1
|
Schuler G. [Initiation and endocrine control of parturition in domestic mammals - Part 1]. Tierarztl Prax Ausg G Grosstiere Nutztiere 2023; 51:228-236. [PMID: 37820628 DOI: 10.1055/a-2142-3318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Endocrine regulation of parturition is based on an intense exchange of signals between the fetus, placenta and mother. Apart from sheep, our knowledge of the endocrine control of parturition is still very incomplete. However, current observations suggest significant differences between the species. For the maintenance of pregnancy, progesterone (P4) is the crucial superordinate regulatory factor, although in some species, such as the horse, functions of P4 are at least partially fulfilled by other progestogens. In general, prepartum P4 withdrawal is considered a prerequisite for the onset of physiological birth. In species with exclusive (dog) or predominant (e. g., cattle, goat, pig) luteal P4 at the end of gestation, luteolysis is the crucial event. In sheep, where P4 is of placental origin prior to parturition, the prepartum P4 decline is due to a switch in placental steroid metabolism. The mechanism of prepartum progestogen withdrawal in the mare is still largely unclear. In sheep, initiation of parturition proceeds from maturation of the fetal hypothalamic-pituitary-adrenal (HPA) axis, which leads to a steep prepartum rise in fetal cortisol concentrations stimulating the collapse of placental P4 production. In cattle, fetal cortisol probably triggers luteolysis via stimulation of placental prostaglandin secretion. In several other domestic mammalian species, there is also evidence that the initiation of parturition proceeds from maturation of the fetal HPA axis. However, the functional relationships between fetal cortisol and prepartum P4 withdrawal are largely unknown in nonruminant species.
Collapse
Affiliation(s)
- Gerhard Schuler
- Tierklinik für Reproduktionsmedizin und Neugeborenenkunde, Justus-Liebig-Universität Giessen
| |
Collapse
|
2
|
Heparanase: A Novel Therapeutic Target for the Treatment of Atherosclerosis. Cells 2022; 11:cells11203198. [PMID: 36291066 PMCID: PMC9599978 DOI: 10.3390/cells11203198] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/07/2022] [Accepted: 10/07/2022] [Indexed: 11/16/2022] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of death and disability worldwide, and its management places a huge burden on healthcare systems through hospitalisation and treatment. Atherosclerosis is a chronic inflammatory disease of the arterial wall resulting in the formation of lipid-rich, fibrotic plaques under the subendothelium and is a key contributor to the development of CVD. As such, a detailed understanding of the mechanisms involved in the development of atherosclerosis is urgently required for more effective disease treatment and prevention strategies. Heparanase is the only mammalian enzyme known to cleave heparan sulfate of heparan sulfate proteoglycans, which is a key component of the extracellular matrix and basement membrane. By cleaving heparan sulfate, heparanase contributes to the regulation of numerous physiological and pathological processes such as wound healing, inflammation, tumour angiogenesis, and cell migration. Recent evidence suggests a multifactorial role for heparanase in atherosclerosis by promoting underlying inflammatory processes giving rise to plaque formation, as well as regulating lesion stability. This review provides an up-to-date overview of the role of heparanase in physiological and pathological processes with a focus on the emerging role of the enzyme in atherosclerosis.
Collapse
|
3
|
Nasser NJ, Fox J, Agbarya A. Potential Mechanisms of Cancer-Related Hypercoagulability. Cancers (Basel) 2020; 12:cancers12030566. [PMID: 32121387 PMCID: PMC7139427 DOI: 10.3390/cancers12030566] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 11/16/2022] Open
Abstract
The association between cancer and thrombosis has been known for over a century and a half. However, the mechanisms that underlie this correlation are not fully characterized. Hypercoagulability in cancer patients can be classified into two main categories: Type I and Type II. Type I occurs when the balance of endogenous heparin production and degradation is disturbed, with increased degradation of endogenous heparin by tumor-secreted heparanase. Type II hypercoagulability includes all the other etiologies, with factors related to the patient, the tumor, and/or the treatment. Patients with poor performance status are at higher risk of venous thromboembolism (VTE). Tumors can result in VTE through direct pressure on blood vessels, resulting in stasis. Several medications for cancer are correlated with a high risk of thrombosis. These include hormonal therapy (e.g., tamoxifen), chemotherapy (e.g., cisplatin, thalidomide and asparaginase), molecular targeted therapy (e.g., lenvatinib, osimertinib), and anti-angiogenesis monoclonal antibodies (e.g., bevacizumab and ramucirumab).
Collapse
Affiliation(s)
- Nicola J. Nasser
- Department of Radiation Oncology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York, NY 10467, USA;
- Correspondence:
| | - Jana Fox
- Department of Radiation Oncology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York, NY 10467, USA;
| | - Abed Agbarya
- Institute of Oncology, Bnai Zion Medical Center, Haifa 31048, Israel;
| |
Collapse
|
4
|
Gumus Guler B, Ozler S. Increased levels of serum serglycin and agrin is associated with adverse perinatal outcome in early onset preeclampsia. Fetal Pediatr Pathol 2019; 38:418-431. [PMID: 31018746 DOI: 10.1080/15513815.2019.1604922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Goal: Our aim was to determine whether alterations in serum serglycin and agrin levels in early-onset preeclampsia (EOPE) are useful in predicting adverse perinatal outcomes such as fetal growth restriction (FGR), intrauterine fetal demise (IUFD), preterm delivery and/or neonatal unit admission. Materials and Methods: A prospective case-controlled study enrolled 88 pregnant patients (44 EOPE and 44 controls). Maternal serum serglycin and agrin levels were determined before the 34th gestational week by enzyme-linked immunosorbent assay. Results: Compared with controls, women with EOPE had significantly higher serglycin and agrin levels (p = .018; p = .048). Multivariable logistic regression analysis revealed serglycin was independently associated with FGR in EOPE (OR 0.866; 95% CI 0.779-0.953). Agrin was independently associated with IUFD in EOPE (OR 0.757, 95% CI 0.636-0.879). Conclusions: The current study suggests that increased maternal serum serglycin is associated with FGR, and increased maternal serum agrin is associated with IUFD in EOPE.
Collapse
Affiliation(s)
- Basak Gumus Guler
- Department of Health Sciences, Istinye Universitesi , Istanbul , Turkey
| | - Sibel Ozler
- Department of Perinatology, Konya Egitim ve Arastirma Hastanesi , Konya , Turkey
| |
Collapse
|
5
|
Jin H, Cui M. New Advances of Heparanase in Human Diseases. Mini Rev Med Chem 2019; 20:90-95. [PMID: 31518222 DOI: 10.2174/1389557519666190913150959] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 04/05/2019] [Accepted: 06/23/2019] [Indexed: 01/22/2023]
Abstract
OBJECTIVE This mini-review aims to discuss research works about heparanase published in 2016, 2017, 2018 and 2019 and provide a direction for therapy methods targeting heparanase. PATIENTS AND METHODS The relevant data were searched by using keywords "heparanase" "function", "diseases" and "inhibitors" in "PubMed", "Web of Science" and "China Knowledge Resource Integrated databases (CNKI)", and a hand-search was done to acquire peer-reviewed articles and reports about heparanase. RESULTS Except for tumor progression, pathological processes including procoagulant activities, preeclamptic placentas, inflammation and so on are all verified to be associated with heparanase activity. Also, these newly-found functions are closely related to certain cellular activities, including epithelial to Mesenchymal Transition (EMT). CONCLUSION It could be concluded that heparanase would be a potential and valuable therapy target.
Collapse
Affiliation(s)
- Hao Jin
- The Second Department of General Surgery, Zhuhai People's Hospital, No. 79 of Kangning Road, Xiangzhou District, Zhuhai City, Guangdong Province, 519000, China
| | - Min Cui
- The Second Department of General Surgery, Zhuhai People's Hospital, No. 79 of Kangning Road, Xiangzhou District, Zhuhai City, Guangdong Province, 519000, China
| |
Collapse
|
6
|
Oliveira HR, Cant JP, Brito LF, Feitosa FLB, Chud TCS, Fonseca PAS, Jamrozik J, Silva FF, Lourenco DAL, Schenkel FS. Genome-wide association for milk production traits and somatic cell score in different lactation stages of Ayrshire, Holstein, and Jersey dairy cattle. J Dairy Sci 2019; 102:8159-8174. [PMID: 31301836 DOI: 10.3168/jds.2019-16451] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 05/13/2019] [Indexed: 12/16/2022]
Abstract
We performed genome-wide association analyses for milk, fat, and protein yields and somatic cell score based on lactation stages in the first 3 parities of Canadian Ayrshire, Holstein, and Jersey cattle. The genome-wide association analyses were performed considering 3 different lactation stages for each trait and parity: from 5 to 95, from 96 to 215, and from 216 to 305 d in milk. Effects of single nucleotide polymorphisms (SNP) for each lactation stage, trait, parity, and breed were estimated by back-solving the direct breeding values estimated using the genomic best linear unbiased predictor and single-trait random regression test-day models containing only the fixed population average curve and the random genomic curves. To identify important genomic regions related to the analyzed lactation stages, traits, parities and breeds, moving windows (SNP-by-SNP) of 20 adjacent SNP explaining more than 0.30% of total genetic variance were selected for further analyses of candidate genes. A lower number of genomic windows with a relatively higher proportion of the explained genetic variance was found in the Holstein breed compared with the Ayrshire and Jersey breeds. Genomic regions associated with the analyzed traits were located on 12, 8, and 15 chromosomes for the Ayrshire, Holstein, and Jersey breeds, respectively. Especially for the Holstein breed, many of the identified candidate genes supported previous reports in the literature. However, well-known genes with major effects on milk production traits (e.g., diacylglycerol O-acyltransferase 1) showed contrasting results among lactation stages, traits, and parities of different breeds. Therefore, our results suggest evidence of differential sets of candidate genes underlying the phenotypic expression of the analyzed traits across breeds, parities, and lactation stages. Further functional studies are needed to validate our findings in independent populations.
Collapse
Affiliation(s)
- H R Oliveira
- Centre for Genetic Improvement of Livestock (CGIL), Department of Animal Biosciences, University of Guelph, Guelph, Ontario, N1G 2W1, Canada; Department of Animal Science, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-000, Brazil.
| | - J P Cant
- Centre for Genetic Improvement of Livestock (CGIL), Department of Animal Biosciences, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - L F Brito
- Centre for Genetic Improvement of Livestock (CGIL), Department of Animal Biosciences, University of Guelph, Guelph, Ontario, N1G 2W1, Canada; Department of Animal Sciences, Purdue University, West Lafayette, IN 47907
| | - F L B Feitosa
- Centre for Genetic Improvement of Livestock (CGIL), Department of Animal Biosciences, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - T C S Chud
- Centre for Genetic Improvement of Livestock (CGIL), Department of Animal Biosciences, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - P A S Fonseca
- Centre for Genetic Improvement of Livestock (CGIL), Department of Animal Biosciences, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - J Jamrozik
- Centre for Genetic Improvement of Livestock (CGIL), Department of Animal Biosciences, University of Guelph, Guelph, Ontario, N1G 2W1, Canada; Canadian Dairy Network (CDN), Guelph, Ontario, N1K 1E5, Canada
| | - F F Silva
- Department of Animal Science, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-000, Brazil
| | - D A L Lourenco
- Department of Animal and Dairy Science, University of Georgia, Athens 30602
| | - F S Schenkel
- Centre for Genetic Improvement of Livestock (CGIL), Department of Animal Biosciences, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| |
Collapse
|
7
|
Jin H, Cui M. New Advances of Heparanase and Heparanase-2 in Human Diseases. Arch Med Res 2019; 49:423-429. [PMID: 30850186 DOI: 10.1016/j.arcmed.2019.02.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 01/17/2019] [Accepted: 02/25/2019] [Indexed: 12/27/2022]
Abstract
As we all know, heparanase plays an important role in human diseases. As a kind of endo-β-glucuronidase, heparanase is the known only enzyme in mammals which could degrade heparan sulfate(HS) specifically. HS is a vital component of extracellular matrix(ECM). Heparanase takes effect by cleaving theβ(1,4)-glycosidic between glucosamine residue and glucuronic acid of HS. This cleavage will cause ECM remodelling and HS-linked biological molecules release, including cytokines, growth factors and a lot of biological molecules regulating various pathological activities. Experiments already proved that heparanase gene over-expresses in cancers of gastrointestinal tract, esophagus, breast and so on. Various studies have demonstrated the heparanase's pro-metastatic function and the reduced survival rate of patients could be indicated by high heparanase levels. Besides, pathological processes including procoagulant activities, preeclamptic placentas and inflammation are all verified to be associated with heparanase activity. In recent years, many functions other than pro-tumor effect was found in heparanase and worldwide researchers conducted varieties of experiments to identify the new function of this significant enzyme. Also, these newly-found functions are closely connected to certain cellular activities, for example epithelial to mesenchymal transition (EMT). It has already been demonstrated that EMT is related to some clinical disorders, like renal diseases. Given that heparanase is the only enzyme capable of this function, it could be concluded that heparanase would be a potential and valuable therapy target. This mini-review aims to retrospect literatures about heparanase published in 2017 and 2018 and provide a direction for therapy methods targeting heparanase.
Collapse
Affiliation(s)
- Hao Jin
- The Second Department of General Surgery, Zhuhai People's Hospital, No. 79 of Kangning Road, Xiangzhou District, Zhuhai City, Guangdong Province, China
| | - Min Cui
- The Second Department of General Surgery, Zhuhai People's Hospital, No. 79 of Kangning Road, Xiangzhou District, Zhuhai City, Guangdong Province, China.
| |
Collapse
|