1
|
Schofield LG, Zhao J, Wang Y, Delforce SJ, Endacott SK, Lumbers ER, Ma D, Pringle KG. Unravelling soluble (pro)renin receptor-mediated endothelial dysfunction. Eur J Pharmacol 2025; 996:177601. [PMID: 40187599 DOI: 10.1016/j.ejphar.2025.177601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 02/23/2025] [Accepted: 04/02/2025] [Indexed: 04/07/2025]
Abstract
BACKGROUND Preeclampsia is characterized by maternal endothelial dysfunction and new-onset hypertension. Preeclamptic pregnancies have elevated levels of maternal soluble prorenin receptor (s(P)RR) and previous studies have shown that recombinant s(P)RR produces hypertension and vascular dysfunction. This study aimed to investigate the effects of PRO20, an s(P)RR antagonist, on s(P)RR-induced endothelial dysfunction and its interaction with the Angiotensin II Type 1 Receptor (AT1R). METHODS Human uterine microvascular endothelial cells (HUtMECs) were treated with 100 nM s(P)RR, with/without 10 nM PRO20, 10 μM Losartan (AT1R antagonist), or 10 μM Aliskerin (renin inhibitor). The ability of PRO20 to prevent endothelial dysfunction induced by patient serum from preeclamptic pregnancies was also assessed. Endothelial dysfunction markers were measured using immunoblot, qPCR, and ELISA. For AT1R mechanism studies, HUtMECs were treated with control or AT1R siRNA before s(P)RR exposure. AT1R and s(P)RR protein structures were predicted via AlphaFold-2 and docking examined using Schrödinger. RESULTS PRO20 mitigated s(P)RR-induced increases in the mRNA expression of endothelial dysfunction markers, endothelin-1, VCAM-1 and ICAM-1 and prevented s(P)RR and preeclamptic serum-induced increases in endothelin-1 and VCAM-1 protein. Aliskerin had no effect on s(P)RR-induced endothelial dysfunction. Losartan and an AT1R siRNA were able to prevent s(P)RR induced increases in VCAM-1 protein levels and ET-1 mRNA expression, respectively. Modelling suggested that PRO20 can impair s(P)RR-AT1R complex formation. CONCLUSIONS Elevated s(P)RR induces endothelial dysfunction at least partially through AT1R. PRO20 prevents s(P)RR-AT1R formation, suggesting it could be an effective therapeutic for preeclampsia and conditions requiring renin-angiotensin system suppression.
Collapse
MESH Headings
- Humans
- Female
- Receptors, Cell Surface/metabolism
- Receptors, Cell Surface/chemistry
- Receptors, Cell Surface/antagonists & inhibitors
- Pregnancy
- Pre-Eclampsia/metabolism
- Pre-Eclampsia/physiopathology
- Pre-Eclampsia/blood
- Receptor, Angiotensin, Type 1/metabolism
- Receptor, Angiotensin, Type 1/chemistry
- Receptor, Angiotensin, Type 1/genetics
- Endothelial Cells/drug effects
- Endothelial Cells/metabolism
- Endothelial Cells/pathology
- Prorenin Receptor
- Solubility
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/physiopathology
- Renin/pharmacology
- Adult
- Vascular Cell Adhesion Molecule-1/genetics
- Vascular Cell Adhesion Molecule-1/metabolism
- Losartan/pharmacology
Collapse
Affiliation(s)
- Lachlan G Schofield
- School of Biomedical Sciences and Pharmacy, College of Health Medicine and Wellbeing, University of Newcastle, Callaghan (Awabakal Country), 2308, New South Wales, Australia; Women's Health Research Program, Hunter Medical Research Institute, New Lambton Heights (Awabakal Country), 2305, New South Wales, Australia
| | - Juyi Zhao
- College of Life Sciences, Institute of Life Science and Green Development, Hebei Basic Science Centre for Biotic Interaction, Hebei University, Baoding, 071002, Hebei, China
| | - Yu Wang
- R&D, Beroni Group Ltd, Gadigal Country, Sydney, 2000, New South Wales, Australia
| | - Sarah J Delforce
- School of Biomedical Sciences and Pharmacy, College of Health Medicine and Wellbeing, University of Newcastle, Callaghan (Awabakal Country), 2308, New South Wales, Australia
| | - Saije K Endacott
- School of Biomedical Sciences and Pharmacy, College of Health Medicine and Wellbeing, University of Newcastle, Callaghan (Awabakal Country), 2308, New South Wales, Australia; Women's Health Research Program, Hunter Medical Research Institute, New Lambton Heights (Awabakal Country), 2305, New South Wales, Australia
| | - Eugenie R Lumbers
- School of Biomedical Sciences and Pharmacy, College of Health Medicine and Wellbeing, University of Newcastle, Callaghan (Awabakal Country), 2308, New South Wales, Australia; Women's Health Research Program, Hunter Medical Research Institute, New Lambton Heights (Awabakal Country), 2305, New South Wales, Australia
| | - Dan Ma
- College of Life Sciences, Institute of Life Science and Green Development, Hebei Basic Science Centre for Biotic Interaction, Hebei University, Baoding, 071002, Hebei, China.
| | - Kirsty G Pringle
- School of Biomedical Sciences and Pharmacy, College of Health Medicine and Wellbeing, University of Newcastle, Callaghan (Awabakal Country), 2308, New South Wales, Australia; Women's Health Research Program, Hunter Medical Research Institute, New Lambton Heights (Awabakal Country), 2305, New South Wales, Australia.
| |
Collapse
|
2
|
Endacott SK, Brennan C, Kahl RGS, Onifade OM, Rae KM, Lumbers ER, Pringle KG. Soluble (pro)renin receptor (s(P)RR) levels in women carrying Aboriginal and/or Torres Strait Islander babies; the Gomeroi Gaaynggal study. Pregnancy Hypertens 2024; 38:101169. [PMID: 39577063 DOI: 10.1016/j.preghy.2024.101169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 10/15/2024] [Accepted: 11/08/2024] [Indexed: 11/24/2024]
Abstract
OBJECTIVE To determine the levels of soluble (pro)renin receptor (s(P)RR) in women carrying Aboriginal and/or Torres Strait Islander (First Nations) babies and investigate whether s(P)RR levels change in women who have complicated pregnancies. STUDY DESIGN Cross-sectional analysis of data (2010-2018). Data/samples were from the Gomeroi Gaaynggal Study, a longitudinal cohort study based on Gomeroi/Kamilaroi lands (Tamworth), NSW, Australia. Third trimester samples (blood/urine) were collected from pregnant women carrying a First Nations baby (N = 188). METHODS/MAIN OUTCOME MEASURES Plasma s(P)RR and markers of kidney function (plasma: creatinine, urea and cystatin C; urinary: creatinine, protein, albumin, angiotensinogen, nephrin and Na/K) were measured by enzyme-linked immunosorbent assay or standardised pathology procedures as needed. RESULTS Soluble (P)RR was detected in plasma of women in the cohort (median: 19.86 ng/mL; IQR: 12.52-26.8). Soluble (P)RR levels correlated positively with maternal plasma creatinine (P = 0.0001) and gestational age in the third trimester (P = 0.002). Levels of s(P)RR tended to positively correlate with urinary protein/creatinine (P = 0.04) and nephrin/creatinine (P = 0.03). Soluble (P)RR levels tended to be higher in women who birthed prematurely (P = 0.06). Soluble (P)RR levels did not change with other pregnancy complications or outcomes (preeclampsia, GDM or small or large for gestational age birth). CONCLUSIONS Soluble (P)RR is present in the plasma of pregnant women carrying First Nations babies and is correlated with known urinary biomarkers of renal function. Increased maternal s(P)RR levels may be associated with increased risk of preterm birth.
Collapse
Affiliation(s)
- Saije K Endacott
- School of Biomedical Sciences and Pharmacy, College of Health Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia; Women's Health Research Program, Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - Cassandra Brennan
- School of Biomedical Sciences and Pharmacy, College of Health Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia
| | - Richard G S Kahl
- School of Medicine and Public Health, University of Newcastle, Callaghan, New South Wales, Australia
| | - Oyepeju M Onifade
- School of Medicine and Public Health, University of Newcastle, Callaghan, New South Wales, Australia
| | - Kym M Rae
- Mater Research Institute, Aubigny Place, Brisbane, Queensland, Australia; Faculty of Medicine, University of Queensland, Herston, Queensland, Australia
| | - Eugenie R Lumbers
- School of Biomedical Sciences and Pharmacy, College of Health Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia; Women's Health Research Program, Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - Kirsty G Pringle
- School of Biomedical Sciences and Pharmacy, College of Health Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia; Women's Health Research Program, Hunter Medical Research Institute, Newcastle, New South Wales, Australia.
| |
Collapse
|
3
|
Schofield LG, Delforce SJ, Pryor JC, Endacott SK, Lumbers ER, Marshall SA, Pringle KG. The soluble (pro)renin receptor promotes a preeclampsia-like phenotype both in vitro and in vivo. Hypertens Res 2024; 47:1627-1641. [PMID: 38605139 PMCID: PMC11150152 DOI: 10.1038/s41440-024-01678-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/14/2024] [Accepted: 03/22/2024] [Indexed: 04/13/2024]
Abstract
Preeclampsia is classified as new-onset hypertension coupled with gross endothelial dysfunction. Placental (pro)renin receptor ((P)RR) and plasma soluble (P)RR (s(P)RR) are elevated in patients with preeclampsia. Thus, we aimed to interrogate the role (P)RR may play in the pathogenesis of preeclampsia. Human uterine microvascular endothelial cells (HUtMECs, n = 4) were cultured with either; vehicle (PBS), 25-100 nM recombinant s(P)RR, or 10 ng/ml TNF-a (positive control) for 24 h. Conditioned media and cells were assessed for endothelial dysfunction markers via qPCR, ELISA, and immunoblot. Angiogenic capacity was assessed through tube formation and adhesion assays. Additionally, pregnant rats were injected with an adenovirus overexpressing s(P)RR from mid-pregnancy (day 8.5), until term (n = 6-7 dams/treatment). Maternal and fetal tissues were assessed. HUtMECs treated with recombinant s(P)RR displayed increased expression of endothelial dysfunction makers including vascular cell adhesion molecule-1, intracellular adhesion molecule-1, and endothelin-1 mRNA expression (P = 0.003, P = 0.001, P = 0.009, respectively), along with elevated endothelin-1 protein secretion (P < 0.001) compared with controls. Recombinant s(P)RR impaired angiogenic capacity decreasing the number of branches, total branch length, and mesh area (P < 0.001, P = 0.004, and P = 0.009, respectively), while also increasing vascular adhesion (P = 0.032). +ADV rats exhibited increased systolic (P = 0.001), diastolic (P = 0.010), and mean arterial pressures (P = 0.012), compared with -ADV pregnancies. Renal arteries from +ADV-treated rats had decreased sensitivity to acetylcholine-induced relaxation (P = 0.030), compared with -ADV pregnancies. Our data show that treatment with s(P)RR caused hypertension and growth restriction in vivo and caused marked endothelial dysfunction in vitro. These findings demonstrate the significant adverse actions of s(P)RR on vascular dysfunction that is characteristic of the preeclamptic phenotype.
Collapse
Affiliation(s)
- Lachlan G Schofield
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, 2308, Australia
- Mothers and Babies Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, 2305, Australia
| | - Sarah J Delforce
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, 2308, Australia
- Mothers and Babies Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, 2305, Australia
| | - Jennifer C Pryor
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, 2308, Australia
- Immune Health Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- National Health & Medical Research Council (NHMRC) Centre of Research Excellence in Digestive Health, University of Newcastle, Newcastle, NSW, Australia
| | - Saije K Endacott
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, 2308, Australia
- Mothers and Babies Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, 2305, Australia
| | - Eugenie R Lumbers
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, 2308, Australia
- Mothers and Babies Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, 2305, Australia
| | - Sarah A Marshall
- Department of Obstetrics and Gynaecology, The Ritchie Centre, School of Clinical Sciences, Monash University and The Hudson Institute of Medical Research, Clayton, VIC, Australia
| | - Kirsty G Pringle
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, 2308, Australia.
- Mothers and Babies Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, 2305, Australia.
| |
Collapse
|
4
|
Pietruski P, Kosińska-Kaczyńska K, Osińska A, Zgliczyńska M, Żebrowska K, Popko K, Stelmaszczyk-Emmel A. Maternal plasma angiotensin 1-7 concentration is related to twin pregnancy chorionicity in the third trimester of pregnancy. Front Endocrinol (Lausanne) 2024; 14:1329025. [PMID: 38260128 PMCID: PMC10800553 DOI: 10.3389/fendo.2023.1329025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/13/2023] [Indexed: 01/24/2024] Open
Abstract
Introduction Twin gestation is related to a higher risk of hypertensive disorders in pregnancy with possible risk stratification depending on chorionicity. It may be related to differences in plasma renin-angiotensin-aldosterone components between monochorionic and dichorionic twin pregnancies. The study aimed to analyze the plasma ANG II and ANG 1-7 concentrations in women with monochorionic and dichorionic twin gestation. Methods A prospective observational study included 79 women between 32 and 34 weeks of gestation with twin pregnancy (31 with monochorionic gestation and 48 with dichorionic gestation). Angiotensin II and angiotensin 1-7 concentrations were measured in the collected blood samples. Results No significant differences were observed in angiotensin II concentrations between the dichorionic and monochorionic group with significantly higher levels of angiotensin 1-7 being observed in the dichorionic group. Angiotensin 1-7 level was higher than angiotensin II in 20 women (64.5%) in the monochorionic group and in 42 women (87.5%, p=0.01) in the dichorionic group. Higher plasma concentrations of angiotensin II and lower concentrations of angiotensin 1-7 were found in 5 women with gestational hypertension and in 3 with preeclampsia compared to normotensive women. Discussion It is the first study investigating angiotensin II and angiotensin 1-7 in twin pregnancies regarding chorionicity. Our results showed that plasma angiotensin 1-7 concentration was related to chorionicity, while plasma angiotensin II level was not. In most women with twin gestation angiotensin 1-7 concentration exceeded the concentration of angiotensin II. A switch in the relation between angiotensin II and angiotensin 1-7 was observed in hypertensive pregnant women.
Collapse
Affiliation(s)
- Paweł Pietruski
- Department of Obstetrics, Perinatology and Neonatology, Center of Postgraduate Medical Education, Warsaw, Poland
| | - Katarzyna Kosińska-Kaczyńska
- Department of Obstetrics, Perinatology and Neonatology, Center of Postgraduate Medical Education, Warsaw, Poland
| | - Agnieszka Osińska
- Department of Obstetrics, Perinatology and Neonatology, Center of Postgraduate Medical Education, Warsaw, Poland
| | - Magdalena Zgliczyńska
- Department of Obstetrics, Perinatology and Neonatology, Center of Postgraduate Medical Education, Warsaw, Poland
| | - Kinga Żebrowska
- Department of Obstetrics, Perinatology and Neonatology, Center of Postgraduate Medical Education, Warsaw, Poland
| | - Katarzyna Popko
- Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age, Medical University of Warsaw, Warsaw, Poland
| | - Anna Stelmaszczyk-Emmel
- Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
5
|
Issotina Zibrila A, Wang Z, Sangaré-Oumar MM, Zeng M, Liu X, Wang X, Zeng Z, Kang YM, Liu J. Role of blood-borne factors in sympathoexcitation-mediated hypertension: Potential neurally mediated hypertension in preeclampsia. Life Sci 2022; 320:121351. [PMID: 36592790 DOI: 10.1016/j.lfs.2022.121351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/19/2022] [Accepted: 12/27/2022] [Indexed: 01/01/2023]
Abstract
Hypertension remains a threat for society due to its unknown causes, preventing proper management, for the growing number of patients, for its state as a high-risk factor for stroke, cardiac and renal complication and as cause of disability. Data from clinical and animal researches have suggested the important role of many soluble factors in the pathophysiology of hypertension through their neuro-stimulating effects. Central targets of these factors are of molecular, cellular and structural nature. Preeclampsia (PE) is characterized by high level of soluble factors with strong pro-hypertensive activity and includes immune factors such as proinflammatory cytokines (PICs). The potential neural effect of those factors in PE is still poorly understood. Shedding light into the potential central effect of the soluble factors in PE may advance our current comprehension of the pathophysiology of hypertension in PE, which will contribute to better management of the disease. In this paper, we summarized existing data in respect of hypothesis of this review, that is, the existence of the neural component in the pathophysiology of the hypertension in PE. Future studies would address this hypothesis to broaden our understanding of the pathophysiology of hypertension in PE.
Collapse
Affiliation(s)
- Abdoulaye Issotina Zibrila
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases, Xi'an 710061, Shaanxi, PR China; Department of Animal Physiology, Faculty of science and Technology, University of Abomey-Calavi, 06 BP 2584 Cotonou, Benin
| | - Zheng Wang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, PR China
| | - Machioud Maxime Sangaré-Oumar
- Department of Animal Physiology, Faculty of science and Technology, University of Abomey-Calavi, 06 BP 2584 Cotonou, Benin
| | - Ming Zeng
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases, Xi'an 710061, Shaanxi, PR China
| | - Xiaoxu Liu
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases, Xi'an 710061, Shaanxi, PR China
| | - Xiaomin Wang
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases, Xi'an 710061, Shaanxi, PR China
| | - Zhaoshu Zeng
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases, Xi'an 710061, Shaanxi, PR China
| | - Yu-Ming Kang
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases, Xi'an 710061, Shaanxi, PR China.
| | - Jinjun Liu
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases, Xi'an 710061, Shaanxi, PR China.
| |
Collapse
|
6
|
Nichols K, Yiannikouris F. The Role of (Pro)Renin Receptor in the Metabolic Syndrome. Curr Hypertens Rev 2022; 18:117-124. [PMID: 35170416 DOI: 10.2174/1573402118666220216104816] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 12/29/2021] [Accepted: 01/06/2022] [Indexed: 01/27/2023]
Abstract
The prorenin receptor (PRR) is a complex multi-functional single transmembrane protein receptor that is ubiquitously expressed in organs and tissues throughout the body. PRR is involved in different cellular mechanisms that comprise the generation of Angiotensin II, the activation of Wnt/β-catenin signaling, the stimulation of ERK 1/2 pathway, and the proper functioning of the vacuolar H+-ATPase. Evidence supports the role of PRR and its soluble form, sPRR, in the classical features of the metabolic syndrome, including obesity, hypertension, diabetes, and disruption of lipid homeostasis. This review summarizes our current knowledge and highlights new advances in the pathophysiological function of PRR and sPRR in adipogenesis, adipocyte differentiation, lipolysis, glucose and insulin resistance, lipid homeostasis, energy metabolism, and blood pressure regulation.
Collapse
Affiliation(s)
- Kellea Nichols
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Frederique Yiannikouris
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
7
|
Cao Q, Zhang X, Xie F, Li Y, Lin F. Long-noncoding RNA HOXA transcript at the distal tip ameliorates the insulin resistance and hepatic gluconeogenesis in mice with gestational diabetes mellitus via the microRNA-423-5p/wingless-type MMTV integration site family member 7A axis. Bioengineered 2022; 13:13224-13237. [PMID: 35642360 PMCID: PMC9275933 DOI: 10.1080/21655979.2022.2076982] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Long-noncoding RNA HOXA transcript at the distal tip (HOTTIP) has been probed to exert essential effects on diabetes progression, while its function in gestational diabetes mellitus (GDM) remains unclear. This study was committed to unravel the effects of HOTTIP on GDM progression via the microRNA (miR)-423-5p/wingless-type MMTV integration site family member 7A (WNT7A) axis. The GDM mouse model was established. HOTTIP, miR-423-5p and WNT7A levels in GDM mice were examined. The saline with dissolved various constructs altering HOTTIP, miR-423-5p and WNT7A expression was injected into GDM mice to detect the levels of GDM‐related biochemical indices, HOMA indices, liver gluconease: expression levels of phosphoenolpyruvate carboxykinase (PEPCK), glucose-6-phosphatase (G-6-Pase), glucose transporter 2 (GLUT2) and pathological changes of pancreatic tissues, and the apoptosis rate of pancreatic cells in GDM mice. The relations among HOTTIP, miR-423-5p and WNT7A were validated. HOTTIP and WNT7A levels were decreased while miR-423-5p was elevated in GDM mice. The enriched HOTTIP or silenced miR-423-5p alleviated the levels of GDM‐relatedbiochemical indices, enhanced the insulin homeostasis, elevated GLUT2 expression and decreased G-6-pase and PEPCK expression, mitigated the pathological changes of pancreatic tissues, and hindered the apoptosis of pancreatic cells. MiR-143-5p upregulation abrogated the effects of elevated HOTTIP on repressing GDM; whereas WNT7A deletion reversed the therapeutic effects of reduced miR-423-5p. HOTTIP sponged miR-423-5p that targeted WNT7A. HOTTIP ameliorates insulin resistance and hepatic gluconeogenesis in GDM mice via the modulation of the miR-423-5p/WNT7A axis. This study affords novel therapeutic modalities for GDM treatment.
Collapse
Affiliation(s)
- Qianqian Cao
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaojie Zhang
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Fengfeng Xie
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yangping Li
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Feng Lin
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
8
|
Souza LA, Earley YF. (Pro)renin Receptor and Blood Pressure Regulation: A Focus on the Central Nervous System. Curr Hypertens Rev 2022; 18:101-116. [PMID: 35086455 PMCID: PMC9662243 DOI: 10.2174/1570162x20666220127105655] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 09/02/2021] [Accepted: 12/06/2021] [Indexed: 01/27/2023]
Abstract
The renin-angiotensin system (RAS) is classically described as a hormonal system in which angiotensin II (Ang II) is one of the main active peptides. The action of circulating Ang II on its cognate Ang II type-1 receptor (AT1R) in circumventricular organs has important roles in regulating the autonomic nervous system, blood pressure (BP) and body fluid homeostasis, and has more recently been implicated in cardiovascular metabolism. The presence of a local or tissue RAS in various tissues, including the central nervous system (CNS), is well established. However, because the level of renin, the rate-limiting enzyme in the systemic RAS, is very low in the brain, how endogenous angiotensin peptides are generated in the CNS-the focus of this review-has been the subject of considerable debate. Notable in this context is the identification of the (pro)renin receptor (PRR) as a key component of the brain RAS in the production of Ang II in the CNS. In this review, we highlight cellular and anatomical locations of the PRR in the CNS. We also summarize studies using gain- and loss-of function approaches to elucidate the functional importance of brain PRR-mediated Ang II formation and brain RAS activation, as well as PRR-mediated Ang II-independent signaling pathways, in regulating BP. We further discuss recent developments in PRR involvement in cardiovascular and metabolic diseases and present perspectives for future directions.
Collapse
Affiliation(s)
- Lucas A.C. Souza
- Departments of Pharmacology and Physiology & Cell Biology, University of Nevada, Reno, School of Medicine, Reno, NV, USA,Center for Molecular and Cellular Signaling in the Cardiovascular System, University of Nevada, Reno, Reno, NV, USA
| | - Yumei Feng Earley
- Departments of Pharmacology and Physiology & Cell Biology, University of Nevada, Reno, School of Medicine, Reno, NV, USA,Center for Molecular and Cellular Signaling in the Cardiovascular System, University of Nevada, Reno, Reno, NV, USA
| |
Collapse
|
9
|
Qin M, Xu C, Yu J. The Soluble (Pro)Renin Receptor in Health and Diseases: Foe or Friend? J Pharmacol Exp Ther 2021; 378:251-261. [PMID: 34158404 DOI: 10.1124/jpet.121.000576] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 06/14/2021] [Indexed: 11/22/2022] Open
Abstract
The (pro)renin receptor (PRR) is a single-transmembrane protein that regulates the local renin-angiotensin system and participates in various intracellular signaling pathways, thus exhibiting a significant physiopathologic relevance in cellular homeostasis. A soluble form of PRR (sPRR) is generated through protease-mediated cleavage of the full-length PRR and secreted into extracellular spaces. Accumulating evidence indicates pivotal biologic functions of sPRR in various physiopathological processes. sPRR may be a novel biomarker for multiple diseases. SIGNIFICANCE STATEMENT: Circulating sPRR concentrations are elevated in patients and animals under various physiopathological conditions. This minireview highlights recent advances in sPRR functions in health and pathophysiological conditions. Results suggest that sPRR may be a novel biomarker for multiple diseases, but further studies are needed to determine the diagnostic value of sPRR.
Collapse
Affiliation(s)
- Manman Qin
- Translational Medicine Centre, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China (M.Q., C.X.), and Center for Metabolic Disease Research and Department of Physiology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania (J.Y.)
| | - Chuanming Xu
- Translational Medicine Centre, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China (M.Q., C.X.), and Center for Metabolic Disease Research and Department of Physiology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania (J.Y.)
| | - Jun Yu
- Translational Medicine Centre, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China (M.Q., C.X.), and Center for Metabolic Disease Research and Department of Physiology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania (J.Y.)
| |
Collapse
|
10
|
Morosin SK, Lochrin AJ, Delforce SJ, Lumbers ER, Pringle KG. The (pro)renin receptor ((P)RR) and soluble (pro)renin receptor (s(P)RR) in pregnancy. Placenta 2021; 116:43-50. [PMID: 34020806 DOI: 10.1016/j.placenta.2021.04.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 03/31/2021] [Accepted: 04/27/2021] [Indexed: 11/25/2022]
Abstract
The (pro)renin receptor ((P)RR) is a multi-functional protein that can be proteolytically cleaved and released in a soluble form (s(P)RR). Recently, the (P)RR and s(P)RR have become of interest in pregnancy and its associated pathologies. This is because the (P)RR not only activates tissue renin angiotensin systems, but it is also an integral component of vacuolar-ATPase, activates the wingless/integrated (Wnt)/β-catenin and extracellular signal regulated kinases 1 and 2/mitogen-activated protein kinase signalling pathways, and stabilises the β subunit of pyruvate dehydrogenase. Additionally, s(P)RR is detected in plasma and urine, and maternal plasma levels are elevated in pregnancy complications including fetal growth restriction, preeclampsia and gestational diabetes mellitus. Therefore, s(P)RR has potential as a biomarker for these pregnancy pathologies. Preliminary functional findings suggest that s(P)RR may be important for regulating fluid balance, inflammation and blood pressure, all of which contribute to a successful pregnancy. The (P)RR and s(P)RR regulate pathways that are known to be important in maintaining pregnancy, however their role in the physiological context of pregnancy is poorly characterised. This review summarises the known and potential functions of the (P)RR and s(P)RR in pregnancy, and how their dysregulation may contribute to pregnancy complications. It also highlights the need for further research into the source and function of s(P)RR in pregnancy. Soluble (P)RR levels could be indicative of placental, kidney or liver dysfunction and therefore be a novel clinical biomarker, or therapeutic target, to improve the detection and treatment of pregnancy pathologies.
Collapse
Affiliation(s)
- Saije K Morosin
- School of Biomedical Sciences and Pharmacy, Priority Research Centre for Reproductive Science, Pregnancy and Reproduction Program, Hunter Medical Research Institute, University of Newcastle, New Lambton Heights, 2305, New South Wales, Australia
| | - Alyssa J Lochrin
- School of Biomedical Sciences and Pharmacy, Priority Research Centre for Reproductive Science, Pregnancy and Reproduction Program, Hunter Medical Research Institute, University of Newcastle, New Lambton Heights, 2305, New South Wales, Australia
| | - Sarah J Delforce
- School of Biomedical Sciences and Pharmacy, Priority Research Centre for Reproductive Science, Pregnancy and Reproduction Program, Hunter Medical Research Institute, University of Newcastle, New Lambton Heights, 2305, New South Wales, Australia
| | - Eugenie R Lumbers
- School of Biomedical Sciences and Pharmacy, Priority Research Centre for Reproductive Science, Pregnancy and Reproduction Program, Hunter Medical Research Institute, University of Newcastle, New Lambton Heights, 2305, New South Wales, Australia
| | - Kirsty G Pringle
- School of Biomedical Sciences and Pharmacy, Priority Research Centre for Reproductive Science, Pregnancy and Reproduction Program, Hunter Medical Research Institute, University of Newcastle, New Lambton Heights, 2305, New South Wales, Australia.
| |
Collapse
|
11
|
Morosin SK, Delforce SJ, Lumbers ER, Pringle KG. Cleavage of the soluble (pro)renin receptor (sATP6AP2) in the placenta. Placenta 2020; 101:49-56. [PMID: 32920451 DOI: 10.1016/j.placenta.2020.08.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/30/2020] [Accepted: 08/20/2020] [Indexed: 02/08/2023]
Abstract
INTRODUCTION The (pro)renin receptor (ATP6AP2) is cleaved and released as soluble ATP6AP2 (sATP6AP2). The sATP6AP2 is detected in plasma and urine and is elevated in women with gestational diabetes and preeclampsia. The source and cleavage pathway of sATP6AP2 in pregnancy is unknown. The syncytiotrophoblast is the major placental secretory layer and is in direct contact with maternal blood. Both FURIN and Site 1 protease (MBTPS1) cleave sATP6AP2 in non-placental cells. We postulated that ATP6AP2 was cleaved by FURIN and/or MBTPS1 and that sATP6AP2 is secreted by the placental syncytiotrophoblast. METHODS Term primary trophoblast cells were transfected with FURIN siRNA, negative control siRNA or vehicle. In a separate experiment, primary trophoblasts were treated with a pro-protein convertase inhibitor (DEC-RVKR-CMK), an MBTPS1 inhibitor (PF 429242) or vehicle. Trophoblasts were left to spontaneously syncytialise before cells and supernatants were collected and intracellular and extracellular sATP6AP2 levels analysed by immunoblot. RESULTS sATP6AP2 is secreted by placental trophoblasts. Levels of intra and extra-cellular sATP6AP2 decrease with syncytialisation (P = 0.01 and P = 0.02, respectively), as do FURIN mRNA (P = 0.0003) and protein (P = 0.0007). FURIN siRNA decreased FURIN mRNA and protein levels (both P < 0.0001). Neither FURIN siRNA or PF 429242 affected sATP6AP2 levels. DEC-RVKR-CMK significantly decreased extracellular sATP6AP2 protein levels (P = 0.02). DISCUSSION Soluble ATP6AP2 is secreted by placental trophoblasts and levels decrease with syncytialisation. DEC-RVKR-CMK, a broad inhibitor of pro-protein convertases reduced extracellular sATP6AP2 levels, but FURIN siRNA and MBTPS1 inhibition had no effect. Hence, a convertase other than FURIN or MBTPS1 is most likely responsible for placental sATP6AP2 secretion.
Collapse
Affiliation(s)
- Saije K Morosin
- School of Biomedical Sciences and Pharmacy, Priority Research Centre for Reproductive Science, Pregnancy and Reproduction Program, Hunter Medical Research Institute, University of Newcastle, Newcastle, 2300, New South Wales, Australia
| | - Sarah J Delforce
- School of Biomedical Sciences and Pharmacy, Priority Research Centre for Reproductive Science, Pregnancy and Reproduction Program, Hunter Medical Research Institute, University of Newcastle, Newcastle, 2300, New South Wales, Australia
| | - Eugenie R Lumbers
- School of Biomedical Sciences and Pharmacy, Priority Research Centre for Reproductive Science, Pregnancy and Reproduction Program, Hunter Medical Research Institute, University of Newcastle, Newcastle, 2300, New South Wales, Australia
| | - Kirsty G Pringle
- School of Biomedical Sciences and Pharmacy, Priority Research Centre for Reproductive Science, Pregnancy and Reproduction Program, Hunter Medical Research Institute, University of Newcastle, Newcastle, 2300, New South Wales, Australia.
| |
Collapse
|
12
|
The Elabela in hypertension, cardiovascular disease, renal disease, and preeclampsia: an update. J Hypertens 2020; 39:12-22. [PMID: 32740407 DOI: 10.1097/hjh.0000000000002591] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
: Although considerable success has been shown for antihypertensive medications, the resistant hypertension and hypertension-related organ damages are still the important clinical issues and pose as high health and economic pressure. Therefore, novel therapeutic techniques and antihypertensive drugs are needed to advance more effective therapy of hypertension and hypertension-related disease to ameliorate mortality and healthcare costs worldwide. In this review, we highlight the latest progress in supporting the therapeutic potential of Elabela (ELA), a recently discovered early endogenous ligand for G-protein-coupled receptor apelin peptide jejunum, apelin receptor. Systemic administration of ELA exerts vasodilatory, antihypertensive, cardioprotective, and renoprotective effects, whereas central application of ELA increases blood pressure and causes cardiovascular remodeling primarily secondary to the hypertension. In addition, ELA drives extravillous trophoblast differentiation and prevents the pathogenesis of preeclampsia (a gestational hypertensive syndrome) by promoting placental angiogenesis. These findings strongly suggest peripheral ELA's therapeutic potential in preventing and treating hypertension and hypertension-related diseases including cardiovascular disease, kidney disease, and preeclampsia. Since therapeutic use of ELA is mainly limited by its short half-life and parenteral administration, it may be a clinical application candidate for the therapy of hypertension and its complications when fused with a large inert chemicals (e.g. polyethylene glycol, termed polyethylene glycol-ELA-21) or other proteins (e.g. the Fc fragment of IgG and albumin, termed Fc-ELA-21 or albumin-ELA-21), and new delivery methods are encouraged to develop to improve the efficacy of ELA fragments on apelin peptide jejunum or alternative unknown receptors.
Collapse
|
13
|
Abstract
The (pro)renin receptor ((P)RR) was first identified as a single-transmembrane receptor in human kidneys and initially attracted attention owing to its potential role as a regulator of the tissue renin-angiotensin system (RAS). Subsequent studies found that the (P)RR is widely distributed in organs throughout the body, including the kidneys, heart, brain, eyes, placenta and the immune system, and has multifaceted functions in vivo. The (P)RR has roles in various physiological processes, such as the cell cycle, autophagy, acid-base balance, energy metabolism, embryonic development, T cell homeostasis, water balance, blood pressure regulation, cardiac remodelling and maintenance of podocyte structure. These roles of the (P)RR are mediated by its effects on important biological systems and pathways including the tissue RAS, vacuolar H+-ATPase, Wnt, partitioning defective homologue (Par) and tyrosine phosphorylation. In addition, the (P)RR has been reported to contribute to the pathogenesis of diseases such as fibrosis, hypertension, pre-eclampsia, diabetic microangiopathy, acute kidney injury, cardiovascular disease, cancer and obesity. Current evidence suggests that the (P)RR has key roles in the normal development and maintenance of vital organs and that dysfunction of the (P)RR is associated with diseases that are characterized by a disruption of the homeostasis of physiological functions.
Collapse
|