1
|
Zhu Q, Zhao X, Zhang D, Xia W, Zhang J. Abnormal expression of SLIT3 induces intravillous vascularization dysplasia in ectopic pregnancy. PeerJ 2023; 11:e14850. [PMID: 36793891 PMCID: PMC9924138 DOI: 10.7717/peerj.14850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 01/12/2023] [Indexed: 02/12/2023] Open
Abstract
Objective To investigate whether the morphology, capillary number, and transcriptome expression profiles of ectopic pregnancy (EP) villi differ from those of normal pregnancy (NP) villi. Methods Hematoxylin-eosin (HE) and immunohistochemistry (IHC) staining for CD31 were conducted to compare differences in morphology and capillary number between EP and NP villi. Differentially expressed (DE) miRNAs and mRNAs were determined from transcriptome sequencing of both types of villi and used to construct a miRNA-mRNA network, from which hub genes were identified. Candidate DE-miRNAs and DE-mRNAs were validated by quantitative reverse transcription (qRT)-PCR. Correlations were identified between the number of capillaries and serum beta human chorionic gonadotropin (β-HCG) levels and between the expression levels of hub genes associated with angiogenesis and β-HCG levels. Results The mean and total cross-sectional areas of placental villi were significantly increased in EP compared with NP villi. Capillary density was greatly reduced in EP villi and was positively correlated with β-HCG levels. A total of 49 DE-miRNAs and 625 DE-mRNAs were identified from the sequencing data. An integrated analysis established a miRNA-mRNA network containing 32 DE-miRNAs and 103 DE-mRNAs. Based on the validation of hub mRNAs and miRNAs in the network, a regulatory pathway involving miR-491-5p-SLIT3 was discovered, which may have a role in the development of villous capillaries. Conclusion Villus morphology, capillary number, and miRNA/mRNA expression profiles in villous tissues were aberrant in EP placentas. Specifically, SLIT3, which is regulated by miR-491-5p, may contribute to the regulation of villous angiogenesis and was established as a putative predictor of chorionic villus development, providing a basis for future research.
Collapse
Affiliation(s)
- Qian Zhu
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China,Shanghai Municipal Key Clinical Specialty, Shanghai, China
| | - Xiaoya Zhao
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China,Shanghai Municipal Key Clinical Specialty, Shanghai, China
| | - Duo Zhang
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China,Shanghai Municipal Key Clinical Specialty, Shanghai, China
| | - Wei Xia
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China,Shanghai Municipal Key Clinical Specialty, Shanghai, China
| | - Jian Zhang
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China,Shanghai Municipal Key Clinical Specialty, Shanghai, China
| |
Collapse
|
2
|
Yan L, Li J, Wang Y, Zhu Q, Zhao X, He C, Zhu C, Ji S, Zhang Y, MuDanLiFu H, Zhang J. Trophoblastic infiltration of tubal pregnancy may have an association with chronic inflammation of the fallopian tube. Int J Gynaecol Obstet 2023. [PMID: 36607245 DOI: 10.1002/ijgo.14658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/28/2022] [Accepted: 01/03/2023] [Indexed: 01/07/2023]
Abstract
OBJECTIVE To explore the factors associated with trophoblastic infiltration in ampullary pregnancy from the perspective of clinical and pathologic characteristics. METHODS A single-center, retrospective, clinicopathologic cohort study was conducted in women who were diagnosed with tubal pregnancy and underwent salpingectomy in the International Peace Maternal and Child Health Care Hospital from January 2018 to June 2021. RESULTS A total of 333 eligible women diagnosed with ampullary pregnancy were included in the analysis. Multivariate logistic analysis showed that preoperative β-human chorionic gonadotropin greater than 3000 IU/L (adjusted odds ratio [aOR] 3.77, 95% confidence interval [CI] 2.02-7.03), and vascular remodeling phenomenon (aOR 4.34, 95% CI 2.41-7.83) were positively correlated with the infiltration of extravillous trophoblasts into serosa, while presence of chronic inflammation of the fallopian tube was a negatively corellated factor (aOR 0.49, 95% CI 0.29-0.85). CONCLUSION The depth of trophoblastic infiltration in tubal pregnancy may be related to the presence of chronic inflammation in the fallopian tube. A tubal pregnancy in a tube with chronic salpingitis is more likely to develop into an abortive ectopic pregnancy; whereas in a fallopian tube without chronic inflammation, the risk of it developing into a ruptured ectopic pregnancy increases. Hence, early identification is needed to properly address this dangerous pregnancy situation.
Collapse
Affiliation(s)
- Li Yan
- Department of Obstetrics and Gynecology, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.,Shanghai Key Laboratory Embryo Original Diseases, Shanghai, China
| | - Juan Li
- Department of Pathology, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yang Wang
- Department of Obstetrics and Gynecology, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.,Shanghai Key Laboratory Embryo Original Diseases, Shanghai, China
| | - Qian Zhu
- Department of Obstetrics and Gynecology, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.,Shanghai Key Laboratory Embryo Original Diseases, Shanghai, China
| | - Xiaoya Zhao
- Department of Obstetrics and Gynecology, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.,Shanghai Key Laboratory Embryo Original Diseases, Shanghai, China
| | - Chuqing He
- Department of Obstetrics and Gynecology, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.,Shanghai Key Laboratory Embryo Original Diseases, Shanghai, China
| | - Chenfeng Zhu
- Department of Obstetrics and Gynecology, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.,Shanghai Key Laboratory Embryo Original Diseases, Shanghai, China
| | - Sifan Ji
- Department of Obstetrics and Gynecology, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.,Shanghai Key Laboratory Embryo Original Diseases, Shanghai, China
| | - Yiqin Zhang
- Department of Obstetrics and Gynecology, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.,Shanghai Key Laboratory Embryo Original Diseases, Shanghai, China
| | - HaLiSai MuDanLiFu
- Department of Obstetrics and Gynecology, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.,Shanghai Key Laboratory Embryo Original Diseases, Shanghai, China
| | - Jian Zhang
- Department of Obstetrics and Gynecology, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.,Shanghai Key Laboratory Embryo Original Diseases, Shanghai, China
| |
Collapse
|
3
|
Moazamian A, Gharagozloo P, Aitken RJ, Drevet JR. OXIDATIVE STRESS AND REPRODUCTIVE FUNCTION: Sperm telomeres, oxidative stress, and infertility. Reproduction 2022; 164:F125-F133. [PMID: 35938805 DOI: 10.1530/rep-22-0189] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/05/2022] [Indexed: 11/08/2022]
Abstract
In brief Oxidative stress is recognized as an underlying driving factor of both telomere dysfunction and human subfertility/infertility. This review briefly reassesses telomere integrity as a fertility biomarker before proposing a novel, mechanistic rationale for the role of oxidative stress in the seemingly paradoxical lengthening of sperm telomeres with aging. Abstract The maintenance of redox balance in the male reproductive tract is critical to sperm health and function. Physiological levels of reactive oxygen species (ROS) promote sperm capacitation, while excess ROS exposure, or depleted antioxidant defenses, yields a state of oxidative stress which disrupts their fertilizing capacity and DNA structural integrity. The guanine moiety is the most readily oxidized of the four DNA bases and gets converted to the mutagenic lesion 8-hydroxy-deoxyguanosine (8-OHdG). Numerous studies have also confirmed oxidative stress as a driving factor behind accelerated telomere shortening and dysfunction. Although a clear consensus has not been reached, clinical studies also appear to associate telomere integrity with fertility outcomes in the assisted reproductive technology setting. Intriguingly, while sperm cellular and molecular characteristics make them more susceptible to oxidative insult than any other cell type, they are also the only cell type in which telomere lengthening accompanies aging. This article focuses on the oxidative stress response pathways to propose a mechanism for the explanation of this apparent paradox.
Collapse
Affiliation(s)
- Aron Moazamian
- CellOxess LLC, Ewing, New Jersey, USA.,Université Clermont Auvergne, GReD Institute, CNRS-INSERM, Clermont-Ferrand, France
| | | | - Robert J Aitken
- Priority Research Centre for Reproductive Science, University of Newcastle, Callaghan, New South Wales, Australia
| | - Joël R Drevet
- Université Clermont Auvergne, GReD Institute, CNRS-INSERM, Clermont-Ferrand, France
| |
Collapse
|
4
|
Abstract
PURPOSE OF REVIEW Women's fertility decay starts at the mid 30 s. However, the current delay of childbearing leads to ovarian aging and the need of assisted reproduction technologies (ART). Telomere biology is one of the main pathways involved in organismal aging. Thus, this review will focus on the knowledge acquired during the last 2 years about the telomere pathway and its influence on female fertility and the consequences for the newborn. RECENT FINDINGS New research on telomere biology reaffirms the relationship of telomere attrition and female infertility. Shorter maternal telomeres, which could be aggravated by external factors, underly premature ovarian aging and other complications including preeclampsia, preterm birth and idiopathic pregnancy loss. Finally, the telomere length of the fetus or the newborn is also affected by external factors, such as stress and nutrition. SUMMARY Recent evidence shows that telomeres are implicated in most processes related to female fertility, embryo development and the newborn's health. Thus, telomere length and telomerase activity may be good biomarkers for early detection of ovarian and pregnancy failures, opening the possibility to use telomere therapies to try to solve the infertility situation.
Collapse
|