disease and is modulated by cellular stressors. However, associations between environmental exposures and m6A have not been studied in humans. We aimed to examine associations between tobacco smoking and particulate air pollution with m6A and mRNA expression levels of its reader, writer and eraser (RWE) genes in blood. METHODS Using the Beijing Truck Driver Air Pollution Study, we investigated global m6A in RNA from peripheral blood collected from 106 human subjects in Beijing, China, in 2008. We measured m6A with nano-flow liquid chromatography-tandem mass spectrometry and investigated gene expression of six m6A RWEs with real-time-quantitative PCR. Using linear models, we examined associations with smoking status, pack-years, and smoking on day of visit in men, and with environmental tobacco smoke in nonsmokers. We also examined associations with ambient PM10 (particulate matter ≤ 10 µm in diameter), and personal black carbon (BC) and PM2.5 measured with a portable monitor. RESULTS Smoking in men was significantly associated with a relative 10.7% decrease in global m6A levels in comparison to nonsmokers (p = 0.02). In men, smoking greater than 3.8 pack-years was associated with a 14.9% lower m6A than in nonsmokers. BC exposure trended towards positive associations with m6A (5.95% per 10 μg/m3 increase in BC; 95% CI: -0.96, 13.3). Global m6A levels were not correlated with RWE gene expression levels. No associations were detected between smoking or air pollutants and m6A RWE gene expression. DISCUSSION m6A was negatively associated with long-term smoking, yet positively associated with short-term BC exposure. These results indicate variable m6A responses to environmental stressors, providing early evidence into the impacts of toxicants on RNA modifications and suggesting potential for m6A as a biomarker or mechanism in environmental health research.
Collapse
Affiliation(s)
- Allison Kupsco
- Department of Environmental Health Sciences, Columbia Mailman School of Public Health, New York, NY, USA.
| | - Gwendolyn Gonzalez
- Environmental Toxicology Graduate Program and Department of Chemistry, University of California, Riverside, CA, USA
| | - Brennan H Baker
- Department of Environmental Health Sciences, Columbia Mailman School of Public Health, New York, NY, USA
| | - Julia M Knox
- Department of Environmental Health Sciences, Columbia Mailman School of Public Health, New York, NY, USA
| | - Yinan Zheng
- Department of Preventative Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Sheng Wang
- Department of Occupational and Environmental Health, Peking University Health Science Center; Beijing, China
| | - Dou Chang
- Department of Safety Engineering, China Institute of Industrial Relations, Beijing, China
| | - Joel Schwartz
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Lifang Hou
- Department of Preventative Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Yinsheng Wang
- Environmental Toxicology Graduate Program and Department of Chemistry, University of California, Riverside, CA, USA
| | - Andrea A Baccarelli
- Department of Environmental Health Sciences, Columbia Mailman School of Public Health, New York, NY, USA
| |
Collapse
|
3
|
Dessels C, Pepper MS. Reference Gene Expression in Adipose-Derived Stromal Cells Undergoing Adipogenic Differentiation. Tissue Eng Part C Methods 2019; 25:353-366. [PMID: 31062665 PMCID: PMC6589494 DOI: 10.1089/ten.tec.2019.0076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 05/06/2019] [Indexed: 02/07/2023] Open
Abstract
IMPACT STATEMENT As the use of adipose-derived stromal cells (ASCs) in clinical trials increases, so does the amount of experimental data from research groups, many of which use human ASCs to study adipogenesis in obesity. Different conditions are constantly being applied to ASCs in vitro, to obtain a therapeutic product for potential downstream applications. Few articles have looked at the effect of different conditions on ASC reference gene (RG) expression and stability, which was the aim of this research, as such this article will assist other researchers to make an informed decision about RG selection for gene expression studies using ASCs including those for adipogenesis.
Collapse
Affiliation(s)
- Carla Dessels
- Institute for Cellular and Molecular Medicine, Department of Immunology, and SAMRC Extramural Unit for Stem Cell Research and Therapy, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Michael Sean Pepper
- Institute for Cellular and Molecular Medicine, Department of Immunology, and SAMRC Extramural Unit for Stem Cell Research and Therapy, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
4
|
Reduction of HIP2 expression causes motor function impairment and increased vulnerability to dopaminergic degeneration in Parkinson's disease models. Cell Death Dis 2018; 9:1020. [PMID: 30282965 PMCID: PMC6170399 DOI: 10.1038/s41419-018-1066-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 08/29/2018] [Accepted: 09/10/2018] [Indexed: 11/08/2022]
Abstract
Huntingtin interaction protein 2 (HIP2) is an E2 ubiquitin-conjugating enzyme associated with neurodegenerative diseases, and HIP2 mRNA has been implicated as a potential blood biomarker for Parkinson's disease (PD). However, it is unclear whether the alteration of HIP2 expression may contribute to the development of PD, and whether the change of HIP2 in blood could reflect its expression in the brain or motor functions in PD patients. In this study, we established a mouse line with HIP2 haploinsufficiency. The reduction of the HIP2 expression led to spontaneous motor function impairment and dopaminergic neuronal loss. Furthermore, HIP2 haploinsufficiency increased the susceptibility of mice to 6-hydroxydopamine (6-OHDA) and caused severe loss of dopaminergic neurons. Interestingly, in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model for PD, we observed concurrent, highly correlated decrease of HIP2 expression in the brain and in the blood. Using blood samples from more than 300 patients, we validated the decreased HIP2 mRNA in PD patients, including de novo patients. Finally, in a 1-year, 20-patient study, we observed reversed blood HIP2 mRNA levels accompanying improved motor and overall daily functions in 75% of the PD patients with instructed Tai Chi training. Therefore, our in vivo studies have indicated HIP2 insufficiency as a contributing factor for PD, and functionally validated blood HIP2 as a useful and reversible biomarker for PD.
Collapse
|
5
|
β-glucuronidase use as a single internal control gene may confound analysis in FMR1 mRNA toxicity studies. PLoS One 2018; 13:e0192151. [PMID: 29474364 PMCID: PMC5825026 DOI: 10.1371/journal.pone.0192151] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 01/17/2018] [Indexed: 12/02/2022] Open
Abstract
Relationships between Fragile X Mental Retardation 1 (FMR1) mRNA levels in blood and intragenic FMR1 CGG triplet expansions support the pathogenic role of RNA gain of function toxicity in premutation (PM: 55–199 CGGs) related disorders. Real-time PCR (RT-PCR) studies reporting these findings normalised FMR1 mRNA level to a single internal control gene called β-glucuronidase (GUS). This study evaluated FMR1 mRNA-CGG correlations in 33 PM and 33 age- and IQ-matched control females using three normalisation strategies in peripheral blood mononuclear cells (PBMCs): (i) GUS as a single internal control; (ii) the mean of GUS, Eukaryotic Translation Initiation Factor 4A2 (EIF4A2) and succinate dehydrogenase complex flavoprotein subunit A (SDHA); and (iii) the mean of EIF4A2 and SDHA (with no contribution from GUS). GUS mRNA levels normalised to the mean of EIF4A2 and SDHA mRNA levels and EIF4A2/SDHA ratio were also evaluated. FMR1mRNA level normalised to the mean of EIF4A2 and SDHA mRNA levels, with no contribution from GUS, showed the most significant correlation with CGG size and the greatest difference between PM and control groups (p = 10−11). Only 15% of FMR1 mRNA PM results exceeded the maximum control value when normalised to GUS, compared with over 42% when normalised to the mean of EIF4A2 and SDHA mRNA levels. Neither GUS mRNA level normalised to the mean RNA levels of EIF4A2 and SDHA, nor to the EIF4A2/SDHA ratio were correlated with CGG size. However, greater variability in GUS mRNA levels were observed for both PM and control females across the full range of CGG repeat as compared to the EIF4A2/SDHA ratio. In conclusion, normalisation with multiple control genes, excluding GUS, can improve assessment of the biological significance of FMR1 mRNA-CGG size relationships.
Collapse
|
6
|
Olvera-García G, Aguilar-García T, Gutiérrez-Jasso F, Imaz-Rosshandler I, Rangel-Escareño C, Orozco L, Aguilar-Delfín I, Vázquez-Pérez JA, Zúñiga J, Pérez-Patrigeon S, Espinosa E. A transcriptome-based model of central memory CD4 T cell death in HIV infection. BMC Genomics 2016; 17:956. [PMID: 27875993 PMCID: PMC5120471 DOI: 10.1186/s12864-016-3308-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Accepted: 11/17/2016] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Human central memory CD4 T cells are characterized by their capacity of proliferation and differentiation into effector memory CD4 T cells. Homeostasis of central memory CD4 T cells is considered a key factor sustaining the asymptomatic stage of Human Immunodeficiency Virus type 1 (HIV-1) infection, while progression to acquired immunodeficiency syndrome is imputed to central memory CD4 T cells homeostatic failure. We investigated if central memory CD4 T cells from patients with HIV-1 infection have a gene expression profile impeding proliferation and survival, despite their activated state. METHODS Using gene expression microarrays, we analyzed mRNA expression patterns in naive, central memory, and effector memory CD4 T cells from healthy controls, and naive and central memory CD4 T cells from patients with HIV-1 infection. Differentially expressed genes, defined by Log2 Fold Change (FC) ≥ |0.5| and Log (odds) > 0, were used in pathway enrichment analyses. RESULTS Central memory CD4 T cells from patients and controls showed comparable expression of differentiation-related genes, ruling out an effector-like differentiation of central memory CD4 T cells in HIV infection. However, 210 genes were differentially expressed in central memory CD4 T cells from patients compared with those from controls. Expression of 75 of these genes was validated by semi quantitative RT-PCR, and independently reproduced enrichment results from this gene expression signature. The results of functional enrichment analysis indicated movement to cell cycle phases G1 and S (increased CCNE1, MKI67, IL12RB2, ADAM9, decreased FGF9, etc.), but also arrest in G2/M (increased CHK1, RBBP8, KIF11, etc.). Unexpectedly, the results also suggested decreased apoptosis (increased CSTA, NFKBIA, decreased RNASEL, etc.). Results also suggested increased IL-1β, IFN-γ, TNF, and RANTES (CCR5) activity upstream of the central memory CD4 T cells signature, consistent with the demonstrated milieu in HIV infection. CONCLUSIONS Our findings support a model where progressive loss of central memory CD4 T cells in chronic HIV-1 infection is driven by increased cell cycle entry followed by mitotic arrest, leading to a non-apoptotic death pathway without actual proliferation, possibly contributing to increased turnover.
Collapse
Affiliation(s)
- Gustavo Olvera-García
- Department of Research in Immunology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Calzada de Tlalpan 4502, Mexico City, Mexico
| | - Tania Aguilar-García
- Department of Research in Immunology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Calzada de Tlalpan 4502, Mexico City, Mexico
| | - Fany Gutiérrez-Jasso
- Department of Research in Immunology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Calzada de Tlalpan 4502, Mexico City, Mexico
| | - Iván Imaz-Rosshandler
- Computational Genomics Department, Instituto Nacional de Medicina Genómica, Periferico Sur 4809, Mexico City, Mexico
| | - Claudia Rangel-Escareño
- Computational Genomics Department, Instituto Nacional de Medicina Genómica, Periferico Sur 4809, Mexico City, Mexico
| | - Lorena Orozco
- Laboratory of Immunogenomics and Metabolic Diseases, Instituto Nacional de Medicina Genómica, Periferico Sur 4809, Mexico City, Mexico
| | - Irma Aguilar-Delfín
- Laboratory of Immunogenomics and Metabolic Diseases, Instituto Nacional de Medicina Genómica, Periferico Sur 4809, Mexico City, Mexico
| | - Joel A Vázquez-Pérez
- Department of Virology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Calzada de Tlalpan 4502, Mexico City, Mexico
| | - Joaquín Zúñiga
- Department of Research in Immunology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Calzada de Tlalpan 4502, Mexico City, Mexico
| | - Santiago Pérez-Patrigeon
- Infectious Immunopathogenesis Laboratory, Department of Infectious Diseases, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Avenida Vasco de Quiroga 15, Mexico City, Mexico
| | - Enrique Espinosa
- Department of Research in Immunology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Calzada de Tlalpan 4502, Mexico City, Mexico.
| |
Collapse
|
7
|
Menon R, Bonney EA, Condon J, Mesiano S, Taylor RN. Novel concepts on pregnancy clocks and alarms: redundancy and synergy in human parturition. Hum Reprod Update 2016; 22:535-60. [PMID: 27363410 DOI: 10.1093/humupd/dmw022] [Citation(s) in RCA: 175] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 05/16/2016] [Indexed: 12/19/2022] Open
Abstract
The signals and mechanisms that synchronize the timing of human parturition remain a mystery and a better understanding of these processes is essential to avert adverse pregnancy outcomes. Although our insights into human labor initiation have been informed by studies in animal models, the timing of parturition relative to fetal maturation varies among viviparous species, indicative of phylogenetically different clocks and alarms; but what is clear is that important common pathways must converge to control the birth process. For example, in all species, parturition involves the transition of the myometrium from a relaxed to a highly excitable state, where the muscle rhythmically and forcefully contracts, softening the cervical extracellular matrix to allow distensibility and dilatation and thus a shearing of the fetal membranes to facilitate their rupture. We review a number of theories promulgated to explain how a variety of different timing mechanisms, including fetal membrane cell senescence, circadian endocrine clocks, and inflammatory and mechanical factors, are coordinated as initiators and effectors of parturition. Many of these factors have been independently described with a focus on specific tissue compartments.In this review, we put forth the core hypothesis that fetal membrane (amnion and chorion) senescence is the initiator of a coordinated, redundant signal cascade leading to parturition. Whether modified by oxidative stress or other factors, this process constitutes a counting device, i.e. a clock, that measures maturation of the fetal organ systems and the production of hormones and other soluble mediators (including alarmins) and that promotes inflammation and orchestrates an immune cascade to propagate signals across different uterine compartments. This mechanism in turn sensitizes decidual responsiveness and eventually promotes functional progesterone withdrawal in the myometrium, leading to increased myometrial cell contraction and the triggering of parturition. Linkage of these processes allows convergence and integration of the gestational clocks and alarms, prompting a timely and safe birth. In summary, we provide a comprehensive synthesis of the mediators that contribute to the timing of human labor. Integrating these concepts will provide a better understanding of human parturition and ultimately improve pregnancy outcomes.
Collapse
Affiliation(s)
- Ramkumar Menon
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine and Perinatal Research, The University of Texas Medical Branch at Galveston, 301 University Blvd., MRB, Room 11.138, Galveston, TX 77555-1062, USA
| | - Elizabeth A Bonney
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Vermont College of Medicine, 792 College Parkway, Fanny Allen Campus, Suite 101, Colchester, Burlington, VT 05446, USA
| | - Jennifer Condon
- Department of Obstetrics and Gynecology, Wayne State University, Perinatal Research Branch, NICHD, Detroit, MI 48201, USA
| | - Sam Mesiano
- Department of Reproductive Biology and Obstetrics and Gynecology, Case Western Reserve University, 11100 Euclid Ave, Cleveland, OH 44106, USA
| | - Robert N Taylor
- Department of Obstetrics and Gynecology, Medical Center Boulevard, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| |
Collapse
|