1
|
Martin C, Bergamelli M, Martin H, Bénard M, Tscherning C, Malnou CE. Human placental models for studying viral infections. Curr Opin Virol 2025; 71:101454. [PMID: 40086106 DOI: 10.1016/j.coviro.2025.101454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 02/13/2025] [Accepted: 02/17/2025] [Indexed: 03/16/2025]
Abstract
Viral infections during pregnancy represent a major threat to maternal, fetal, and neonatal health outcome, with a high risk of vertical transmission. It is therefore crucial to understand the mechanisms underlying the interaction between viruses and placenta, which ensures communication between maternal and fetal compartments throughout pregnancy. Human placental models, both in vitro and ex vivo, enable to dissect in detail these interactions. By studying in detail viral entry, replication, and immune responses within the placenta, they represent ideal tools for analyzing the effects of various viruses on pregnancy outcomes. In addition, these models serve as platforms for evaluating diagnostic and therapeutic approaches to protect pregnant women and their babies from viral infections. This review examines recent advances, the main advantages and limitations of different human placental models and discusses their potential to improve our understanding of virus-placenta interactions, thereby contributing to improved maternal and fetal health.
Collapse
Affiliation(s)
- Charlène Martin
- Institut Toulousain des Maladies Infectieuses et Inflammatoires (Infinity), Université de Toulouse, INSERM, CNRS, UPS, Toulouse, France
| | - Mathilde Bergamelli
- Division of Obstetrics and Gynaecology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institute, Stockholm, Sweden; Department of Gynecology and Reproductive Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Hélène Martin
- Institut Toulousain des Maladies Infectieuses et Inflammatoires (Infinity), Université de Toulouse, INSERM, CNRS, UPS, Toulouse, France
| | - Mélinda Bénard
- Institut Toulousain des Maladies Infectieuses et Inflammatoires (Infinity), Université de Toulouse, INSERM, CNRS, UPS, Toulouse, France; CHU Toulouse, Hôpital des Enfants, Service de Néonatalogie, Toulouse, France
| | - Charlotte Tscherning
- Institut Toulousain des Maladies Infectieuses et Inflammatoires (Infinity), Université de Toulouse, INSERM, CNRS, UPS, Toulouse, France; Division of Neonatology, Oslo University Hospital, Oslo, Norway
| | - Cécile E Malnou
- Institut Toulousain des Maladies Infectieuses et Inflammatoires (Infinity), Université de Toulouse, INSERM, CNRS, UPS, Toulouse, France.
| |
Collapse
|
2
|
Costa B, Gouveia MJ, Vale N. Oxidative Stress Induced by Antivirals: Implications for Adverse Outcomes During Pregnancy and in Newborns. Antioxidants (Basel) 2024; 13:1518. [PMID: 39765846 PMCID: PMC11727424 DOI: 10.3390/antiox13121518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/06/2024] [Accepted: 12/09/2024] [Indexed: 01/15/2025] Open
Abstract
Oxidative stress plays a critical role in various physiological and pathological processes, particularly during pregnancy, where it can significantly affect maternal and fetal health. In the context of viral infections, such as those caused by Human Immunodeficiency Virus (HIV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), oxidative stress may exacerbate complications by disrupting cellular function and immune responses. Antiviral drugs, while essential in managing these infections, can also contribute to oxidative stress, potentially impacting both the mother and the developing fetus. Understanding the mechanisms by which antivirals can contribute to oxidative stress and examination of pharmacokinetic changes during pregnancy that influence drug metabolism is essential. Some research indicates that antiretroviral drugs can induce oxidative stress and mitochondrial dysfunction during pregnancy, while other studies suggest that their use is generally safe. Therefore, concerns about long-term health effects persist. This review delves into the complex interplay between oxidative stress, antioxidant defenses, and antiviral therapies, focusing on strategies to mitigate potential oxidative damage. By addressing gaps in our understanding, we highlight the importance of balancing antiviral efficacy with the risks of oxidative stress. Moreover, we advocate for further research to develop safer, more effective therapeutic approaches during pregnancy. Understanding these dynamics is essential for optimizing health outcomes for both mother and fetus in the context of viral infections during pregnancy.
Collapse
Affiliation(s)
- Bárbara Costa
- PerMed Research Group, Center for Health Technology and Services Research (CINTESIS), 4200-450 Porto, Portugal;
- CINTESIS@RISE, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- Department of Community Medicine, Health Information and Decision (MEDCIDS), Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- Centre for Parasite Biology and Immunology, Department of Infectious Diseases, National Health Institute Dr. Ricardo Jorge, 4000-055 Porto, Portugal;
| | - Maria João Gouveia
- Centre for Parasite Biology and Immunology, Department of Infectious Diseases, National Health Institute Dr. Ricardo Jorge, 4000-055 Porto, Portugal;
- Center for the Study in Animal Science (CECA/ICETA), University of Porto, 4051-401 Porto, Portugal
| | - Nuno Vale
- PerMed Research Group, Center for Health Technology and Services Research (CINTESIS), 4200-450 Porto, Portugal;
- CINTESIS@RISE, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- Department of Community Medicine, Health Information and Decision (MEDCIDS), Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| |
Collapse
|
3
|
Liu K, Wu S, Cui Y, Tao X, Li Y, Xiao X. Trophoblast fusion in fetal growth restriction is inhibited by CTGF in a cell-cycle-dependent manner. J Mol Histol 2024; 55:895-908. [PMID: 39122896 DOI: 10.1007/s10735-024-10239-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024]
Abstract
Fetal growth restriction (FGR) is a relatively common complication of pregnancy, and insufficient syncytialization in the placenta may play an important role in the pathogenesis of FGR. However, the mechanism of impaired formation of the syncytiotrophoblast layer in FGR patients requires further exploration. In the present study, we demonstrated that the level of syncytialization was decreased in FGR patient placentas, while the expression of connective tissue growth factor (CTGF) was significantly upregulated. CTGF was found to inhibit trophoblast fusion via regulating cell cycle progress of BeWo cells. Furthermore, we found that CTGF negatively regulates cell cycle arrest in a p21-dependent manner as overexpression of p21 could rescue the impaired syncytialization induced by CTGF-overexpression. Besides, we also identified that CTGF inhibits the expression of p21 through ITGB4/PI3K/AKT signaling pathway. Our study provided a new insight for elucidating the pathogenic mechanism of FGR and a novel idea for the clinical therapy of FGR.
Collapse
Affiliation(s)
- Ketong Liu
- Obstetrics and Gynecology Hospital of Fudan University, Fangxie Road 419, Shanghai, 200011, China
| | - Suwen Wu
- Obstetrics and Gynecology Hospital of Fudan University, Fangxie Road 419, Shanghai, 200011, China
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430050, China
| | - Yutong Cui
- Obstetrics and Gynecology Hospital of Fudan University, Fangxie Road 419, Shanghai, 200011, China
| | - Xiang Tao
- Obstetrics and Gynecology Hospital of Fudan University, Fangxie Road 419, Shanghai, 200011, China
| | - Yanhong Li
- Obstetrics and Gynecology Hospital of Fudan University, Fangxie Road 419, Shanghai, 200011, China.
| | - Xirong Xiao
- Obstetrics and Gynecology Hospital of Fudan University, Fangxie Road 419, Shanghai, 200011, China.
- Kashi Prefecture Second People's Hospital, Jiankang Road 1, Kashgar, 844000, China.
| |
Collapse
|
4
|
López-Guzmán C, García AM, Vásquez AM. Alteration of Trophoblast Syncytialization by Plasmodium falciparum-Infected Erythrocytes. Microorganisms 2024; 12:1640. [PMID: 39203482 PMCID: PMC11356531 DOI: 10.3390/microorganisms12081640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/02/2024] [Accepted: 08/08/2024] [Indexed: 09/03/2024] Open
Abstract
Malaria during pregnancy has been associated with significant risks to both the mother and the fetus, leading to complications such as anemia, low birth weight, and increased infant mortality. The trophoblast cells, a key component of the placenta, are crucial for nutrient and oxygen exchange between mother and fetus. The differentiation of cytotrophoblasts (CTBs) into syncytiotrophoblasts (STBs) is critical for proper pregnancy development. These cells form the bi-stratified epithelium surrounding the placental villi. While previous studies have described an inflammatory activation of STB cells exposed to Plasmodium falciparum-infected erythrocytes (P. falciparum-IE) or components such as hemozoin (HZ), little is known about the direct effect this parasite may have on the epithelial turnover and function of trophoblast cells. This study aims to contribute to understanding mechanisms leading to placental damage during placental malaria using a BeWo cell line as a differentiation model. It was found that P. falciparum-IE interferes with the fusion of BeWo cells, affecting the differentiation process of trophoblast. A reduction in syncytialization could be associated with the adverse effects of infection in fetal health, altering the remodeling of the trophoblast epithelial barrier and reducing their capacity to exchange substances. However, further studies are necessary to assess alterations in the functionality of this epithelium.
Collapse
Affiliation(s)
- Carolina López-Guzmán
- Grupo Malaria, Facultad de Medicina, Universidad de Antioquia, Calle 62 #52-59, Torre 1, Laboratorio 610, Medellin 050001, Colombia
| | - Ana María García
- Grupo Malaria, Facultad de Medicina, Universidad de Antioquia, Calle 62 #52-59, Torre 1, Laboratorio 610, Medellin 050001, Colombia
| | - Ana María Vásquez
- Grupo Malaria, Facultad de Medicina, Universidad de Antioquia, Calle 62 #52-59, Torre 1, Laboratorio 610, Medellin 050001, Colombia
- Escuela de Microbiología, Universidad de Antioquia, Calle 67 #53-108, Bloque 5, Oficina 5-135, Medellin 050001, Colombia
| |
Collapse
|
5
|
Motomura K, Morita H, Yamamoto H, Wada S, Sago H, Takahashi H, Saito H, Matsumoto K. Isolation of pure primary term human cytotrophoblasts and their differentiation into syncytiotrophoblast-like cells as an ex vivo model of the human placenta. Placenta 2024:S0143-4004(24)00603-9. [PMID: 39089887 DOI: 10.1016/j.placenta.2024.07.307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/10/2024] [Accepted: 07/23/2024] [Indexed: 08/04/2024]
Abstract
The placenta plays a fundamental role in fetal growth and maintenance of pregnancy. Its cellular components include a large multinucleated syncytiotrophoblast (STB) and its progenitor, cytotrophoblasts (CTBs), both of which perform vital functions in the human placenta. Primary cytotrophoblasts isolated from term human placentas that spontaneously fuse and differentiate into syncytiotrophoblast-like cells in vitro have been utilized to investigate the functions of the syncytiotrophoblast and placenta with multiple modifications. Although recent advances have enabled the use of trophoblast stem cell-derived organoids as a model for villous trophoblasts, primary CTBs offer several advantages, including spontaneous differentiation, easy access to materials (from term-delivered human placentas), and simple methodology. Here, we present a precise step-by-step process for isolating pure CTBs from term human placenta based on previously reported placenta digestion, density centrifugation, and CTB purification using anti-HLA-A, B, C antibody. Subsequently, we provide a method to improve CTB viability and differentiation into STB-like cells using epidermal growth factor (EGF) and a ROCK inhibitor (Y-27632) that ensures long-term and stable cultures without altering their proliferation. Because these cells can grow on standard tissue culture plates, this model can be easily utilized for various placental investigations, including innate immune responses, drug resistance, and STB metabolism. Employing this approach considerably enhances our understanding of placental functions, which are key to maternal and offspring health.
Collapse
Affiliation(s)
- Kenichiro Motomura
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, Japan; Center for Maternal-Fetal, Neonatal and Reproductive Medicine, National Center for Child Health and Development, Tokyo, Japan.
| | - Hideaki Morita
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, Japan; Allergy Center, National Center for Child Health and Development, Tokyo, Japan
| | - Hiromichi Yamamoto
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, Japan; Department of Obstetrics and Gynecology, Jichi Medical University, Tochigi, Japan
| | - Seiji Wada
- Center for Maternal-Fetal, Neonatal and Reproductive Medicine, National Center for Child Health and Development, Tokyo, Japan
| | - Haruhiko Sago
- Center for Maternal-Fetal, Neonatal and Reproductive Medicine, National Center for Child Health and Development, Tokyo, Japan; Center for Medical Genetics, National Center for Child Health and Development, Tokyo, Japan
| | - Hironori Takahashi
- Department of Obstetrics and Gynecology, Jichi Medical University, Tochigi, Japan
| | - Hirohisa Saito
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Kenji Matsumoto
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, Japan.
| |
Collapse
|
6
|
Egilmezer E, Hamilton ST, Lauw G, Follett J, Sonntag E, Schütz M, Marschall M, Rawlinson WD. Human Cytomegalovirus Dysregulates Cellular Dual-Specificity Tyrosine Phosphorylation-Regulated Kinases and Sonic Hedgehog Pathway Proteins in Neural Astrocyte and Placental Models. Viruses 2024; 16:918. [PMID: 38932210 PMCID: PMC11209403 DOI: 10.3390/v16060918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024] Open
Abstract
Human cytomegalovirus (CMV) infection is the leading non-genetic cause of congenital malformation in developed countries, causing significant fetal injury, and in some cases fetal death. The pathogenetic mechanisms through which this host-specific virus infects then damages both the placenta and the fetal brain are currently ill-defined. We investigated the CMV modulation of key signaling pathway proteins for these organs including dual-specificity tyrosine phosphorylation-regulated kinases (DYRK) and Sonic Hedgehog (SHH) pathway proteins using human first trimester placental trophoblast (TEV-1) cells, primary human astrocyte (NHA) brain cells, and CMV-infected human placental tissue. Immunofluorescence demonstrated the accumulation and re-localization of SHH proteins in CMV-infected TEV-1 cells with Gli2, Ulk3, and Shh re-localizing to the CMV cytoplasmic virion assembly complex (VAC). In CMV-infected NHA cells, DYRK1A re-localized to the VAC and DYRK1B re-localized to the CMV nuclear replication compartments, and the SHH proteins re-localized with a similar pattern as was observed in TEV-1 cells. Western blot analysis in CMV-infected TEV-1 cells showed the upregulated expression of Rb, Ulk3, and Shh, but not Gli2. In CMV-infected NHA cells, there was an upregulation of DYRK1A, DYRK1B, Gli2, Rb, Ulk3, and Shh. These in vitro monoculture findings are consistent with patterns of protein upregulation and re-localization observed in naturally infected placental tissue and CMV-infected ex vivo placental explant histocultures. This study reveals CMV-induced changes in proteins critical for fetal development, and identifies new potential targets for CMV therapeutic development.
Collapse
Affiliation(s)
- Ece Egilmezer
- Serology and Virology Division, Microbiology, NSW Health Pathology, Prince of Wales Hospital, Sydney 2031, Australia; (E.E.)
- School of Clinical Medicine, University of New South Wales, Kensington 2052, Australia
| | - Stuart T. Hamilton
- Serology and Virology Division, Microbiology, NSW Health Pathology, Prince of Wales Hospital, Sydney 2031, Australia; (E.E.)
- School of Clinical Medicine, University of New South Wales, Kensington 2052, Australia
| | - Glen Lauw
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney 2033, Australia
| | - Jasmine Follett
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney 2033, Australia
| | - Eric Sonntag
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg, 91054 Erlangen, Germany (M.M.)
| | - Martin Schütz
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg, 91054 Erlangen, Germany (M.M.)
| | - Manfred Marschall
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg, 91054 Erlangen, Germany (M.M.)
| | - William D. Rawlinson
- Serology and Virology Division, Microbiology, NSW Health Pathology, Prince of Wales Hospital, Sydney 2031, Australia; (E.E.)
- School of Clinical Medicine, University of New South Wales, Kensington 2052, Australia
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney 2033, Australia
| |
Collapse
|
7
|
Motomura K, Morita H, Naruse K, Saito H, Matsumoto K. Implication of viruses in the etiology of preeclampsia. Am J Reprod Immunol 2024; 91:e13844. [PMID: 38627916 DOI: 10.1111/aji.13844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/12/2024] [Accepted: 04/02/2024] [Indexed: 04/19/2024] Open
Abstract
Preeclampsia is one of the most common disorders that poses threat to both mothers and neonates and a major contributor to perinatal morbidity and mortality worldwide. Viral infection during pregnancy is not typically considered to cause preeclampsia; however, syndromic nature of preeclampsia etiology and the immunomodulatory effects of viral infections suggest that microbes could trigger a subset of preeclampsia. Notably, SARS-CoV-2 infection is associated with an increased risk of preeclampsia. Herein, we review the potential role of viral infections in this great obstetrical syndrome. According to in vitro and in vivo experimental studies, viral infections can cause preeclampsia by introducing poor placentation, syncytiotrophoblast stress, and/or maternal systemic inflammation, which are all known to play a critical role in the development of preeclampsia. Moreover, clinical and experimental investigations have suggested a link between several viruses and the onset of preeclampsia via multiple pathways. However, the results of experimental and clinical research are not always consistent. Therefore, future studies should investigate the causal link between viral infections and preeclampsia to elucidate the mechanism behind this relationship and the etiology of preeclampsia itself.
Collapse
Affiliation(s)
- Kenichiro Motomura
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
- Center for Maternal-Fetal, Neonatal and Reproductive Medicine, National Center for Child Health and Development, Tokyo, Japan
| | - Hideaki Morita
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
- Allergy Center, National Center for Child Health and Development, Tokyo, Japan
| | - Katsuhiko Naruse
- Department of Obstetrics and Gynecology, Dokkyo Medical University, Tochigi, Japan
| | - Hirohisa Saito
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Kenji Matsumoto
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| |
Collapse
|
8
|
Xu R, Zhang H, Liu S, Meng L, Ming D. cTBS over primary motor cortex increased contralateral corticomuscular coupling and interhemispheric functional connection. J Neural Eng 2024; 21:016012. [PMID: 38211343 DOI: 10.1088/1741-2552/ad1dc4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 01/11/2024] [Indexed: 01/13/2024]
Abstract
Objective.Transcranial magnetic stimulation is a non-invasive brain stimulation technique that changes the activity of the cerebral cortex. Contralesional continuous theta burst stimulation (cTBS) has been proposed and verified beneficial to stroke motor recovery. However, the underlying mechanism is still unclear.Approach.20 healthy right-handed subjects were recruited in this study, receiving real-cTBS over their left primary motor cortex or sham-cTBS. We designed the finger tapping task (FTT) before and after stimulation and recorded the accuracy and reaction time (RT) of the task. The electroencephalogram and surface electromyogram signals were recorded during the left finger pinching task (FPT) before and after stimulation. We calculated cortico-muscular coherence (CMC) in the contralateral hemisphere and cortico-cortical coherence (CCC) in the bilateral hemisphere. The two-way repeated measures analysis of variance was used to analyze the effect of cTBS.Main results.In the FTT, there was a significant main effect of 'time' on RT (F(1, 38) = 24.739,p< 0.001). In the FPT, the results showed that there was a significant interaction effect on the CMC peak and area in the beta band (peak:F(1, 38) = 8.562,p= 0.006; area:F(1, 38) = 5.273,p= 0.027), on the CCC peak in the alpha band (F(1, 38) = 4.815,p= 0.034) and area in the beta band (F(1, 38) = 4.822,p= 0.034). The post hoc tests showed that the CMC peak (W= 20,p= 0.002), the CMC area (W= 13,p= 0.003) and the CCC peak (t= -2.696,p= 0.014) increased significantly after real-cTBS. However, there was no significant decrease or increase after sham-cTBS.Significance.Our study found that cTBS can improve CMC of contralateral hemisphere and CCC of bilateral hemisphere, indicating that cTBS can strengthen cortico-muscular and cortico-cortical coupling.
Collapse
Affiliation(s)
- Rui Xu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, People's Republic of China
| | - Haichao Zhang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, People's Republic of China
| | - Shizhong Liu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, People's Republic of China
- Department of Rehabilitation, Tianjin Medical University General Hospital, Tianjin 300052, People's Republic of China
| | - Lin Meng
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, People's Republic of China
| | - Dong Ming
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, People's Republic of China
| |
Collapse
|
9
|
Rybak-Krzyszkowska M, Górecka J, Huras H, Staśkiewicz M, Kondracka A, Staniczek J, Górczewski W, Borowski D, Grzesiak M, Krzeszowski W, Massalska-Wolska M, Jaczyńska R. Ultrasonographic Signs of Cytomegalovirus Infection in the Fetus-A Systematic Review of the Literature. Diagnostics (Basel) 2023; 13:2397. [PMID: 37510141 PMCID: PMC10378321 DOI: 10.3390/diagnostics13142397] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/02/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND congenital cytomegalovirus (cCMV) infection during pregnancy is a significant risk factor for fetal and neonatal morbidity and mortality. CMV detection is based on the traditional ultrasound (US) and MRI (magnetic resonance) approach. METHODS the present review used the PRISMA protocol for identification of studies associated with CMV infection and sonographic analysis. Various search terms were created using keywords which were used to identify references from Medline, Pubmed, PsycInfo, Scopus and Web of Science. RESULTS sonographic analysis of the cCMV infection identified several of the key features associated with fetuses. The presence of abnormal patterns of periventricular echogenicity, ventriculomegaly and intraparenchymal calcifications is indicative of CMV infection in the fetus. Hyperechogenic bowels were seen frequently. These results correlate well with MRI data, especially when targeted transvaginal fetal neurosonography was carried out. CONCLUSIONS ultrasonography is a reliable indicator of fetal anomalies, due to cCMV. Fetal brain and organ changes are conclusive indications of infection, but many of the ultrasonographic signs of fetal abnormality could be due to any viral infections; thus, further research is needed to demarcate CMV infection from others, based on the ultrasonographic approach. CMV infection should always be an indication for targeted fetal neurosonography, optimally by the transvaginal approach.
Collapse
Affiliation(s)
- Magda Rybak-Krzyszkowska
- Department of Obstetrics and Perinatology, University Hospital, 30-551 Krakow, Poland
- Hi-Gen Centrum Medyczne, 30-552 Krakow, Poland
| | - Joanna Górecka
- Department of Obstetrics and Perinatology, University Hospital, 30-551 Krakow, Poland
| | - Hubert Huras
- Department of Obstetrics and Perinatology, University Hospital, 30-551 Krakow, Poland
| | - Magdalena Staśkiewicz
- Department of Obstetrics and Perinatology, University Hospital, 30-551 Krakow, Poland
| | - Adrianna Kondracka
- Department of Obstetrics and Pathology of Pregnancy, Medical University of Lublin, 20-081 Lublin, Poland
| | - Jakub Staniczek
- Department of Gynecology, Obstetrics and Gynecologic Oncology, Medical University of Silesia, 40-055 Katowice, Poland
| | - Wojciech Górczewski
- Obstetrics and Gynecology Ward, Independent Public Healthcare Institution in Bochnia, The Blessed Marta Wiecka District Hospital, 32-700 Bochnia, Poland
| | - Dariusz Borowski
- Provincial Combined Hospital in Kielce, Clinic of Obstetrics and Gynaecology, 25-736 Kielce, Poland
| | - Mariusz Grzesiak
- Department of Perinatology, Obstetrics and Gynecology, Polish Mother's Memorial Hospital-Research Institute in Lodz, 93-338 Lodz, Poland
- Department of Obstetrics and Gynecology, Medical University of Lodz, 93-338 Lodz, Poland
| | - Waldemar Krzeszowski
- Department of Perinatology, Obstetrics and Gynecology, Polish Mother's Memorial Hospital-Research Institute in Lodz, 93-338 Lodz, Poland
- Salve Medica, 91-210 Lodz, Poland
| | - Magdalena Massalska-Wolska
- Clinical Department of Gynecological Endocrinology and Gynecology, University Hospital, 30-551 Krakow, Poland
| | - Renata Jaczyńska
- Department of Obstetrics, Perinatology and Gynecology, Medical University of Warsaw, 02-091 Warsaw, Poland
| |
Collapse
|
10
|
Chenge S, Ngure H, Kanoi BN, Sferruzzi-Perri AN, Kobia FM. Infectious and environmental placental insults: from underlying biological pathways to diagnostics and treatments. Pathog Dis 2023; 81:ftad024. [PMID: 37727973 DOI: 10.1093/femspd/ftad024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/15/2023] [Accepted: 09/18/2023] [Indexed: 09/21/2023] Open
Abstract
Because the placenta is bathed in maternal blood, it is exposed to infectious agents and chemicals that may be present in the mother's circulation. Such exposures, which do not necessarily equate with transmission to the fetus, may primarily cause placental injury, thereby impairing placental function. Recent research has improved our understanding of the mechanisms by which some infectious agents are transmitted to the fetus, as well as the mechanisms underlying their impact on fetal outcomes. However, less is known about the impact of placental infection on placental structure and function, or the mechanisms underlying infection-driven placental pathogenesis. Moreover, recent studies indicate that noninfectious environmental agents accumulate in the placenta, but their impacts on placental function and fetal outcomes are unknown. Critically, diagnosing placental insults during pregnancy is very difficult and currently, this is possible only through postpartum placental examination. Here, with emphasis on humans, we discuss what is known about the impact of infectious and chemical agents on placental physiology and function, particularly in the absence of maternal-fetal transmission, and highlight knowledge gaps with potential implications for diagnosis and intervention against placental pathologies.
Collapse
Affiliation(s)
- Samuel Chenge
- Department of Medical Microbiology and Laboratory Sciences, Jomo Kenyatta University of Agriculture and Technology, Juja, off Thika road, P. O. Box 62000-00200 Nairobi, Kenya
| | - Harrison Ngure
- Directorate of Research and Innovation, Mount Kenya University, General Kago road, P.O. Box 342-01000, Thika, Kenya
| | - Bernard N Kanoi
- Directorate of Research and Innovation, Mount Kenya University, General Kago road, P.O. Box 342-01000, Thika, Kenya
- Centre for Malaria Elimination, Mount Kenya University, General Kago road, P.O. Box 342-01000, Thika, Kenya
| | - Amanda N Sferruzzi-Perri
- Department of Physiology, Development and Neuroscience, Centre for Trophoblast Research, University of Cambridge, Downing Street, Cambridge CB2 3EG, United Kingdom
| | - Francis M Kobia
- Directorate of Research and Innovation, Mount Kenya University, General Kago road, P.O. Box 342-01000, Thika, Kenya
- Centre for Malaria Elimination, Mount Kenya University, General Kago road, P.O. Box 342-01000, Thika, Kenya
| |
Collapse
|
11
|
Lesseur C, Jessel RH, Ohrn S, Ma Y, Li Q, Dekio F, Brody RI, Wetmur JG, Gigase FA, Lieber M, Lieb W, Lynch J, Afzal O, Ibroci E, Rommel AS, Janevic T, Stone J, Howell EA, Galang RR, Dolan SM, Bergink V, De Witte LD, Chen J. Gestational SARS-CoV-2 infection is associated with placental expression of immune and trophoblast genes. Placenta 2022; 126:125-132. [PMID: 35797939 PMCID: PMC9242701 DOI: 10.1016/j.placenta.2022.06.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/13/2022] [Accepted: 06/26/2022] [Indexed: 11/28/2022]
Abstract
INTRODUCTION Maternal SARS-CoV-2 infection during pregnancy is associated with adverse pregnancy outcomes and can have effects on the placenta, even in the absence of severe disease or vertical transmission to the fetus. This study aimed to evaluate histopathologic and molecular effects in the placenta after SARS-CoV-2 infection during pregnancy. METHODS We performed a study of 45 pregnant participants from the Generation C prospective cohort study at the Mount Sinai Health System in New York City. We compared histologic features and the expression of 48 immune and trophoblast genes in placentas delivered from 15 SARS-CoV-2 IgG antibody positive and 30 IgG SARS-CoV-2 antibody negative mothers. Statistical analyses were performed using Fisher's exact tests, Spearman correlations and linear regression models. RESULTS The median gestational age at the time of SARS-CoV-2 IgG serology test was 35 weeks. Two of the IgG positive participants also had a positive RT-PCR nasal swab at delivery. 82.2% of the infants were delivered at term (≥37 weeks), and gestational age at delivery did not differ between the SARS-CoV-2 antibody positive and negative groups. No significant differences were detected between the groups in placental histopathology features. Differential expression analyses revealed decreased expression of two trophoblast genes (PSG3 and CGB3) and increased expression of three immune genes (CXCL10, TLR3 and DDX58) in placentas delivered from SARS-CoV-2 IgG positive participants. DISCUSSION SARS-CoV-2 infection during pregnancy is associated with gene expression changes of immune and trophoblast genes in the placenta at birth which could potentially contribute to long-term health effects in the offspring.
Collapse
Affiliation(s)
- Corina Lesseur
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Rebecca H. Jessel
- Department of Obstetrics, Gynecology and Reproductive Science, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Sophie Ohrn
- Department of Obstetrics, Gynecology and Reproductive Science, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Yula Ma
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Qian Li
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Fumiko Dekio
- Department of Pathology, Molecular and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Rachel I. Brody
- Department of Pathology, Molecular and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - James G. Wetmur
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, Box 1054, 1 Gustave Levy Place, New York, NY, USA
| | - Frederieke A.J. Gigase
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Molly Lieber
- Department of Obstetrics, Gynecology and Reproductive Science, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Whitney Lieb
- Department of Obstetrics, Gynecology and Reproductive Science, Icahn School of Medicine at Mount Sinai, New York City, NY, USA,Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York City, NY, USA,Blavatnik Family Women's Health Research Institute, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Jezelle Lynch
- Department of Obstetrics, Gynecology and Reproductive Science, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Omara Afzal
- Department of Obstetrics, Gynecology and Reproductive Science, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Erona Ibroci
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Anna-Sophie Rommel
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Teresa Janevic
- Department of Obstetrics, Gynecology and Reproductive Science, Icahn School of Medicine at Mount Sinai, New York City, NY, USA,Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York City, NY, USA,Blavatnik Family Women's Health Research Institute, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Joanne Stone
- Department of Obstetrics, Gynecology and Reproductive Science, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Elizabeth A. Howell
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York City, NY, USA,Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Romeo R. Galang
- CDC COVID-19 Response, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Siobhan M. Dolan
- Department of Obstetrics, Gynecology and Reproductive Science, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Veerle Bergink
- Department of Obstetrics, Gynecology and Reproductive Science, Icahn School of Medicine at Mount Sinai, New York City, NY, USA,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York City, NY, USA,Blavatnik Family Women's Health Research Institute, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Lotje D. De Witte
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Jia Chen
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York City, NY, USA,Corresponding author. Department of Environmental Medicine and Public Heath, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1057, New York, NY, 10029, USA
| |
Collapse
|
12
|
James JL, Lissaman A, Nursalim YNS, Chamley LW. Modelling human placental villous development: designing cultures that reflect anatomy. Cell Mol Life Sci 2022; 79:384. [PMID: 35753002 PMCID: PMC9234034 DOI: 10.1007/s00018-022-04407-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/12/2022] [Accepted: 05/30/2022] [Indexed: 11/03/2022]
Abstract
The use of in vitro tools to study trophoblast differentiation and function is essential to improve understanding of normal and abnormal placental development. The relative accessibility of human placentae enables the use of primary trophoblasts and placental explants in a range of in vitro systems. Recent advances in stem cell models, three-dimensional organoid cultures, and organ-on-a-chip systems have further shed light on the complex microenvironment and cell-cell crosstalk involved in placental development. However, understanding each model's strengths and limitations, and which in vivo aspects of human placentation in vitro data acquired does, or does not, accurately reflect, is key to interpret findings appropriately. To help researchers use and design anatomically accurate culture models, this review both outlines our current understanding of placental development, and critically considers the range of established and emerging culture models used to study this, with a focus on those derived from primary tissue.
Collapse
Affiliation(s)
- Joanna L James
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
| | - Abbey Lissaman
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Yohanes N S Nursalim
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Lawrence W Chamley
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|