1
|
Hall M, de Marvao A, Schweitzer R, Cromb D, Colford K, Jandu P, O’Regan DP, Ho A, Price A, Chappell LC, Rutherford MA, Story L, Lamata P, Hutter J. Preeclampsia Associated Differences in the Placenta, Fetal Brain, and Maternal Heart Can Be Demonstrated Antenatally: An Observational Cohort Study Using MRI. Hypertension 2024; 81:836-847. [PMID: 38314606 PMCID: PMC7615760 DOI: 10.1161/hypertensionaha.123.22442] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/02/2024] [Indexed: 02/06/2024]
Abstract
BACKGROUND Preeclampsia is a multiorgan disease of pregnancy that has short- and long-term implications for the woman and fetus, whose immediate impact is poorly understood. We present a novel multiorgan approach to magnetic resonance imaging (MRI) investigation of preeclampsia, with the acquisition of maternal cardiac, placental, and fetal brain anatomic and functional imaging. METHODS An observational study was performed recruiting 3 groups of pregnant women: those with preeclampsia, chronic hypertension, or no medical complications. All women underwent a cardiac MRI, and pregnant women underwent a placental-fetal MRI. Cardiac analysis for structural, morphological, and flow data were undertaken; placenta and fetal brain volumetric and T2* (which describes relative tissue oxygenation) data were obtained. All results were corrected for gestational age. A nonpregnant cohort was identified for inclusion in the statistical shape analysis. RESULTS Seventy-eight MRIs were obtained during pregnancy. Cardiac MRI analysis demonstrated higher left ventricular mass in preeclampsia with 3-dimensional modeling revealing additional specific characteristics of eccentricity and outflow track remodeling. Pregnancies affected by preeclampsia demonstrated lower placental and fetal brain T2*. Within the preeclampsia group, 23% placental T2* results were consistent with controls, these were the only cases with normal placental histopathology. Fetal brain T2* results were consistent with normal controls in 31% of cases. CONCLUSIONS We present the first holistic assessment of the immediate implications of preeclampsia on maternal heart, placenta, and fetal brain. As well as having potential clinical implications for the risk stratification and management of women with preeclampsia, this gives an insight into the disease mechanism.
Collapse
Affiliation(s)
- Megan Hall
- Department of Women and Children’s Health (M.H., A.d.M., A.H., L.C.C., L.S.), King’s College London, United Kingdom
- Centre for the Developing Brain (M.H., D.C., K.C., A.H., A.P., M.A.R., L.S., J.H.), King’s College London, United Kingdom
| | - Antonio de Marvao
- Department of Women and Children’s Health (M.H., A.d.M., A.H., L.C.C., L.S.), King’s College London, United Kingdom
- School of Cardiovascular Medicine (A.d.M., R.S.), King’s College London, United Kingdom
- MRC London Institute of Medical Sciences, Imperial College London, United Kingdom (A.d.M., R.S., D.P.O.)
| | - Ronny Schweitzer
- School of Cardiovascular Medicine (A.d.M., R.S.), King’s College London, United Kingdom
- MRC London Institute of Medical Sciences, Imperial College London, United Kingdom (A.d.M., R.S., D.P.O.)
| | - Daniel Cromb
- Centre for the Developing Brain (M.H., D.C., K.C., A.H., A.P., M.A.R., L.S., J.H.), King’s College London, United Kingdom
| | - Kathleen Colford
- Centre for the Developing Brain (M.H., D.C., K.C., A.H., A.P., M.A.R., L.S., J.H.), King’s College London, United Kingdom
| | - Priya Jandu
- GKT School of Medical Education (P.J.), King’s College London, United Kingdom
| | - Declan P O’Regan
- MRC London Institute of Medical Sciences, Imperial College London, United Kingdom (A.d.M., R.S., D.P.O.)
| | - Alison Ho
- Department of Women and Children’s Health (M.H., A.d.M., A.H., L.C.C., L.S.), King’s College London, United Kingdom
- Centre for the Developing Brain (M.H., D.C., K.C., A.H., A.P., M.A.R., L.S., J.H.), King’s College London, United Kingdom
| | - Anthony Price
- Centre for the Developing Brain (M.H., D.C., K.C., A.H., A.P., M.A.R., L.S., J.H.), King’s College London, United Kingdom
- Centre for Medical Engineering (A.P., P.L.), King’s College London, United Kingdom
| | - Lucy C. Chappell
- Department of Women and Children’s Health (M.H., A.d.M., A.H., L.C.C., L.S.), King’s College London, United Kingdom
| | - Mary A. Rutherford
- Centre for the Developing Brain (M.H., D.C., K.C., A.H., A.P., M.A.R., L.S., J.H.), King’s College London, United Kingdom
| | - Lisa Story
- Department of Women and Children’s Health (M.H., A.d.M., A.H., L.C.C., L.S.), King’s College London, United Kingdom
- Centre for the Developing Brain (M.H., D.C., K.C., A.H., A.P., M.A.R., L.S., J.H.), King’s College London, United Kingdom
| | - Pablo Lamata
- Centre for Medical Engineering (A.P., P.L.), King’s College London, United Kingdom
| | - Jana Hutter
- Centre for the Developing Brain (M.H., D.C., K.C., A.H., A.P., M.A.R., L.S., J.H.), King’s College London, United Kingdom
- Smart Imaging Lab, Radiological Institute, University Hospital Erlangen, Germany (J.H.)
| |
Collapse
|
2
|
Hall M, de Marvao A, Schweitzer R, Cromb D, Colford K, Jandu P, O'Regan DP, Ho A, Price A, Chappell LC, Rutherford MA, Story L, Lamata P, Hutter J. Characterisation of placental, fetal brain and maternal cardiac structure and function in pre-eclampsia using MRI. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.04.24.23289069. [PMID: 37163073 PMCID: PMC10168502 DOI: 10.1101/2023.04.24.23289069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Background Pre-eclampsia is a multiorgan disease of pregnancy that has short- and long-term implications for the woman and fetus, whose immediate impact is poorly understood. We present a novel multi-system approach to MRI investigation of pre-eclampsia, with acquisition of maternal cardiac, placental, and fetal brain anatomical and functional imaging. Methods A prospective study was carried out recruiting pregnant women with pre-eclampsia, chronic hypertension, or no medical complications, and a non-pregnant female cohort. All women underwent a cardiac MRI, and pregnant women underwent a fetal-placental MRI. Cardiac analysis for structural, morphological and flow data was undertaken; placenta and fetal brain volumetric and T2* data were obtained. All results were corrected for gestational age. Results Seventy-eight MRIs were obtained during pregnancy. Pregnancies affected by pre-eclampsia demonstrated lower placental and fetal brain T2*. Within the pre-eclampsia group, three placental T2* results were within the normal range, these were the only cases with normal placental histopathology. Similarly, three fetal brain T2* results were within the normal range; these cases had no evidence of cerebral redistribution on fetal Dopplers. Cardiac MRI analysis demonstrated higher left ventricular mass in pre-eclampsia with 3D modelling revealing additional specific characteristics of eccentricity and outflow track remodelling. Conclusions We present the first holistic assessment of the immediate implications of pre-eclampsia on the placenta, maternal heart, and fetal brain. As well as having potential clinical implications for the risk-stratification and management of women with pre-eclampsia, this gives an insight into disease mechanism.
Collapse
Affiliation(s)
- Megan Hall
- Department of Women and Children’s Health, King’s College London, UK
- Centre for the Developing Brain, King’s College London, UK
| | - Antonio de Marvao
- Department of Women and Children’s Health, King’s College London, UK
- School of Cardiovascular Medicine, King’s College London, UK
- MRC London Institute of Medical Sciences, Imperial College London, UK
| | - Ronny Schweitzer
- School of Cardiovascular Medicine, King’s College London, UK
- MRC London Institute of Medical Sciences, Imperial College London, UK
| | - Daniel Cromb
- Centre for the Developing Brain, King’s College London, UK
| | | | - Priya Jandu
- GKT School of Medical Education, King’s College London, UK
| | - Declan P O'Regan
- MRC London Institute of Medical Sciences, Imperial College London, UK
| | - Alison Ho
- Department of Women and Children’s Health, King’s College London, UK
- Centre for the Developing Brain, King’s College London, UK
| | - Anthony Price
- Centre for the Developing Brain, King’s College London, UK
- Centre for Medical Engineering, King’s College London, UK
| | - Lucy C. Chappell
- Department of Women and Children’s Health, King’s College London, UK
| | | | - Lisa Story
- Department of Women and Children’s Health, King’s College London, UK
- Centre for the Developing Brain, King’s College London, UK
| | - Pablo Lamata
- Centre for Medical Engineering, King’s College London, UK
| | - Jana Hutter
- Centre for the Developing Brain, King’s College London, UK
- Centre for Medical Engineering, King’s College London, UK
| |
Collapse
|