1
|
Zhang S, Shi Y, Dong P. USP8 targeted by Mir-874-3p promotes trophoblastic cell invasion by stabilizing the expression of ENaC on trophoblast membrane. Hum Immunol 2023; 84:618-630. [PMID: 37741774 DOI: 10.1016/j.humimm.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 07/21/2023] [Accepted: 09/05/2023] [Indexed: 09/25/2023]
Abstract
The aim of this study was to investigate the role of ubiquitin-specific peptidase 8 (USP8) in human trophoblast cells and its molecular mechanism. Based on the GSE30186 dataset, USP8 was identified as a downregulated gene in pre-eclampsia (PE). Analysis of clinical samples also revealed that USP8 expression at both the mRNA and protein levels in placental tissue from patients with PE was significantly lower than that from healthy pregnant women. Plate clone formation, scratch-wound healing, Transwell, tubule formation, and western blot assays collectively revealed that USP8 overexpression promoted the proliferation, migration, invasion, and pro-angiogenesis function of trophoblast cells, while USP8 knockdown induced the opposite effects. Bioinformatics analysis and luciferase reporter assay results indicated that the 3' untranslated region of USP8 was targeted by miR-874-3p. USP8 expression in the placental tissue of patients with PE was significantly lower than that of healthy pregnant women. USP8 actively regulated the growth and invasion of human trophoblast cells and stabilized the epithelial sodium channel (ENaC) on the cell membrane. MiR-874 targeted USP8 in the trophoblast cells and upregulation of miR-874-3p resulted in a decrease in the proliferation, migration, invasion, and pro-angiogenesis ability of trophoblast cells. These results indicate that USP8 can reverse the above mentioned negative effects of miR-874-3p on trophoblast cells. USP8 targeted by miR-874-3p facilitates the invasion of trophoblastic cells by stabilizing the expression of the ENaC, which may be a possible therapeutic target for PE.
Collapse
Affiliation(s)
- Suqin Zhang
- Department of Maternity, Yantaishan Hospital, Yantai, Shandong, China.
| | - Yanmei Shi
- Department of Maternity, Yantaishan Hospital, Yantai, Shandong, China.
| | - Pingping Dong
- Department of Maternity, Yantaishan Hospital, Yantai, Shandong, China.
| |
Collapse
|
2
|
Zhao Y, Pasanen M, Rysä J. Placental ion channels: potential target of chemical exposure. Biol Reprod 2022; 108:41-51. [PMID: 36173899 PMCID: PMC9843680 DOI: 10.1093/biolre/ioac186] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 09/23/2022] [Accepted: 09/29/2022] [Indexed: 01/21/2023] Open
Abstract
The placenta is an important organ for the exchange of substances between the fetus and the mother, hormone secretion, and fetoplacental immunological defense. Placenta has an organ-specific distribution of ion channels and trophoblasts, and placental vessels express a large number of ion channels. Several placental housekeeping activities and pregnancy complications are at least partly controlled by ion channels, which are playing an important role in regulating hormone secretion, trophoblastic homeostasis, ion transport, and vasomotor activity. The function of several placental ion channels (Na, Ca, and Cl ion channels, cation channel, nicotinic acetylcholine receptors, and aquaporin-1) is known to be influenced by chemical exposure, i.e., their responses to different chemicals have been tested and confirmed in experimental models. Here, we review the possibility that placental ion channels are targets of toxicological concern in terms of placental function, fetal growth, and development.
Collapse
Affiliation(s)
- Yi Zhao
- Department of Obstetrics, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Markku Pasanen
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Jaana Rysä
- Correspondence: School of Pharmacy, University of Eastern Finland, POB 1627, Kuopio 70211, Finland. Tel: +358403552412; E-mail:
| |
Collapse
|
3
|
Fliedel L, Alhareth K, Mignet N, Fournier T, Andrieux K. Placental Models for Evaluation of Nanocarriers as Drug Delivery Systems for Pregnancy Associated Disorders. Biomedicines 2022; 10:936. [PMID: 35625672 PMCID: PMC9138319 DOI: 10.3390/biomedicines10050936] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/06/2022] [Accepted: 04/18/2022] [Indexed: 12/12/2022] Open
Abstract
Pregnancy-associated disorders affect around 20% of pregnancies each year around the world. The risk associated with pregnancy therapeutic management categorizes pregnant women as "drug orphan" patients. In the last few decades, nanocarriers have demonstrated relevant properties for controlled drug delivery, which have been studied for pregnancy-associated disorders. To develop new drug dosage forms it is mandatory to have access to the right evaluation models to ensure their usage safety and efficacy. This review exposes the various placental-based models suitable for nanocarrier evaluation for pregnancy-associated therapies. We first review the current knowledge about nanocarriers as drug delivery systems and how placenta can be used as an evaluation model. Models are divided into three categories: in vivo, in vitro, and ex vivo placental models. We then examine the recent studies using those models to evaluate nanocarriers behavior towards the placental barrier and which information can be gathered from these results. Finally, we propose a flow chart on the usage and the combination of models regarding the nanocarriers and nanoparticles studied and the intended therapeutic strategy.
Collapse
Affiliation(s)
- Louise Fliedel
- Unité de Technologies Chimiques et Biologiques Pour la Santé (UTCBS), Inserm U1267, CNRS UMR8258, Faculté de Pharmacie, Université de Paris Cité, 75006 Paris, France; (L.F.); (K.A.); (N.M.)
- Pathophysiology and Pharmacotoxicology of the Human Placenta, Pre and Postnatal Microbiota Unit (3PHM), Inserm U1139, Faculté de Pharmacie, Université de Paris Cité, 75006 Paris, France;
| | - Khair Alhareth
- Unité de Technologies Chimiques et Biologiques Pour la Santé (UTCBS), Inserm U1267, CNRS UMR8258, Faculté de Pharmacie, Université de Paris Cité, 75006 Paris, France; (L.F.); (K.A.); (N.M.)
| | - Nathalie Mignet
- Unité de Technologies Chimiques et Biologiques Pour la Santé (UTCBS), Inserm U1267, CNRS UMR8258, Faculté de Pharmacie, Université de Paris Cité, 75006 Paris, France; (L.F.); (K.A.); (N.M.)
| | - Thierry Fournier
- Pathophysiology and Pharmacotoxicology of the Human Placenta, Pre and Postnatal Microbiota Unit (3PHM), Inserm U1139, Faculté de Pharmacie, Université de Paris Cité, 75006 Paris, France;
| | - Karine Andrieux
- Unité de Technologies Chimiques et Biologiques Pour la Santé (UTCBS), Inserm U1267, CNRS UMR8258, Faculté de Pharmacie, Université de Paris Cité, 75006 Paris, France; (L.F.); (K.A.); (N.M.)
| |
Collapse
|
4
|
Li X, Li C, Wang Y, Cai J, Zhao L, Su Z, Ye H. IGFBP1 inhibits the invasion, migration, and apoptosis of HTR-8/SVneo trophoblast cells in preeclampsia. Hypertens Pregnancy 2022; 41:53-63. [PMID: 35168459 DOI: 10.1080/10641955.2022.2033259] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
OBJECTIVE To investigate the effects and underlying mechanisms of IGFBP1 on the biological functions of trophoblasts in simulated preeclampsia. METHODS IGFBP1 expression in placenta was determined by immunohistochemistry. HTR-8/SVneo cells were stimulated with/without IGFBP1-overexpression and hypoxia-reoxygenation, and the proliferation, invasion, migration, and apoptosis were detected by CCK8, transwell, and flow cytometry, respectively. RESULTS IGFBP1 expression was increased in placenta of preeclampsia. IGFBP1 overexpression inhibited proliferation, invasion, migration, and apoptosis of HTR-8/SVneo cells and induced MMP-26 expression with/without hypoxia-reoxygenation challenge. CONCLUSION IGFBP1 affects biological functions of trophoblasts, and it may play a role in pathophysiology of preeclampsia by inducing MMP-26.
Collapse
Affiliation(s)
- Xiujuan Li
- Department of Clinical Laboratory, Women and Children's Hospital, Xiamen University, School of Medicine, Xiamen, PR China
| | - Chenxi Li
- Department of Clinical Laboratory, Women and Children's Hospital, Xiamen University, School of Medicine, Xiamen, PR China
| | - Ye Wang
- Department of Clinical Laboratory, Women and Children's Hospital, Xiamen University, School of Medicine, Xiamen, PR China
| | - Jianxing Cai
- Department of Clinical Laboratory, Women and Children's Hospital, Xiamen University, School of Medicine, Xiamen, PR China
| | - Li Zhao
- School of Public Health, Xiamen University, Xiamen, PR China
| | - Zhiying Su
- Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, PR China
| | - Huiming Ye
- Department of Clinical Laboratory, Women and Children's Hospital, Xiamen University, School of Medicine, Xiamen, PR China
| |
Collapse
|
5
|
de Araújo TE, Milián ICB, de Souza G, da Silva RJ, Rosini AM, Guirelli PM, Franco PS, Barbosa BF, Ferro EAV, da Costa IN. Experimental models of maternal-fetal interface and their potential use for nanotechnology applications. Cell Biol Int 2020; 44:36-50. [PMID: 31469205 DOI: 10.1002/cbin.11222] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 08/22/2019] [Indexed: 01/24/2023]
Abstract
During pregnancy, the placenta regulates the transfer of oxygen, nutrients, and residual products between the maternal and fetal bloodstreams and is a key determinant of fetal exposure to xenobiotics from the mother. To study the disposition of substances through the placenta, various experimental models are used, especially the perfused placenta, placental villi explants, and cell lineage models. In this context, nanotechnology, an area of study that is on the rise, enables the creation of particles on nanometric scales capable of releasing drugs aimed at specific tissues. An important reason for furthering the studies on transplacental transfer is to explore the potential of nanoparticles (NPs), in new delivery strategies for drugs that are specifically aimed at the mother, the placenta, or the fetus and that involve less toxicity. Due to the fact that the placental barrier is essential for the interaction between the maternal and fetal organisms as well as the possibility of NPs being used in the treatment of various pathologies, the aim of this review is to present the main experimental models used in studying the maternal-fetal interaction and the action of NPs in the placental environment.
Collapse
Affiliation(s)
- Thádia Evelyn de Araújo
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Science, Federal University of Uberlândia, Uberlândia, Brazil
| | - Iliana Claudia Balga Milián
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Science, Federal University of Uberlândia, Uberlândia, Brazil
| | - Guilherme de Souza
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Science, Federal University of Uberlândia, Uberlândia, Brazil
| | - Rafaela José da Silva
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Science, Federal University of Uberlândia, Uberlândia, Brazil
| | - Alessandra Monteiro Rosini
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Science, Federal University of Uberlândia, Uberlândia, Brazil
| | - Pâmela Mendonça Guirelli
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Science, Federal University of Uberlândia, Uberlândia, Brazil
| | - Priscila Silva Franco
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Science, Federal University of Uberlândia, Uberlândia, Brazil
| | - Bellisa Freitas Barbosa
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Science, Federal University of Uberlândia, Uberlândia, Brazil
| | - Eloisa Amália Vieira Ferro
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Science, Federal University of Uberlândia, Uberlândia, Brazil
| | - Idessania Nazareth da Costa
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Science, Federal University of Uberlândia, Uberlândia, Brazil.,Laboratory of Parasitology, Department of Pathological Sciences, Center of Biological Sciences, State University of Londrina, Londrina, Brazil
| |
Collapse
|
6
|
Estradiol promotes trophoblast viability and invasion by activating SGK1. Biomed Pharmacother 2019; 117:109092. [DOI: 10.1016/j.biopha.2019.109092] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 05/24/2019] [Accepted: 06/04/2019] [Indexed: 01/02/2023] Open
|
7
|
Li X, Wu C, Shen Y, Wang K, Tang L, Zhou M, Yang M, Pan T, Liu X, Xu W. Ten-eleven translocation 2 demethylates the MMP9 promoter, and its down-regulation in preeclampsia impairs trophoblast migration and invasion. J Biol Chem 2018; 293:10059-10070. [PMID: 29773648 DOI: 10.1074/jbc.ra117.001265] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 04/22/2018] [Indexed: 12/24/2022] Open
Abstract
Preeclampsia is the most common clinical disorder in pregnancy and might result from disordered uterine environments caused by epigenetic modifications, including deregulation of DNA methylation/demethylation. Recent research has indicated that 5-hydroxymethylcytosine (5hmC), a DNA base derived from 5-methylcytosine (5mC) via oxidation by ten-eleven translocation (TET) enzymes, is involved in DNA methylation-related plasticity. Here, we report that TET2 expression and 5hmC abundance are significantly altered in the placentas from preeclampsia patients. shRNA-mediated TET2 knockdown (shTET2) reduced trophoblast migration and invasion when cultured in Matrigel. Both real-time PCR of matrix metalloproteinase (MMP)-related transcripts and a human angiogenesis antibody array indicated that TET2 knockdown in trophoblasts inhibits the expression of MMP transcript, of which MMP9 represented one of the most significant TET2 downstream targets. Using an established shTET2 HTR-8/SVneo cell model, we further confirmed alterations of 5hmC levels and MMP9 expression at both mRNA and protein levels. In particular, we found that TET2 bound to and removed 5mC modifications at the MMP9 promoter region. Interestingly, in TET2 knockdown cells, both MMP9 expression and the compromised trophoblast phenotype could be rescued by vitamin C, an activator of TET enzyme activity. Finally, TET2 expression correlated with MMP9 levels in placenta samples from the preeclampsia patients, indicating that TET2 deregulation is critically involved in the pathogenesis of preeclampsia through down-regulation of MMP9 expression. Our findings highlight a critical role of TET2 in regulating trophoblast cell migration through demethylation at the MMP9 promoter, and suggest that down-regulation of the TET2-MMP9-mediated pathway contributes to preeclampsia pathogenesis.
Collapse
Affiliation(s)
- Xiaoliang Li
- From the Joint Laboratory of Reproductive Medicine, SCU-CUHK, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, China.,Department of Obstetric and Gynecologic Diseases, West China Second University Hospital, Sichuan University, Chengdu 610041, China, and.,Key Laboratory of Southwest China Wildlife Resource Conservation (China West Normal University), Ministry of Education, Nanchong 637009 China
| | - Chunlian Wu
- Key Laboratory of Southwest China Wildlife Resource Conservation (China West Normal University), Ministry of Education, Nanchong 637009 China
| | - Ying Shen
- From the Joint Laboratory of Reproductive Medicine, SCU-CUHK, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, China.,Department of Obstetric and Gynecologic Diseases, West China Second University Hospital, Sichuan University, Chengdu 610041, China, and
| | - Ke Wang
- From the Joint Laboratory of Reproductive Medicine, SCU-CUHK, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, China.,Department of Obstetric and Gynecologic Diseases, West China Second University Hospital, Sichuan University, Chengdu 610041, China, and
| | - Li Tang
- From the Joint Laboratory of Reproductive Medicine, SCU-CUHK, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, China.,Department of Obstetric and Gynecologic Diseases, West China Second University Hospital, Sichuan University, Chengdu 610041, China, and
| | - Mi Zhou
- From the Joint Laboratory of Reproductive Medicine, SCU-CUHK, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, China.,Department of Obstetric and Gynecologic Diseases, West China Second University Hospital, Sichuan University, Chengdu 610041, China, and
| | - Ming Yang
- From the Joint Laboratory of Reproductive Medicine, SCU-CUHK, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, China.,Department of Obstetric and Gynecologic Diseases, West China Second University Hospital, Sichuan University, Chengdu 610041, China, and
| | - Tianying Pan
- From the Joint Laboratory of Reproductive Medicine, SCU-CUHK, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, China.,Department of Obstetric and Gynecologic Diseases, West China Second University Hospital, Sichuan University, Chengdu 610041, China, and
| | - Xinghui Liu
- Department of Obstetric and Gynecologic Diseases, West China Second University Hospital, Sichuan University, Chengdu 610041, China, and
| | - Wenming Xu
- From the Joint Laboratory of Reproductive Medicine, SCU-CUHK, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, China, .,Department of Obstetric and Gynecologic Diseases, West China Second University Hospital, Sichuan University, Chengdu 610041, China, and
| |
Collapse
|
8
|
Zhang Y, Liu H, Shi X, Qiao F, Zeng W, Feng L, Deng D, Liu H, Wu Y. Maspin impairs the function of endothelial cells: an implying pathway of preeclampsia. BMC Pregnancy Childbirth 2017; 17:328. [PMID: 28962595 PMCID: PMC5622509 DOI: 10.1186/s12884-017-1525-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 09/20/2017] [Indexed: 12/30/2022] Open
Abstract
Backgroud Widespread endothelial injury contributes to the occurrence of preeclampsia. Maspin, first identified as a tumor suppressor, plays a critical role in cell invasion and angiogenesis. Our previous studies found that the expression of maspin was increased in preeclampsic placenta. In this research, we studied the function of human umbilical vein endothelial cells (HUVECs) to explore the role and possible mechanism of maspin gene in the pathogenesis of preeclampsia. Methods HUVECs were treated with different concentration of recombinant human maspin protein (r-maspin) during normoxia and hypoxia, we detected the proliferation, apoptosis, migration and tube formation of HUVECs. We also assessed nitride oxide (NO) synthesis and the expression of matrix metalloproteinase 2 (MMP2) to further explore the underlying molecular mechanism. Results There was only slight maspin expression at mRNA level in HUVECs. Treated HUVECs with r-maspin, the proliferation of HUVECs was significantly promoted both under normoxia and hypoxia. The tubes formed by HUVECs were significantly inhibited and NO synthesis was significantly reduced by r-maspin. Meantime, r-maspin also inhibited MMP2 expression and activity in HUVECs. However, there was no significant change in the migration and apoptosis of HUVECs. Conclusions Maspin may be an important participant for mediating endothelial function and ultimately leads to the occurence of preeclamsia.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hao Liu
- Department of Urology, Wuhan Third Hospital, Guanggu on campus, Wuhan, Hubei, China
| | - Xinwei Shi
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Fuyuan Qiao
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wanjiang Zeng
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ling Feng
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Dongrui Deng
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Haiyi Liu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yuanyuan Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
9
|
Potential Roles of Amiloride-Sensitive Sodium Channels in Cancer Development. BIOMED RESEARCH INTERNATIONAL 2016; 2016:2190216. [PMID: 27403419 PMCID: PMC4926023 DOI: 10.1155/2016/2190216] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 04/18/2016] [Accepted: 05/23/2016] [Indexed: 12/15/2022]
Abstract
The ENaC/degenerin ion channel superfamily includes the amiloride-sensitive epithelial sodium channel (ENaC) and acid sensitive ionic channel (ASIC). ENaC is a multimeric ion channel formed by heteromultimeric membrane glycoproteins, which participate in a multitude of biological processes by mediating the transport of sodium (Na+) across epithelial tissues such as the kidney, lungs, bladder, and gut. Aberrant ENaC functions contribute to several human disease states including pseudohypoaldosteronism, Liddle syndrome, cystic fibrosis, and salt-sensitive hypertension. Increasing evidence suggests that ion channels not only regulate ion homeostasis and electric signaling in excitable cells but also play important roles in cancer cell behaviors such as proliferation, apoptosis, invasion, and migration. Indeed, ENaCs/ASICs had been reported to be associated with cancer characteristics. Given their cell surface localization and pharmacology, pharmacological strategies to target ENaC/ASIC family members may be promising cancer therapeutics.
Collapse
|
10
|
Zheng Y, Zhao Y, Luo Q, Liu X, Liu X, Hu Y, Zou L. Edaravone protects against cobalt chloride-induced dysfunctions in apoptosis and invasion in trophoblast cells. Mol Reprod Dev 2016; 83:576-87. [PMID: 27128210 DOI: 10.1002/mrd.22652] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 04/24/2016] [Indexed: 12/24/2022]
Affiliation(s)
- YanFang Zheng
- Department of Obstetrics and Gynecology; Union Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan Hubei Province China
| | - Yin Zhao
- Department of Obstetrics and Gynecology; Union Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan Hubei Province China
| | - QingQing Luo
- Department of Obstetrics and Gynecology; Union Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan Hubei Province China
| | - XiaoXia Liu
- Department of Obstetrics and Gynecology; Union Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan Hubei Province China
| | - XiaoPing Liu
- Department of Obstetrics and Gynecology; Union Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan Hubei Province China
| | - Ying Hu
- Department of Obstetrics and Gynecology; Union Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan Hubei Province China
| | - Li Zou
- Department of Obstetrics and Gynecology; Union Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan Hubei Province China
| |
Collapse
|