1
|
Chiarello DI, Ustáriz J, Marín R, Carrasco-Wong I, Farías M, Giordano A, Gallardo FS, Illanes SE, Gutiérrez J. Cellular mechanisms linking to outdoor and indoor air pollution damage during pregnancy. Front Endocrinol (Lausanne) 2023; 14:1084986. [PMID: 36875486 PMCID: PMC9974835 DOI: 10.3389/fendo.2023.1084986] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/30/2023] [Indexed: 02/17/2023] Open
Abstract
Pregnancies are a critical window period for environmental influences over the mother and the offspring. There is a growing body of evidence associating indoor and outdoor air pollution exposure to adverse pregnancy outcomes such as preterm birth and hypertensive disorders of pregnancy. Particulate matter (PM) could trigger oxi-inflammation and could also reach the placenta leading to placental damage with fetal consequences. The combination of strategies such as risk assessment, advise about risks of environmental exposures to pregnant women, together with nutritional strategies and digital solutions to monitor air quality can be effective in mitigating the effects of air pollution during pregnancy.
Collapse
Affiliation(s)
- Delia I. Chiarello
- Cellular Signaling and Differentiation Laboratory (CSDL), School of Medical Technology, Faculty of Medicine and Science, Universidad San Sebastián, Santiago, Chile
| | - Javier Ustáriz
- Department of Chemical and Bioprocess Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Reinaldo Marín
- Center for Biophysics and Biochemistry (CBB), Venezuelan Institute for Scientific Research (IVIC), Caracas, Venezuela
| | - Ivo Carrasco-Wong
- Cellular Signaling and Differentiation Laboratory (CSDL), School of Medical Technology, Faculty of Medicine and Science, Universidad San Sebastián, Santiago, Chile
| | - Marcelo Farías
- Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Ady Giordano
- Inorganic Chemistry Department, Faculty of Chemistry and of Pharmacy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Felipe S. Gallardo
- Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Sebastián E. Illanes
- Reproductive Biology Program, Center for Biomedical Research and Innovation (CiiB), Universidad de los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
- Department of Obstetrics and Gynecology, Faculty of Medicine, Universidad de los Andes, Santiago, Chile
| | - Jaime Gutiérrez
- Cellular Signaling and Differentiation Laboratory (CSDL), School of Medical Technology, Faculty of Medicine and Science, Universidad San Sebastián, Santiago, Chile
| |
Collapse
|
2
|
Bonney EA, Johnson MR. The role of maternal T cell and macrophage activation in preterm birth: Cause or consequence? Placenta 2019; 79:53-61. [PMID: 30929747 DOI: 10.1016/j.placenta.2019.03.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 03/06/2019] [Indexed: 12/18/2022]
Abstract
The role of the immune system in term (TL) and preterm labor (PTL) is unknown. Despite the fact that globally, PTL remains the most important cause of childhood mortality. Infection, typically of the fetal membranes, termed chorioamnionitis, is the best-understood driver of PTL, but the mechanisms underpinning other causes, including idiopathic and stretch-induced PTL, are unclear, but may well involve activation of the maternal immune system. The final common pathway of placental dysfunction, fetal membrane rupture, cervical dilation and uterine contractions are highly complex processes. At term, choriodecidual rather than myometrial inflammation is thought to drive the onset of labor and similar findings are present in different types of PTL including idiopathic PTL. Although accumulated data has confirmed an association between the immune response and preterm birth, there is yet a need to understand if this response is an initiator or a consequence of tissue-level dysregulation. This review focuses on the potential role of macrophages and T cells in innate and adaptive immunity relevant to preterm birth in humans and animal models.
Collapse
Affiliation(s)
- Elizabeth A Bonney
- Department of Obstetrics, Gynecology and Reproductive Sciences University of Vermont, Larner College of Medicine, Burlington, VT, USA.
| | - Mark R Johnson
- Faculty of Medicine, Department of Surgery & Cancer, Imperial College, London, United Kingdom
| |
Collapse
|
3
|
Majewska M, Lipka A, Paukszto L, Jastrzebski JP, Gowkielewicz M, Jozwik M, Majewski MK. Preliminary RNA-Seq Analysis of Long Non-Coding RNAs Expressed in Human Term Placenta. Int J Mol Sci 2018; 19:ijms19071894. [PMID: 29954144 PMCID: PMC6073670 DOI: 10.3390/ijms19071894] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 06/24/2018] [Indexed: 12/20/2022] Open
Abstract
Development of particular structures and proper functioning of the placenta are under the influence of sophisticated pathways, controlled by the expression of substantial genes that are additionally regulated by long non-coding RNAs (lncRNAs). To date, the expression profile of lncRNA in human term placenta has not been fully established. This study was conducted to characterize the lncRNA expression profile in human term placenta and to verify whether there are differences in the transcriptomic profile between the sex of the fetus and pregnancy multiplicity. RNA-Seq data were used to profile, quantify, and classify lncRNAs in human term placenta. The applied methodology enabled detection of the expression of 4463 isoforms from 2899 annotated lncRNA loci, plus 990 putative lncRNA transcripts from 607 intergenic regions. Those placentally expressed lncRNAs displayed features such as shorter transcript length, longer exon length, fewer exons, and lower expression levels compared to messenger RNAs (mRNAs). Among all placental transcripts, 175,268 were classified as mRNAs and 15,819 as lncRNAs, and 56,727 variants were discovered within unannotated regions. Five differentially expressed lncRNAs (HAND2-AS1, XIST, RP1-97J1.2, AC010084.1, TTTY15) were identified by a sex-bias comparison. Splicing events were detected within 37 genes and 4 lncRNA loci. Functional analysis of cis-related potential targets for lncRNAs identified 2021 enriched genes. It is presumed that the obtained data will expand the current knowledge of lncRNAs in placenta and human non-coding catalogs, making them more contemporary and specific.
Collapse
Affiliation(s)
- Marta Majewska
- Department of Human Physiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland.
| | - Aleksandra Lipka
- Department of Gynecology and Obstetrics, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-045 Olsztyn, Poland.
| | - Lukasz Paukszto
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland.
| | - Jan Pawel Jastrzebski
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland.
| | - Marek Gowkielewicz
- Department of Gynecology and Obstetrics, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-045 Olsztyn, Poland.
| | - Marcin Jozwik
- Department of Gynecology and Obstetrics, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-045 Olsztyn, Poland.
| | - Mariusz Krzysztof Majewski
- Department of Human Physiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland.
| |
Collapse
|
4
|
Chiarello DI, Salsoso R, Toledo F, Mate A, Vázquez CM, Sobrevia L. Foetoplacental communication via extracellular vesicles in normal pregnancy and preeclampsia. Mol Aspects Med 2017; 60:69-80. [PMID: 29222068 DOI: 10.1016/j.mam.2017.12.002] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 11/28/2017] [Accepted: 12/04/2017] [Indexed: 02/06/2023]
Abstract
Intercellular communication is a critical process in biological mechanisms. During pregnancy foetoplacental tissues release a heterogeneous group of extracellular vesicles (EVs) that include exosomes, microvesicles, apoptotic bodies, and syncytial nuclear aggregates. These vesicles contain a complex cargo (proteins, DNA, mRNA transcripts, microRNAs, noncoding RNA, lipids, and other molecules) that actively participate in the maternal-foetal communication by modulating different processes during gestation for a successful foetal development. Each stage of human gestation is marked by events such as immunomodulation, proliferation, invasion, migration, and differentiation, among others, requiring EVs-mediated signalling to be nearby or distant target cells. Furthermore, EVs also associate with pregnancy pathologies such as preeclampsia and intrauterine growth restriction. This review addresses the role of EVs in human foetomaternal communication in normal pregnancy and preeclampsia.
Collapse
Affiliation(s)
- Delia I Chiarello
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile.
| | - Rocío Salsoso
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla, Seville E-41012, Spain
| | - Fernando Toledo
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; Department of Basic Sciences, Faculty of Sciences, Universidad Del Bío-Bío, Chillán 3780000, Chile
| | - Alfonso Mate
- Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla, Seville E-41012, Spain
| | - Carmen M Vázquez
- Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla, Seville E-41012, Spain
| | - Luis Sobrevia
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla, Seville E-41012, Spain; University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine and Biomedical Sciences, University of Queensland, Herston, QLD 4029 Queensland, Australia.
| |
Collapse
|
5
|
The minor histocompatibility antigen 1 (HMHA1)/ArhGAP45 is a RacGAP and a novel regulator of endothelial integrity. Vascul Pharmacol 2017; 101:38-47. [PMID: 29174013 DOI: 10.1016/j.vph.2017.11.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 11/14/2017] [Accepted: 11/18/2017] [Indexed: 12/25/2022]
Abstract
Endothelial cells line the vasculature and act as gatekeepers that control the passage of plasma, macromolecules and cells from the circulation to the interstitial space. Dysfunction of the endothelial barrier can lead to uncontrolled leak or edema. Vascular leakage is a hallmark of a range of diseases and despite its large impact no specialized therapies are available to prevent or reduce it. RhoGTPases are known key regulators of cellular behavior that are directly involved in the regulation of the endothelial barrier. We recently performed a comprehensive analysis of the effect of all RhoGTPases and their regulators on basal endothelial integrity. In addition to novel positive regulators of endothelial barrier function, we also identified novel negative regulators, of which the ArhGAP45 (also known as HMHA1) was the most significant. We now demonstrate that ArhGAP45 acts as a Rac-GAP (GTPase-Activating Protein) in endothelial cells, which explains its negative effect on endothelial barrier function. Silencing ArhGAP45 not only promotes basal endothelial barrier function, but also increases cellular surface area and induces sprout formation in a 3D-fibrin matrix. Our data further shows that loss of ArhGAP45 promotes migration and shear stress adaptation. In conclusion, we identify ArhGAP45 (HMHA1) as a novel regulator, which contributes to the fine-tuning of the regulation of basal endothelial integrity.
Collapse
|
6
|
Alam SMK, Jasti S, Kshirsagar SK, Tannetta DS, Dragovic RA, Redman CW, Sargent IL, Hodes HC, Nauser TL, Fortes T, Filler AM, Behan K, Martin DR, Fields TA, Petroff BK, Petroff MG. Trophoblast Glycoprotein (TPGB/5T4) in Human Placenta: Expression, Regulation, and Presence in Extracellular Microvesicles and Exosomes. Reprod Sci 2017; 25:185-197. [PMID: 28481180 DOI: 10.1177/1933719117707053] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Many parallels exist between growth and development of the placenta and that of cancer. One parallel is shared expression of antigens that may have functional importance and may be recognized by the immune system. Here, we characterize expression and regulation of one such antigen, Trophoblast glycoprotein (TPGB; also called 5T4), in the placenta across gestation, in placentas of preeclamptic (PE) pregnancies, and in purified microvesicles and exosomes. METHODS Trophoblast glycoprotein expression was analyzed by real-time reverse transcription-polymerase chain reaction (RT-PCR), Western blot, and immunohistochemistry. Regulation of 5T4 in cytotrophoblast cells was examined under either differentiating conditions of epidermal growth factor or under varying oxygen conditions. Microvesicles and exosomes were purified from supernatant of cultured and perfused placentas. RESULTS Trophoblast glycoprotein expression was prominent at the microvillus surface of syncytiotrophoblast and on the extravillous trophoblast cells, with minimal expression in undifferentiated cytotrophoblasts and normal tissues. Trophoblast glycoprotein expression was elevated in malignant tumors. In cytotrophoblasts, 5T4 was induced by in vitro differentiation, and its messenger RNA (mRNA) was increased under conditions of low oxygen. PE placentas expressed higher 5T4 mRNA than matched control placentas. Trophoblast glycoprotein was prominent within shed placental microvesicles and exosomes. CONCLUSION Given the potential functional and known immunological importance of 5T4 in cancer, these studies reveal a class of proteins that may influence placental development and/or sensitize the maternal immune system. In extravillous trophoblasts, 5T4 may function in epithelial-to-mesenchymal transition during placentation. The role of syncytiotrophoblast 5T4 is unknown, but its abundance in shed syncytial vesicles may signify route of sensitization of the maternal immune system.
Collapse
Affiliation(s)
- S M K Alam
- 1 Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA.,2 Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujib Medical University, Dhaka, Bangladesh
| | - S Jasti
- 1 Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - S K Kshirsagar
- 3 Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI, USA
| | - D S Tannetta
- 4 Nuffield Department of Obstetrics and Gynaecology, University of Oxford, Oxford, UK
| | - R A Dragovic
- 4 Nuffield Department of Obstetrics and Gynaecology, University of Oxford, Oxford, UK
| | - C W Redman
- 4 Nuffield Department of Obstetrics and Gynaecology, University of Oxford, Oxford, UK
| | - I L Sargent
- 4 Nuffield Department of Obstetrics and Gynaecology, University of Oxford, Oxford, UK
| | - H C Hodes
- 5 Center for Women's Health, Overland Park, KS, USA
| | - T L Nauser
- 5 Center for Women's Health, Overland Park, KS, USA
| | - T Fortes
- 6 Sparrow Hospital, Lansing, MI, USA.,7 College of Human Medicine, Michigan State University, East Lansing, MI, USA
| | - A M Filler
- 6 Sparrow Hospital, Lansing, MI, USA.,7 College of Human Medicine, Michigan State University, East Lansing, MI, USA
| | - K Behan
- 7 College of Human Medicine, Michigan State University, East Lansing, MI, USA
| | | | - T A Fields
- 8 Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - B K Petroff
- 3 Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI, USA.,9 Veterinary Diagnostic Laboratory, Michigan State University, East Lansing, MI, USA
| | - M G Petroff
- 1 Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA.,3 Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI, USA.,10 Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
7
|
Tannetta D, Masliukaite I, Vatish M, Redman C, Sargent I. Update of syncytiotrophoblast derived extracellular vesicles in normal pregnancy and preeclampsia. J Reprod Immunol 2016; 119:98-106. [PMID: 27613663 DOI: 10.1016/j.jri.2016.08.008] [Citation(s) in RCA: 154] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 08/12/2016] [Accepted: 08/23/2016] [Indexed: 11/24/2022]
Abstract
The release of extracellular vesicles (EV) by the syncytiotrophoblast (STB) may be an important mechanism by which the placenta signals to the mother. STB derived EV (STBEV) are comprised predominantly of exosomes (50-150nm) and microvesicles (100-1000nm) that contain bioactive mediators such as proteins, nucleic acids and lipids. They, along with larger syncytial nuclear aggregates are released by the STB into the maternal circulation throughout gestation in normal pregnancy where they appear to have an immunoregulatory role, inhibiting T cell and NK cell responses. In pre-eclampsia (PE) STBEV are released in significantly increased numbers and have pro-inflammatory, anti-angiogenic and procoagulant activity, implicating them in the maternal systemic inflammation, endothelial dysfunction and activation of the clotting system which typifies the disorder. Research has focused on understanding the biological significance of STBEV by measuring their size and repertoire of molecules carried and how they differ in normal pregnancy and PE, using techniques such as Nanoparticle Tracking Analysis, flow cytometry and mass spectrometry. We have also found alterations in STBEV surface glycans associated with PE. The goal is to better understand the role STBEV play in normal pregnancy and PE and whether they are potential biomarkers of placental pathology and therapeutic targets in PE.
Collapse
Affiliation(s)
- Dionne Tannetta
- Department of Food and Nutritional Sciences, PO Box 226, Whiteknights, Reading RG6 6AP, UK.
| | - Ieva Masliukaite
- Center for Reproductive Medicine, TKsO-266, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| | - Manu Vatish
- Nuffield Department of Obstetrics & Gynaecology, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, UK.
| | - Christopher Redman
- Nuffield Department of Obstetrics & Gynaecology, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, UK.
| | - Ian Sargent
- Nuffield Department of Obstetrics & Gynaecology, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, UK.
| |
Collapse
|