1
|
Kubler JM, Beetham KS, Steane SE, Holland OJ, Borg DJ, Rae KM, Kumar S, Clifton VL. Sex-specific associations between feto-placental growth and maternal physical activity volume and sitting time: Findings from the Queensland Family Cohort study. Placenta 2025; 160:107-117. [PMID: 39787953 DOI: 10.1016/j.placenta.2024.12.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/18/2024] [Accepted: 12/30/2024] [Indexed: 01/12/2025]
Abstract
INTRODUCTION Antenatal physical activity (PA) is associated with beneficial changes in placental growth and function; however, the effect of excessive sitting time is less clear. The aim of this study was to investigate whether feto-placental growth changes with maternal activity, and whether these associations differ in a sex-specific manner. METHODS This study included women enrolled in the Queensland Family Cohort study who self-reported PA and sitting time at 24 or 36 weeks of gestation. Placental growth factors and feto-placental growth parameters at delivery were analysed by PA volume and sitting time, as well as by fetal sex. RESULTS Women who reported excessive sitting time during mid-pregnancy and had a female fetus showed higher placental PlGF (p = 0.031) and FLT1 (p = 0.032) mRNA expression with no difference in placental size at delivery. For the male, excessive sitting time during mid-pregnancy was associated with a lower placental weight (p = 0.001) and placental surface area (p = 0.012) and a higher birthweight to placental weight (BWPW) ratio (p = 0.042), with no change in placental growth factors. Moderate volume PA during mid-pregnancy was associated with lower VEGFA mRNA expression in the male placenta (p = 0.005) and a higher abdominal circumference in the female neonate (p = 0.042), with no overall difference in placental weight or birthweight for either sex. CONCLUSIONS The results of this study suggest that mid-pregnancy may be an important timepoint for programming of feto-placental growth in relation to maternal activity. Our findings highlight the independent benefits of reducing sitting time during pregnancy, particularly for women carrying male fetuses.
Collapse
Affiliation(s)
- Jade M Kubler
- Faculty of Medicine, Mater Research Institute-University of Queensland, South Brisbane, Australia
| | - Kassia S Beetham
- School of Behavioural and Health Sciences, Australian Catholic University, Banyo, Australia
| | - Sarah E Steane
- School of Biomedical Sciences, University of Queensland, St Lucia, Australia
| | - Olivia J Holland
- School of Pharmacy and Medical Sciences, Griffith University, Southport, Australia
| | - Danielle J Borg
- Faculty of Medicine, Mater Research Institute-University of Queensland, South Brisbane, Australia
| | - Kym M Rae
- Faculty of Medicine, Mater Research Institute-University of Queensland, South Brisbane, Australia; Indigenous Health Research Group, Mater Research Institute, Aubigny Place, South Brisbane, Australia
| | - Sailesh Kumar
- Faculty of Medicine, Mater Research Institute-University of Queensland, South Brisbane, Australia
| | - Vicki L Clifton
- Faculty of Medicine, Mater Research Institute-University of Queensland, South Brisbane, Australia.
| |
Collapse
|
2
|
Paparini DE, Grasso E, Aguilera F, Arslanian MA, Lella V, Lara B, Schafir A, Gori S, Merech F, Hauk V, Schuster C, Martí M, Meller C, Ramhorst R, Vota D, Leirós CP. Sex-specific phenotypical, functional and metabolic profiles of human term placenta macrophages. Biol Sex Differ 2024; 15:80. [PMID: 39420346 PMCID: PMC11484421 DOI: 10.1186/s13293-024-00652-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 09/23/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Placental macrophages, Hofbauer cells (HBC) are the only fetal immune cell population within the stroma of healthy placenta along pregnancy. They are central players in maintaining immune tolerance during pregnancy. Immunometabolism emerged a few years ago as a new field that integrates cellular metabolism with immune responses, however, the immunometabolism of HBC has not been explored yet. Here we studied the sex-specific differences in the phenotypic, functional and immunometabolic profile of HBC. METHODS HBC were isolated from human term placentas (N = 31, 16 from male and 15 female neonates). Ex vivo assays were carried out to assess active metabolic and endoplasmic reticulum stress pathways by flow cytometry, confocal microscopy, gene expression and in silico approaches. RESULTS HBC from female placentas displayed a stronger M2 phenotype accompanied by high rates of efferocytosis majorly sustained on lipid metabolism. On the other hand, male HBC expressed a weaker M2 phenotype with higher glycolytic metabolism. LPS stimulation reinforced the glycolytic metabolism in male but not in female HBC. Physiological endoplasmic reticulum stress activates IRE-1 differently, since its pharmacological inhibition increased lipid mobilization, accumulation and efferocytosis only in female HBC. Moreover, differential sex-associated pathways accompanying the phenotypic and functional profiles of HBC appeared related to the placental villi environment. CONCLUSIONS These results support sex-associated effects on the immunometabolism of the HBC and adds another layer of complexity to the intricate maternal-fetal immune interaction.
Collapse
Affiliation(s)
- Daniel E Paparini
- Immunopharmacology Laboratory, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| | - Esteban Grasso
- Immunopharmacology Laboratory, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Franco Aguilera
- Immunopharmacology Laboratory, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Bioinformatic Laboratory, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | | | - Victoria Lella
- Obstetric Service, Hospital Italiano, Buenos Aires, Argentina
| | - Brenda Lara
- Immunopharmacology Laboratory, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Ana Schafir
- Immunopharmacology Laboratory, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Soledad Gori
- Immunopharmacology Laboratory, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Fátima Merech
- Immunopharmacology Laboratory, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Vanesa Hauk
- Immunopharmacology Laboratory, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Claudio Schuster
- Bioinformatic Laboratory, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Marcelo Martí
- Bioinformatic Laboratory, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Cesar Meller
- Obstetric Service, Hospital Italiano, Buenos Aires, Argentina
| | - Rosanna Ramhorst
- Immunopharmacology Laboratory, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Daiana Vota
- Immunopharmacology Laboratory, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Claudia Pérez Leirós
- Immunopharmacology Laboratory, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| |
Collapse
|
3
|
Ewing A, O'Callaghan JL, McCracken S, Ellery S, Lappas M, Holland OJ, Perkins A, Saif Z, Clifton VL. Placentae of small appropriately-grown-for-gestational-age neonates exhibit sexually dimorphic transcriptomic changes representative of placental insufficiency. Placenta 2024; 149:37-43. [PMID: 38492471 DOI: 10.1016/j.placenta.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/23/2024] [Accepted: 02/09/2024] [Indexed: 03/18/2024]
Abstract
INTRODUCTION Previous studies have reported that neonates less than the 25th BWC especially if they were male, were more likely to be associated with birth complications suggesting small neonates often identified as appropriately grown are at risk of adverse outcomes. We have questioned whether smaller neonates not typically categorized as "small for gestational age" may not reach their genetically determined growth due to placental insufficiency. METHODS RNA-Seq was performed on the Illumina NovaSeq 600 using term placentae from neonates that were less than the 10th birthweight centile (BWC) (n = 39), between the 10th and the 30th BWC (n = 15) or greater than the 30th BWC (n = 23). Bioinformatic analyses were conducted and statistical significance was assessed at a level of P < 0.05 for single comparisons or FDR <0.05 unless otherwise noted. RESULTS Gene set enrichment analysis revealed differences between BWC groups and in relation to the sex of the placenta. Genes associated with hypoxia, inflammatory responses, estrogen responsive genes, and androgen responsive genes were enriched (FDR <0.1) for in placentae of neonates <10th BWC regardless of sex and also in male placentae of neonates between the 10th-30th BWC. Female placenta of neonates between the 10th-30th BWC were comparable to placentae of neonates >30th BWC. DISCUSSION These findings provide evidence that small male neonates may be at a greater risk of an adverse outcome than females due to changes in gene expression that are associated with placental dysfunction. The current data raises questions of whether placental pathology for smaller appropriately grown neonates should be scientifically and clinically examined in more depth.
Collapse
Affiliation(s)
- Adam Ewing
- Mater Research Institute, Translational Research Institute, University of Queensland, Brisbane QLD, Australia
| | | | - Sharon McCracken
- Women and Babies Research, Perinatal Medicine, Faculty of Medicine and Health, The University of Sydney, New South Wales, Australia; Northern Sydney Local Health District Research (Kolling Institute), St Leonards, NSW, Australia
| | - Stacy Ellery
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
| | - Martha Lappas
- Department of Obstetrics, Gynaecology and Newborn Health, Mercy Hospital for Women, The University of Melbourne, Melbourne VIC, Australia
| | - Olivia J Holland
- School of Medical Science, Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia
| | - Anthony Perkins
- School of Health, University of the Sunshine Coast, Sippy Downs, QLD, Australia
| | - Zarqa Saif
- Mater Research Institute, Translational Research Institute, University of Queensland, Brisbane QLD, Australia
| | - Vicki L Clifton
- Mater Research Institute, Translational Research Institute, University of Queensland, Brisbane QLD, Australia.
| |
Collapse
|
4
|
Song YP, Lv JW, Zhang ZC, Qian QH, Fan YJ, Chen DZ, Zhang H, Xu FX, Zhang C, Huang Y, Wang H, Wei W, Xu DX. Effects of Gestational Arsenic Exposures on Placental and Fetal Development in Mice: The Role of Cyr61 m6A. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:97004. [PMID: 37682722 PMCID: PMC10489955 DOI: 10.1289/ehp12207] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 06/13/2023] [Accepted: 08/08/2023] [Indexed: 09/10/2023]
Abstract
BACKGROUND Several epidemiological investigations demonstrated that maternal arsenic (As) exposure elevated risk of fetal growth restriction (FGR), but the mechanism remains unclear. OBJECTIVES This study aimed to investigate the effects of gestational As exposure on placental and fetal development and its underlying mechanism. METHODS Dams were exposed to 0.15, 1.5, and 15 mg / L NaAsO 2 throughout pregnancy via drinking water. Sizes of fetuses and placentas, placental histopathology, and glycogen content were measured. Placental RNA sequencing was conducted. Human trophoblasts were exposed to NaAsO 2 (2 μ M ) to establish an in vitro model of As exposure. The mRNA stability and protein level of genes identified through RNA sequencing were measured. N 6 -Methyladenosine (m 6 A ) modification was detected by methylated RNA immunoprecipitation-quantitative real-time polymerase chain reason (qPCR). The binding ability of insulin-like growth factor 2 binding protein 2 to the gene of interest was detected by RNA-binding protein immunoprecipitation-qPCR. Intracellular S-adenosylmethionine (SAM) and methyltransferase activity were determined by liquid chromatography-tandem mass spectrometry (LC-MS/MS) and colorimetry, respectively. In vitro As + 3 methyltransferase (As3MT) knockdown or SAM supplementation and in vivo folic acid (FA) supplementation were used to evaluate the protective effect. A case-control study verified the findings. RESULTS Sizes of fetuses (exposed to 1.5 and 15 mg / L NaAsO 2 ) and placentas (exposed to 15 mg / L NaAsO 2 ) were lower in As-exposed mice. More glycogen + trophoblasts accumulated and the expression of markers of interstitial invasion was lower in the 15 mg / L NaAsO 2 -exposed mouse group in comparison with control. Placental RNA sequencing identified cysteine-rich angiogenic inducer 61 (Cyr61) as a candidate gene of interest. Mechanistically, mice and cells exposed to As had lower protein expression of CYR61, and this was attributed to a lower incidence of Cyr61 m 6 A . Furthermore, cells exposed to As had lower methyltransferase activity, suggesting that this could be the mechanism by which Cyr61 m 6 A was affected. Depletion of intracellular SAM, a cofactor for m 6 A methyltransferase catalytic domain, partially contributed to As-induced methyltransferase activity reduction. Either As3MT knockdown or SAM supplementation attenuated As-induced Cyr61 m 6 A down-regulation. In mice, FA supplementation rescued As-induced defective trophoblastic invasion and FGR. In humans, a negative correlation between maternal urinary As and plasma CYR61 was observed in infants who were small for gestational age. DISCUSSION Using in vitro and in vivo models, we found that intracellular SAM depletion-mediated Cyr61 m 6 A down-regulation partially contributed to As-induced defective trophoblastic invasion and FGR. https://doi.org/10.1289/EHP12207.
Collapse
Affiliation(s)
- Ya-Ping Song
- Department of Toxicology, Anhui Medical University, Hefei, Anhui, China
| | - Jin-Wei Lv
- Department of Toxicology, Anhui Medical University, Hefei, Anhui, China
| | - Zhi-Cheng Zhang
- Department of Toxicology, Anhui Medical University, Hefei, Anhui, China
| | - Qing-Hua Qian
- Department of Toxicology, Anhui Medical University, Hefei, Anhui, China
| | - Yi-Jun Fan
- Department of Toxicology, Anhui Medical University, Hefei, Anhui, China
- Second Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China
| | - Dao-Zhen Chen
- Wuxi Maternity and Child Health Care Hospital, Wuxi, Jiangsu, China
| | - Heng Zhang
- Wuxi Maternity and Child Health Care Hospital, Wuxi, Jiangsu, China
| | - Fei-Xiang Xu
- Department of Toxicology, Anhui Medical University, Hefei, Anhui, China
| | - Cheng Zhang
- Department of Toxicology, Anhui Medical University, Hefei, Anhui, China
| | - Yichao Huang
- Department of Toxicology, Anhui Medical University, Hefei, Anhui, China
| | - Hua Wang
- Department of Toxicology, Anhui Medical University, Hefei, Anhui, China
| | - Wei Wei
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Education Ministry of China, Anhui Medical University, Hefei, Anhui, China
| | - De-Xiang Xu
- Department of Toxicology, Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|