1
|
Li R, Ma L, Geng Y, Chen X, Zhu J, Zhu H, Wang D. Uteroplacental microvascular remodeling in health and disease. Acta Physiol (Oxf) 2025; 241:e70035. [PMID: 40156319 DOI: 10.1111/apha.70035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 02/10/2025] [Accepted: 03/13/2025] [Indexed: 04/01/2025]
Abstract
The microvascular system is essential for delivering oxygen and nutrients to tissues while removing metabolic waste. During pregnancy, the uteroplacental microvascular system undergoes extensive remodeling to meet the increased demands of the fetus. Key adaptations include vessel dilation and increases in vascular volume, density, and permeability, all of which ensure adequate placental perfusion while maintaining stable maternal blood pressure. Structural and functional abnormalities in the uteroplacental microvasculature are associated with various gestational complications, posing both immediate and long-term risks to the health of both mother and infant. In this review, we describe the changes in uteroplacental microvessels during pregnancy, discuss the pathogenic mechanisms underlying diseases such as preeclampsia, fetal growth restriction, and gestational diabetes, and summarize current clinical and research approaches for monitoring microvascular health. We also provide an update on research models for gestational microvascular complications and explore solutions to several unresolved challenges. With advancements in research techniques, we anticipate significant progress in understanding and managing these diseases, ultimately leading to new therapeutic strategies to improve maternal and fetal health.
Collapse
Affiliation(s)
- Ruizhi Li
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Qingdao University, Jinan, China
- Institute of Chronic Diseases, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao, China
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Lei Ma
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Qingdao University, Jinan, China
- Institute of Chronic Diseases, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao, China
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Yingchun Geng
- Institute of Chronic Diseases, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao, China
- Department of Reproductive Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Xiaoxue Chen
- Institute of Chronic Diseases, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao, China
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Jiaxi Zhu
- Life Sciences, Faculty of Arts & Science, University of Toronto - St. George Campus, Toronto, Ontario, Canada
| | - Hai Zhu
- Department of Urology, Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao, China
- Department of Urology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Dong Wang
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Qingdao University, Jinan, China
- Institute of Chronic Diseases, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao, China
| |
Collapse
|
2
|
Tain YL, Hsu CN. Preterm Birth and Kidney Health: From the Womb to the Rest of Life. CHILDREN (BASEL, SWITZERLAND) 2024; 11:1213. [PMID: 39457178 PMCID: PMC11506578 DOI: 10.3390/children11101213] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 10/28/2024]
Abstract
Chronic kidney disease (CKD) is a widespread condition often resulting from multiple factors, including maternal influences. These risk factors not only heighten the likelihood of developing CKD but increase the risk of a preterm birth. Adverse events during nephrogenesis can disrupt kidney development, leading to a reduced number of nephrons. As survival rates for preterm infants improve, more individuals are living into adulthood, thereby elevating their risk of CKD later in life. This review aims to explore the connections between preterm birth, kidney development, and the increased risk of CKD, while proposing practical solutions for the future through a multidisciplinary approach. We examine human studies linking preterm birth to negative kidney outcomes, summarize animal models demonstrating kidney programming and reduced nephron numbers, and consolidate knowledge on common mechanisms driving kidney programming. Additionally, we discuss factors in the postnatal care environment that may act as secondary insults contributing to CKD risk, such as acute kidney injury (AKI), the use of nephrotoxic drugs, preterm nutrition, and catch-up growth. Finally, we outline recommendations for action, emphasizing the importance of avoiding modifiable risk factors and implementing early CKD screening for children born preterm. Together, we can ensure that advancements in kidney health keep pace with improvements in preterm care.
Collapse
Affiliation(s)
- You-Lin Tain
- Division of Pediatric Nephrology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan;
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Chien-Ning Hsu
- Department of Pharmacy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
3
|
Dap M, Albert T, Ramdhani I, Couturier-Tarrade A, Morel O, Chavatte-Palmer P, Beaumont M, Bertholdt C. Is the rabbit a natural model of fetal growth restriction? Morphological and functional characterization study using diffusion-weighted MRI and stereology. Placenta 2024; 154:74-79. [PMID: 38909564 DOI: 10.1016/j.placenta.2024.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 06/03/2024] [Accepted: 06/18/2024] [Indexed: 06/25/2024]
Abstract
INTRODUCTION Rabbits are routinely used as a natural model of fetal growth restriction (FGR); however, no studies have confirmed that rabbits have FGR. This study aimed to characterize the fetoplacental unit (FPU) in healthy pregnant rabbits using diffusion-weighted MRI and stereology. A secondary objective of the study was to describe the associations among findings from diffusion-weighted MRI (DW-MRI), fetal weight measurement and histological analysis of the placenta. METHODS Pregnant rabbits underwent DW-MRI under general anesthesia on embryonic day 28 of pregnancy. MR imaging was performed at 3.0 T. The apparent diffusion coefficient (ADC) values were calculated for the fetal brain, liver, and placenta. The placenta was analyzed by stereology (volume density of trophoblasts, the maternal blood space and fetal vessels). Each fetus and placenta were weighed. Two groups of fetuses were defined according to the position in the uterine horn (Cervix group versus Ovary group). RESULTS We analyzed 20 FPUs from 5 pregnant rabbits. Fetuses and placentas were significantly lighter in the Cervix group than in the Ovary group (34.7 ± 3.7 g vs. 40.2 ± 5.4 g; p = 0.02). Volume density analysis revealed that the percentage of fetal vessels, the maternal blood space and trophoblasts was not significantly affected by the position of the fetus in the uterine horn. There was no difference in ADC values according to the position of the fetus in the uterine horn, and there was no correlation between ADC values and fetal weight. DISCUSSION The findings of a multimodal evaluation of the placenta in a rabbit model of FGR suggested is not a natural model of fetal growth restriction.
Collapse
Affiliation(s)
- Matthieu Dap
- Université de Lorraine, CHRU-NANCY, Pôle de la Femme, F-54000, Nancy, France; Université de Lorraine, Inserm, IADI, F-54000, Nancy, France; Université de Lorraine, Pôle Laboratoire, F-54000, Nancy, France.
| | - Théo Albert
- Université de Lorraine, Inserm, IADI, F-54000, Nancy, France
| | - Ikrame Ramdhani
- Université de Lorraine, Inserm, IADI, F-54000, Nancy, France
| | - Anne Couturier-Tarrade
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350, Jouy-en-Josas, France; Ecole Nationale Vétérinaire d'Alfort, BREED, 94700, Maisons-Alfort, France
| | - Olivier Morel
- Université de Lorraine, CHRU-NANCY, Pôle de la Femme, F-54000, Nancy, France; Université de Lorraine, Inserm, IADI, F-54000, Nancy, France
| | - Pascale Chavatte-Palmer
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350, Jouy-en-Josas, France; Ecole Nationale Vétérinaire d'Alfort, BREED, 94700, Maisons-Alfort, France
| | - Marine Beaumont
- Université de Lorraine, Inserm, IADI, F-54000, Nancy, France; CHRU-NANCY, Inserm, Université de Lorraine, CIC, Innovation Technologique, F-54000, Nancy, France
| | - Charline Bertholdt
- Université de Lorraine, CHRU-NANCY, Pôle de la Femme, F-54000, Nancy, France; Université de Lorraine, Inserm, IADI, F-54000, Nancy, France
| |
Collapse
|
4
|
Abe T, Sarentonglaga B, Nagao Y. Advancements in medical research using fetal sheep: Implications for human health and treatment methods. Anim Sci J 2024; 95:e13945. [PMID: 38651196 DOI: 10.1111/asj.13945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/13/2024] [Accepted: 03/27/2024] [Indexed: 04/25/2024]
Abstract
Sheep are typically considered as industrial animals that provide wool and meals. However, they play a significant role in medical research in addition to their conventional use. Notably, sheep fetuses are resistant to surgical invasions and can endure numerous manipulations, such as needle puncture and cell transplantation, and surgical operations requiring exposure beyond the uterus. Based on these distinguishing characteristics, we established a chimeric sheep model capable of producing human/monkey pluripotent cell-derived blood cells via the fetal liver. Furthermore, sheep have become crucial as human fetal models, acting as platforms for developing and improving techniques for intrauterine surgery to address congenital disorders and clarifying the complex pharmacokinetic interactions between mothers and their fetuses. This study emphasizes the significant contributions of fetal sheep to advancing human disease understanding and treatment strategies, highlighting their unique characteristics that are not present in other animals.
Collapse
Affiliation(s)
- Tomoyuki Abe
- Open Science Laboratory, Center for Development of Advanced Medical Technology, Jichi Medical University, Tochigi, Japan
| | | | - Yoshikazu Nagao
- Department of Agriculture, Utsunomiya University, Tochigi, Japan
| |
Collapse
|
5
|
Valenzuela I, Regin Y, Gie A, Basurto D, Emam D, Scuglia M, Zapletalova K, Greyling M, Deprest J, van der Merwe J. Long-term pulmonary and neurodevelopmental impairment in a fetal growth restriction rabbit model. Sci Rep 2023; 13:20966. [PMID: 38017239 PMCID: PMC10684490 DOI: 10.1038/s41598-023-48174-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 11/23/2023] [Indexed: 11/30/2023] Open
Abstract
Fetal growth restriction (FGR) remains one of the main obstetrical problems worldwide, with consequences beyond perinatal life. Animal models with developmental and structural similarities to the human are essential to understand FGR long-term consequences and design novel therapeutic strategies aimed at preventing or ameliorating them. Herein, we described the long-term consequences of FGR in pulmonary function, structure, and gene expression, and characterized neurodevelopmental sequelae up to preadolescence in a rabbit model. FGR was induced at gestational day 25 by surgically reducing placental blood supply in one uterine horn, leaving the contralateral horn as internal control. Neonatal rabbits born near term were assigned to foster care in mixed groups until postnatal day (PND) 21. At that time, one group underwent pulmonary biomechanical testing followed by lung morphometry and gene expression analysis. A second group underwent longitudinal neurobehavioral assessment until PND 60 followed by brain harvesting for multiregional oligodendrocyte and microglia quantification. FGR was associated with impaired pulmonary function and lung development at PND 21. FGR rabbits had higher respiratory resistance and altered parenchymal biomechanical properties in the lungs. FGR lungs presented thicker alveolar septal walls and reduced alveolar space. Furthermore, the airway smooth muscle content was increased, and the tunica media of the intra-acinar pulmonary arteries was thicker. In addition, FGR was associated with anxiety-like behavior, impaired memory and attention, and lower oligodendrocyte proportion in the frontal cortex and white matter. In conclusion, we documented and characterized the detrimental pulmonary function and structural changes after FGR, independent of prematurity, and beyond the neonatal period for the first time in the rabbit model, and describe the oligodendrocyte alteration in pre-adolescent rabbit brains. This characterization will allow researchers to develop and test therapies to treat FGR and prevent its sequelae.
Collapse
Affiliation(s)
- Ignacio Valenzuela
- Department of Development and Regeneration, Cluster Woman and Child, Group Biomedical Sciences, KU Leuven, Herestraat 49, Box 805, B-3000, Leuven, Belgium.
| | - Yannick Regin
- Department of Development and Regeneration, Cluster Woman and Child, Group Biomedical Sciences, KU Leuven, Herestraat 49, Box 805, B-3000, Leuven, Belgium
| | - Andre Gie
- Department of Development and Regeneration, Cluster Woman and Child, Group Biomedical Sciences, KU Leuven, Herestraat 49, Box 805, B-3000, Leuven, Belgium
- Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University and Tygerberg Hospital, Cape Town, South Africa
| | - David Basurto
- Department of Development and Regeneration, Cluster Woman and Child, Group Biomedical Sciences, KU Leuven, Herestraat 49, Box 805, B-3000, Leuven, Belgium
| | - Doaa Emam
- Department of Development and Regeneration, Cluster Woman and Child, Group Biomedical Sciences, KU Leuven, Herestraat 49, Box 805, B-3000, Leuven, Belgium
- Department of Obstetrics and Gynaecology, University Hospitals Tanta, Tanta, Egypt
| | - Marianna Scuglia
- Department of Development and Regeneration, Cluster Woman and Child, Group Biomedical Sciences, KU Leuven, Herestraat 49, Box 805, B-3000, Leuven, Belgium
- Developmental Biology and Cancer Research and Teaching Department, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Katerina Zapletalova
- Department of Development and Regeneration, Cluster Woman and Child, Group Biomedical Sciences, KU Leuven, Herestraat 49, Box 805, B-3000, Leuven, Belgium
- Third Faculty of Medicine, Institute for the Care of Mother and Child, Charles University, Prague, Czech Republic
| | - Marnel Greyling
- Department of Development and Regeneration, Cluster Woman and Child, Group Biomedical Sciences, KU Leuven, Herestraat 49, Box 805, B-3000, Leuven, Belgium
| | - Jan Deprest
- Department of Development and Regeneration, Cluster Woman and Child, Group Biomedical Sciences, KU Leuven, Herestraat 49, Box 805, B-3000, Leuven, Belgium
- Department of Obstetrics and Gynecology, Division Woman and Child, University Hospitals Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Johannes van der Merwe
- Department of Development and Regeneration, Cluster Woman and Child, Group Biomedical Sciences, KU Leuven, Herestraat 49, Box 805, B-3000, Leuven, Belgium
- Department of Obstetrics and Gynecology, Division Woman and Child, University Hospitals Leuven, Herestraat 49, 3000, Leuven, Belgium
| |
Collapse
|
6
|
Zapletalova K, Valenzuela I, Greyling M, Regin Y, Frigolett C, Krofta L, Deprest J, van der Merwe J. The Effects of Prenatal Pravastatin Treatment in the Rabbit Fetal Growth Restriction Model. Biomedicines 2023; 11:2685. [PMID: 37893059 PMCID: PMC10604497 DOI: 10.3390/biomedicines11102685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/22/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
Fetal growth restriction (FGR) remains without an effective prenatal treatment. Evidence from murine FGR models suggests a beneficial effect of prenatal pravastatin. Since the rabbit hemodichorial placenta more closely resembles the human condition, we investigated the effects of prenatal maternal pravastatin administration in the rabbit FGR model. At a gestational age of 25 days (term 31d), pregnant dams underwent partial uteroplacental vessel ligation (UPVL) in one uterine horn to induce FGR, leaving the other horn as a control. Dams were randomized to either receive 5 mg/kg/d pravastatin dissolved in their drinking water or normal drinking water until delivery. At GA 30d, the rabbits were delivered and were divided into four groups: control without pravastatin (C/NoPrav), FGR without pravastatin (FGR/NoPrav), FGR with pravastatin (FGR/Prav), and controls with pravastatin (C/Prav). The newborn rabbits underwent pulmonary functional assessment and neurobehavioral assessment, and they were harvested for alveolar morphometry or neuropathology. The placentas underwent histology examination and RNA expression. Birth weight was lower in the FGR groups (FGR/Prav, FGR/NoPrav), but there was no difference between FGR/Prav and C/NoPrav. No differences were noted in placental zone proportions, but eNOS in FGR/Prav placentas and VEGFR-2 in FGR/Prav and C/Prav were upregulated. There were no differences in pulmonary function assessment and alveolar morphometry. FGR/Prav kittens had increased neurosensory scores, but there were no differences in neuromotor tests, neuron density, apoptosis, and astrogliosis. In conclusion, in the rabbit FGR model, pravastatin upregulated the expression of VEGFR-2 and eNOS in FGR placentas and was associated with higher neurosensory scores, without measurable effects on birthweight, pulmonary function and morphology, and neuron density.
Collapse
Affiliation(s)
- Katerina Zapletalova
- Department of Development and Regeneration, Cluster Woman and Child, Group Biomedical Sciences, Katholieke Universiteit Leuven, 3000 Leuven, Belgium; (K.Z.); (I.V.)
- Institute for the Care of Mother and Child, Third Faculty of Medicine, Charles University, 147 10 Prague, Czech Republic
| | - Ignacio Valenzuela
- Department of Development and Regeneration, Cluster Woman and Child, Group Biomedical Sciences, Katholieke Universiteit Leuven, 3000 Leuven, Belgium; (K.Z.); (I.V.)
| | - Marnel Greyling
- Department of Development and Regeneration, Cluster Woman and Child, Group Biomedical Sciences, Katholieke Universiteit Leuven, 3000 Leuven, Belgium; (K.Z.); (I.V.)
| | - Yannick Regin
- Department of Development and Regeneration, Cluster Woman and Child, Group Biomedical Sciences, Katholieke Universiteit Leuven, 3000 Leuven, Belgium; (K.Z.); (I.V.)
| | - Cristian Frigolett
- Department of Public Health and Primary Care, Leuven Statistics Research Centre, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Ladislav Krofta
- Institute for the Care of Mother and Child, Third Faculty of Medicine, Charles University, 147 10 Prague, Czech Republic
| | - Jan Deprest
- Department of Development and Regeneration, Cluster Woman and Child, Group Biomedical Sciences, Katholieke Universiteit Leuven, 3000 Leuven, Belgium; (K.Z.); (I.V.)
- Department of Obstetrics and Gynecology, Division Woman and Child, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Johannes van der Merwe
- Department of Development and Regeneration, Cluster Woman and Child, Group Biomedical Sciences, Katholieke Universiteit Leuven, 3000 Leuven, Belgium; (K.Z.); (I.V.)
- Department of Obstetrics and Gynecology, Division Woman and Child, University Hospitals Leuven, 3000 Leuven, Belgium
| |
Collapse
|
7
|
Campbell N, Solise D, Deer E, LaMarca B. Sex Differences in Offspring of Preeclamptic Pregnancies. CURRENT OPINION IN PHYSIOLOGY 2023; 34:100688. [PMID: 37305157 PMCID: PMC10249590 DOI: 10.1016/j.cophys.2023.100688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A poor uterine environment causes changes in fetal development that affect the health of offspring long-term. Although there are multiple pathways that contribute to the development of cardiovascular and neurological disease, low birth weight or fetal growth restriction (FGR) predisposes offspring to these diseases. There is a link between fetal exposure to adverse influences and hypertension later in life. Many epidemiological studies support the link between fetal life and the risk of disease later in life. Experimental models have sought to provide mechanistic proof of this link while simultaneously investigating potential therapeutics or treatment pathways. Preeclampsia (PE), one of several hypertensive disorders in pregnancy, is a leading cause of morbidity and mortality for both the mother and fetus. Studies have shown that PE is a state of chronic inflammation and there is an imbalance between pro-inflammatory and regulatory immune cells and mediators. There is no cure for PE beyond the delivery of the fetal-placental unit, and many PE pregnancies result in FGR and preterm birth. Epidemiological data demonstrate that the sex of the offspring is correlated with the degree of cardiovascular disease that develops with the age of the offspring yet few studies examine the effect of sex on the development of neurological disorders. Even fewer studies examine the effects of therapeutics on offspring of different genders following a PE pregnancy. Moreover, there remain significant gaps in knowledge concerning the role the immune system plays in FGR offspring developing hypertension or neurovascular disorders later in life. Therefore, the purpose of this review is to highlight current research on sex differences in the developmental programming of hypertension and neurological disorders following a PE pregnancy.
Collapse
Affiliation(s)
- Nathan Campbell
- Department of Pharmacology & Toxicology, University of
Mississippi Medical Center, Jackson, MS
| | - Dylan Solise
- Department of Obstetrics and Gynecology, University of
Mississippi Medical Center, Jackson, MS
| | - Evangeline Deer
- Department of Pharmacology & Toxicology, University of
Mississippi Medical Center, Jackson, MS
| | - Babbette LaMarca
- Department of Pharmacology & Toxicology, University of
Mississippi Medical Center, Jackson, MS
- Department of Obstetrics and Gynecology, University of
Mississippi Medical Center, Jackson, MS
| |
Collapse
|
8
|
Dap M, Chavatte-Palmer P, Morel O, Bertholdt C. Comments on "Prenatal interventions for fetal growth restriction in animal models: A systematic review". Placenta 2023; 139:212. [PMID: 37473551 DOI: 10.1016/j.placenta.2023.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 07/10/2023] [Indexed: 07/22/2023]
Affiliation(s)
- Matthieu Dap
- Obstetric and Fetal Medicine Unit, Centre Hospitalier Régional Universitaire of Nancy, Nancy, France; Department of Foetopathology and Placental Pathology, Centre Hospitalier Régional Universitaire of Nancy, Nancy, France; INSERM U1254, IADI, Vandoeuvre-lès-Nancy, France.
| | | | - Olivier Morel
- Obstetric and Fetal Medicine Unit, Centre Hospitalier Régional Universitaire of Nancy, Nancy, France; INSERM U1254, IADI, Vandoeuvre-lès-Nancy, France
| | - Charline Bertholdt
- Obstetric and Fetal Medicine Unit, Centre Hospitalier Régional Universitaire of Nancy, Nancy, France; INSERM U1254, IADI, Vandoeuvre-lès-Nancy, France
| |
Collapse
|
9
|
Orzeł A, Unrug-Bielawska K, Filipecka-Tyczka D, Berbeka K, Zeber-Lubecka N, Zielińska M, Kajdy A. Molecular Pathways of Altered Brain Development in Fetuses Exposed to Hypoxia. Int J Mol Sci 2023; 24:10401. [PMID: 37373548 DOI: 10.3390/ijms241210401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/12/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Perinatal hypoxia is a major cause of neurodevelopmental impairment and subsequent motor and cognitive dysfunctions; it is associated with fetal growth restriction and uteroplacental dysfunction during pregnancy. This review aims to present the current knowledge on brain development resulting from perinatal asphyxia, including the causes, symptoms, and means of predicting the degree of brain damage. Furthermore, this review discusses the specificity of brain development in the growth-restricted fetus and how it is replicated and studied in animal models. Finally, this review aims at identifying the least understood and missing molecular pathways of abnormal brain development, especially with respect to potential treatment intervention.
Collapse
Affiliation(s)
- Anna Orzeł
- Centre of Postgraduate Medical Education, I-st Department of Obstetrics and Gynecology, 01-813 Warsaw, Poland
| | - Katarzyna Unrug-Bielawska
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, 00-001 Warsaw, Poland
| | - Dagmara Filipecka-Tyczka
- Centre of Postgraduate Medical Education, I-st Department of Obstetrics and Gynecology, 01-813 Warsaw, Poland
| | - Krzysztof Berbeka
- Centre of Postgraduate Medical Education, I-st Department of Obstetrics and Gynecology, 01-813 Warsaw, Poland
| | - Natalia Zeber-Lubecka
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, 00-001 Warsaw, Poland
- Centre of Postgraduate Medical Education, Department of Gastroenterology, Hepatology and Clinical Oncology, 01-813 Warsaw, Poland
| | - Małgorzata Zielińska
- Centre of Postgraduate Medical Education, I-st Department of Obstetrics and Gynecology, 01-813 Warsaw, Poland
| | - Anna Kajdy
- Centre of Postgraduate Medical Education, I-st Department of Obstetrics and Gynecology, 01-813 Warsaw, Poland
| |
Collapse
|
10
|
Dong X, Lin X, Hou Q, Hu Z, Wang Y, Wang Z. Effect of Maternal Gradient Nutritional Restriction during Pregnancy on Mammary Gland Development in Offspring. Animals (Basel) 2023; 13:ani13050946. [PMID: 36899802 PMCID: PMC10000074 DOI: 10.3390/ani13050946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/17/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
We aimed to investigate the effect of different levels of nutritional restriction on mammary gland development during the embryonic period by gradient nutritional restriction in pregnant female mice. We started the nutritional restriction of 60 female CD-1(ICR) mice from day 9 of gestation based on 100%, 90%, 80%, 70% and 60% of ad libitum intake. After delivery, the weight and body fat of the offspring and the mother were recorded (n = 12). Offspring mammary development and gene expression were explored by whole mount and qPCR. Mammary development patterns of in offspring were constructed using Sholl analysis, principal component analysis (PCA) and regression analysis. We found that: (1) Mild maternal nutritional restriction (90-70% of ad libitum intake) did not affect offspring weight, while body fat percentage was more sensitive to nutritional restriction (lower at 80% ad libitum feeding). (2) A precipitous drop in mammary development and altered developmental patterns occurred when nutritional restriction ranged from 80% to 70% of ad libitum intake. (3) Mild maternal nutritional restriction (90% of ad libitum intake) promoted mammary-development-related gene expression. In conclusion, our results suggest that mild maternal nutritional restriction during gestation contributes to increased embryonic mammary gland development. When maternal nutritional restriction reaches 70% of ad libitum intake, the mammary glands of the offspring show noticeable maldevelopment. Our results help provide a theoretical basis for the effect of maternal nutritional restriction during gestation on offspring mammary development and a reference for the amount of maternal nutritional restriction.
Collapse
|
11
|
Valenzuela I, Zapletalova K, Greyling M, Regin Y, Gie A, Basurto D, Deprest J, van der Merwe J. Fetal Growth Restriction Impairs Lung Function and Neurodevelopment in an Early Preterm Rabbit Model. Biomedicines 2023; 11:biomedicines11010139. [PMID: 36672647 PMCID: PMC9855731 DOI: 10.3390/biomedicines11010139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/26/2022] [Accepted: 12/29/2022] [Indexed: 01/08/2023] Open
Abstract
We previously reported the multi-system sequelae of fetal growth restriction, induced by placental underperfusion, in near-term born rabbits, in the immediate neonatal period and up to pre-adolescence. Herein, we describe the pulmonary and neurodevelopmental consequences of FGR in rabbits born preterm. We hypothesize that FGR has an additional detrimental effect on prematurity in both pulmonary function and neurodevelopment. FGR was induced at gestational day (GD) 25 by placental underperfusion, accomplished by partial uteroplacental vessel ligation in one uterine horn. Rabbits were delivered by cesarean section at GD 29, and placentas were harvested for histology. Neonates underwent neurobehavioral or pulmonary functional assessment at postnatal day 1, followed by brain or lung harvesting, respectively. The neurodevelopmental assessment included neurobehavioral testing and multiregional quantification of cell density and apoptosis in the brain. Lung assessment included functional testing, alveolar morphometry, and airway histology. FGR was associated with higher perinatal mortality, lower birth and placental weight, and a similar brain-to-body weight ratio compared to controls. Placental underperfusion decreased labyrinth and junction zone volumes in FGR placentas. FGR impaired pulmonary function, depicted by higher parenchymal resistance, damping, and elastance. Alveolar morphometry and airway smooth muscle content were comparable between groups. Neurobehavioral tests showed motoric and sensorial impairment in FGR rabbits. In FGR brains, cell density was globally reduced, with higher apoptosis in selected areas. In conclusion, in preterm-born rabbits, placental underperfusion leads to higher mortality, FGR, and impaired lung and brain development in early assessment. This study complements previous findings of placental, pulmonary, and neurodevelopmental impairment in near-term born rabbits in this model.
Collapse
Affiliation(s)
- Ignacio Valenzuela
- Cluster Woman and Child, Department of Development and Regeneration, Group Biomedical Sciences, KU Leuven Herestraat 49, 3000 Leuven, Belgium
| | - Katerina Zapletalova
- Cluster Woman and Child, Department of Development and Regeneration, Group Biomedical Sciences, KU Leuven Herestraat 49, 3000 Leuven, Belgium
- Third Faculty of Medicine, Institute for the Care of Mother and Child, Charles University, 147 10 Prague, Czech Republic
| | - Marnel Greyling
- Cluster Woman and Child, Department of Development and Regeneration, Group Biomedical Sciences, KU Leuven Herestraat 49, 3000 Leuven, Belgium
| | - Yannick Regin
- Cluster Woman and Child, Department of Development and Regeneration, Group Biomedical Sciences, KU Leuven Herestraat 49, 3000 Leuven, Belgium
| | - Andre Gie
- Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University and Tygerberg Hospital, Cape Town 7505, South Africa
| | - David Basurto
- Cluster Woman and Child, Department of Development and Regeneration, Group Biomedical Sciences, KU Leuven Herestraat 49, 3000 Leuven, Belgium
| | - Jan Deprest
- Cluster Woman and Child, Department of Development and Regeneration, Group Biomedical Sciences, KU Leuven Herestraat 49, 3000 Leuven, Belgium
- Department of Obstetrics and Gynecology, Division Woman and Child, University Hospitals Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Johannes van der Merwe
- Cluster Woman and Child, Department of Development and Regeneration, Group Biomedical Sciences, KU Leuven Herestraat 49, 3000 Leuven, Belgium
- Department of Obstetrics and Gynecology, Division Woman and Child, University Hospitals Leuven, Herestraat 49, 3000 Leuven, Belgium
- Correspondence:
| |
Collapse
|