1
|
Matros A, Schikora A, Ordon F, Wehner G. QTL for induced resistance against leaf rust in barley. FRONTIERS IN PLANT SCIENCE 2023; 13:1069087. [PMID: 36714737 PMCID: PMC9877528 DOI: 10.3389/fpls.2022.1069087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 12/12/2022] [Indexed: 06/18/2023]
Abstract
Leaf rust caused by Puccinia hordei is one of the major diseases of barley (Hordeum vulgare L.) leading to yield losses up to 60%. Even though, resistance genes Rph1 to Rph28 are known, most of these are already overcome. In this context, priming may promote enhanced resistance to P. hordei. Several bacterial communities such as the soil bacterium Ensifer (syn. Sinorhizobium) meliloti are reported to induce resistance by priming. During quorum sensing in populations of gram negative bacteria, they produce N-acyl homoserine-lactones (AHL), which induce resistance in plants in a species- and genotype-specific manner. Therefore, the present study aims to detect genotypic differences in the response of barley to AHL, followed by the identification of genomic regions involved in priming efficiency of barley. A diverse set of 198 spring barley accessions was treated with a repaired E. meliloti natural mutant strain expR+ch producing a substantial amount of AHL and a transformed E. meliloti strain carrying the lactonase gene attM from Agrobacterium tumefaciens. For P. hordei resistance the diseased leaf area and the infection type were scored 12 dpi (days post-inoculation), and the corresponding relative infection and priming efficiency were calculated. Results revealed significant effects (p<0.001) of the bacterial treatment indicating a positive effect of priming on resistance to P. hordei. In a genome-wide association study (GWAS), based on the observed phenotypic differences and 493,846 filtered SNPs derived from the Illumina 9k iSelect chip, genotyping by sequencing (GBS), and exome capture data, 11 quantitative trait loci (QTL) were identified with a hot spot on the short arm of the barley chromosome 6H, associated to improved resistance to P. hordei after priming with E. meliloti expR+ch. Genes in these QTL regions represent promising candidates for future research on the mechanisms of plant-microbe interactions.
Collapse
Affiliation(s)
- Andrea Matros
- Julius Kühn Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Resistance Research and Stress Tolerance, Quedlinburg, Germany
| | - Adam Schikora
- Julius Kühn Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany
| | - Frank Ordon
- Julius Kühn Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Resistance Research and Stress Tolerance, Quedlinburg, Germany
- Julius Kühn Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany
| | - Gwendolin Wehner
- Julius Kühn Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Resistance Research and Stress Tolerance, Quedlinburg, Germany
| |
Collapse
|
2
|
Perera D, Magbanua ZV, Thummasuwan S, Mukherjee D, Arick M, Chouvarine P, Nairn CJ, Schmutz J, Grimwood J, Dean JFD, Peterson DG. Exploring the loblolly pine (Pinus taeda L.) genome by BAC sequencing and Cot analysis. Gene 2018; 663:165-177. [PMID: 29655895 DOI: 10.1016/j.gene.2018.04.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 03/20/2018] [Accepted: 04/10/2018] [Indexed: 02/06/2023]
Abstract
Loblolly pine (LP; Pinus taeda L.) is an economically and ecologically important tree in the southeastern U.S. To advance understanding of the loblolly pine (LP; Pinus taeda L.) genome, we sequenced and analyzed 100 BAC clones and performed a Cot analysis. The Cot analysis indicates that the genome is composed of 57, 24, and 10% highly-repetitive, moderately-repetitive, and single/low-copy sequences, respectively (the remaining 9% of the genome is a combination of fold back and damaged DNA). Although single/low-copy DNA only accounts for 10% of the LP genome, the amount of single/low-copy DNA in LP is still 14 times the size of the Arabidopsis genome. Since gene numbers in LP are similar to those in Arabidopsis, much of the single/low-copy DNA of LP would appear to be composed of DNA that is both gene- and repeat-poor. Macroarrays prepared from a LP bacterial artificial chromosome (BAC) library were hybridized with probes designed from cell wall synthesis/wood development cDNAs, and 50 of the "targeted" clones were selected for further analysis. An additional 25 clones were selected because they contained few repeats, while 25 more clones were selected at random. The 100 BAC clones were Sanger sequenced and assembled. Of the targeted BACs, 80% contained all or part of the cDNA used to target them. One targeted BAC was found to contain fungal DNA and was eliminated from further analysis. Combinations of similarity-based and ab initio gene prediction approaches were utilized to identify and characterize potential coding regions in the 99 BACs containing LP DNA. From this analysis, we identified 154 gene models (GMs) representing both putative protein-coding genes and likely pseudogenes. Ten of the GMs (all of which were specifically targeted) had enough support to be classified as intact genes. Interestingly, the 154 GMs had statistically indistinguishable (α = 0.05) distributions in the targeted and random BAC clones (15.18 and 12.61 GM/Mb, respectively), whereas the low-repeat BACs contained significantly fewer GMs (7.08 GM/Mb). However, when GM length was considered, the targeted BACs had a significantly greater percentage of their length in GMs (3.26%) when compared to random (1.63%) and low-repeat (0.62%) BACs. The results of our study provide insight into LP evolution and inform ongoing efforts to produce a reference genome sequence for LP, while characterization of genes involved in cell wall production highlights carbon metabolism pathways that can be leveraged for increasing wood production.
Collapse
Affiliation(s)
- Dinum Perera
- Institute for Genomics, Biocomputing & Biotechnology, Mississippi State University, Mississippi State, MS 39762, USA
| | - Zenaida V Magbanua
- National Institute of Molecular Biology & Biotechnology, National Science Complex, College of Science, University of the Philippines, Diliman, Quezon City, Philippines
| | - Supaphan Thummasuwan
- Department of Agricultural Sciences, Naresuan University, Phitsanulok, Thailand.
| | - Dipaloke Mukherjee
- Department of Food Science, Nutrition, & Health Promotion, Mississippi State University, Mississippi State, MS 39762, USA.
| | - Mark Arick
- Institute for Genomics, Biocomputing & Biotechnology, Mississippi State University, Mississippi State, MS 39762, USA.
| | - Philippe Chouvarine
- Texas Children's Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Campbell J Nairn
- Warnell School of Forest Resources, University of Georgia, Athens, GA 30602, USA.
| | - Jeremy Schmutz
- US Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA; HudsonAlpha Institute for Biotechnology, 601 Genome Way, Huntsville, AL 35801, USA.
| | - Jane Grimwood
- US Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA; HudsonAlpha Institute for Biotechnology, 601 Genome Way, Huntsville, AL 35801, USA.
| | - Jeffrey F D Dean
- Department of Biochemistry, Molecular Biology, Entomology & Plant Pathology, Mississippi State University, Mississippi State, MS 39762, USA.
| | - Daniel G Peterson
- Institute for Genomics, Biocomputing & Biotechnology, Mississippi State University, Mississippi State, MS 39762, USA; Department of Plant & Soil Sciences, Mississippi State University, Mississippi State, MS 39762, USA.
| |
Collapse
|
3
|
Tomková-Drábková L, Psota V, Sachambula L, Leišová-Svobodová L, Mikyška A, Kučera L. Changes in polyphenol compounds and barley laccase expression during the malting process. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2016; 96:497-504. [PMID: 25639800 DOI: 10.1002/jsfa.7116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 12/16/2014] [Accepted: 01/28/2015] [Indexed: 06/04/2023]
Abstract
BACKGROUND Polyphenols and phenolic acid are able to slow down or prevent oxidation processes and are therefore thought to have important effects in malting and brewing. Laccase catalyses the oxidation of a wide variety of substrates, including polyphenols. The aim of this paper was to determine the changes in polyphenol compounds and the relative expression of the HvLac1 gene during malting. RESULTS The dominant phenolic acid was ferulic acid. The amount of ferulic acid increased, whereas the amount of vanillic acid decreased during malting. The highest levels of expression of the HvLac1 gene were observed during the third air rest period in varieties with the 'Haruna Nijo' (HN) allele, as recommended for the production of beer with the protected geographical indication (PGI) 'Česke pivo' (Czech beer), whereas the highest expression was observed in the first day of germination in varieties with the 'Morex' (M) allele. However, the profiles of HvLac1 gene expression in varieties with alternative alleles during malting were similar, and the level of polyphenol compounds throughout malting was different. CONCLUSION The polyphenol contents in barley increased several-fold during malting, and the degree of increase differed with variety. The expression of HvLac1 transcript was similar in every barley variety.
Collapse
Affiliation(s)
| | - Vratislav Psota
- Research Institute of Brewing and Malting, PLC (RIBM), 12044 Praha, Czech Republic
| | - Lenka Sachambula
- Research Institute of Brewing and Malting, PLC (RIBM), 12044 Praha, Czech Republic
| | | | - Alexandr Mikyška
- Research Institute of Brewing and Malting, PLC (RIBM), 12044 Praha, Czech Republic
| | - Ladislav Kučera
- Crop Research Institute, Drnovská 507, 161 06 Praha 6, Ruzyně, Czech Republic
| |
Collapse
|