1
|
Liu X, Elzenga JTM, Venema JH, Tiedge KJ. Thriving in a salty future: morpho-anatomical, physiological and molecular adaptations to salt stress in alfalfa (Medicago sativa L.) and other crops. ANNALS OF BOTANY 2024; 134:1113-1130. [PMID: 39215647 PMCID: PMC11688534 DOI: 10.1093/aob/mcae152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND With soil salinity levels rising at an alarming rate, accelerated by climate change and human interventions, there is a growing need for crop varieties that can grow on saline soils. Alfalfa (Medicago sativa) is a cool-season perennial leguminous crop, commonly grown as forage, biofuel feedstock and soil conditioner. It demonstrates significant potential for agricultural circularity and sustainability, for example by fixing nitrogen, sequestering carbon and improving soil structures. Although alfalfa is traditionally regarded as a moderately salt-tolerant species, modern alfalfa varieties display specific salt-tolerance mechanisms, which could be used to pave its role as a leading crop able to grow on saline soils. SCOPE Alfalfa's salt tolerance underlies a large variety of cascading biochemical and physiological mechanisms. These are partly enabled by its complex genome structure and out-crossing nature, but which entail impediments for molecular and genetic studies. This review first summarizes the general effects of salinity on plants and the broad-ranging mechanisms for dealing with salt-induced osmotic stress, ion toxicity and secondary stress. Second, we address the defensive and adaptive strategies that have been described for alfalfa, such as the plasticity of alfalfa's root system, hormonal crosstalk for maintaining ion homeostasis, spatiotemporal specialized metabolite profiles and the protection of alfalfa-rhizobia associations. Finally, bottlenecks for research of the physiological and molecular salt-stress responses as well as biotechnology-driven improvements of salt tolerance are identified and discussed. CONCLUSION Understanding morpho-anatomical, physiological and molecular responses to salinity is essential for the improvement of alfalfa and other crops in saline land reclamation. This review identifies potential breeding targets for enhancing the stability of alfalfa performance and general crop robustness for rising salt levels as well as to promote alfalfa applications in saline land management.
Collapse
Affiliation(s)
- Xu Liu
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - J Theo M Elzenga
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Jan Henk Venema
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Kira J Tiedge
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
2
|
Basak S, Parajulee D, Dhir S, Sangra A, Dhir SK. Improved Protocol for Efficient Agrobacterium-Mediated Transient Gene Expression in Medicago sativa L. PLANTS (BASEL, SWITZERLAND) 2024; 13:2992. [PMID: 39519910 PMCID: PMC11547841 DOI: 10.3390/plants13212992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/18/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024]
Abstract
Medicago sativa L. (Alfalfa) is a globally recognized forage legume that has recently gained attention for its high protein content, making it suitable for both human and animal consumption. However, due to its perennial nature and autotetraploid genetics, conventional plant breeding requires a longer timeframe compared to other crops. Therefore, genetic engineering offers a faster route for trait modification and improvement. Here, we describe a protocol for achieving efficient transient gene expression in alfalfa through genetic transformation with the Agrobacterium tumefaciens pCAMBIA1304 vector. This vector contains the reporter genes β-glucuronidase (GUS) and green fluorescent protein (GFP), along with a selectable hygromycin B phosphotransferase gene, all driven by the CaMV 35s promoter. Various transformation parameters-such as different explant types, leaf ages, leaf sizes, wounding types, bacterial concentrations (OD600nm), tissue preculture periods, infection periods, co-cultivation periods, and different concentrations of acetosyringone, silver nitrate, and calcium chloride-were optimized using 3-week-old in vitro-grown plantlets. Results were attained from data based on the semi-quantitative observation of the percentage and number of GUS spots on different days of agro-infection in alfalfa explants. The highest percentage of GUS positivity (76.2%) was observed in 3-week-old, scalpel-wounded, segmented alfalfa leaf explants after 3 days of agro-infection at a bacterial concentration of 0.6, with 2 days of preculture, 30 min of co-cultivation, and the addition of 150 µM acetosyringone, 4 mM calcium chloride, and 75 µM silver nitrate. The transient expression of genes of interest was confirmed via histochemical GUS and GFP assays. The results based on transient reporter gene expression suggest that various factors influence T-DNA delivery in the Agrobacterium-mediated transformation of alfalfa. The improved protocol can be used in stable transformation techniques for alfalfa.
Collapse
Affiliation(s)
- Suma Basak
- Center for Biotechnology, Department of Agricultural Sciences, Fort Valley State University, Fort Valley, GA 31030, USA; (D.P.); (S.K.D.)
| | - Dipika Parajulee
- Center for Biotechnology, Department of Agricultural Sciences, Fort Valley State University, Fort Valley, GA 31030, USA; (D.P.); (S.K.D.)
| | - Seema Dhir
- Department of Biology, College of Arts and Sciences, Fort Valley State University, Fort Valley, GA 31030, USA;
| | - Ankush Sangra
- Department of Genetics, University of Georgia, Athens, GA 30602, USA;
| | - Sarwan K. Dhir
- Center for Biotechnology, Department of Agricultural Sciences, Fort Valley State University, Fort Valley, GA 31030, USA; (D.P.); (S.K.D.)
| |
Collapse
|
3
|
Mehla S, Singh Y, Kumar U, Balyan P, Singh KP, Dhankher OP. Overexpression of rice lectin receptor-like kinase, OsLec-RLK, confers salinity stress tolerance and increases seed yield in pigeon pea (Cajanus cajan (L.) Millsp.). PLANT CELL REPORTS 2024; 43:230. [PMID: 39251423 DOI: 10.1007/s00299-024-03314-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 08/10/2024] [Indexed: 09/11/2024]
Abstract
KEY MESSAGE OsLec-RLK overexpression enhances cell signalling and salt stress tolerance in pigeon pea, enhancing seed yield and harvest index and thus, enabling marginal lands to increase food and nutritional security. Lectin Receptor-like kinases (Lec-RLKs) are highly effective cell signaling molecules that counteract various stresses, including salt stress. We engineered pigeon pea by overexpressing OsLec-RLK gene for enhancing salt tolerance. The OsLec-RLK overexpression lines demonstrated superior performance under salt stress, from vegetative to reproductive phase, compared to wild types (WT). The overexpression lines had significantly higher K+/Na+ ratio than WT exposed to 100 mM NaCl. Under salt stress, transgenic lines showed higher levels of chlorophyll, proline, total soluble sugars, relative water content, and peroxidase and catalase activity than WT plants. Membrane injury index and lipid peroxidation were significantly reduced in transgenic lines. Analysis of phenological and yield attributes confirmed that the OsLec-RLK pigeon pea lines maintain plant vigor, with 10.34-fold increase in seed yield (per plant) and 4-5-fold increase in harvest index of overexpression lines, compared to wild type. Meanwhile, the overexpression of OsLec-RLK up-regulated the expression levels of histone deacetylase1, acyl CoA, ascorbate peroxidase, peroxidase, glutathione reductase and catalase, which were involved in the K+/Na+ homeostasis pathway. This study showed the potential of OsLec-RLK gene for increasing crop productivity and yields under salt stress and enabling the crops to be grown on marginal lands for increasing food and nutritional security.
Collapse
Affiliation(s)
- Sheetal Mehla
- Department of Molecular Biology and Biotechnology, College of Biotechnology, CCS Haryana Agricultural University, Hisar, 125004, India
| | - Yogita Singh
- Department of Molecular Biology and Biotechnology, College of Biotechnology, CCS Haryana Agricultural University, Hisar, 125004, India
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, 01003, USA
| | - Upendra Kumar
- Department of Molecular Biology and Biotechnology, College of Biotechnology, CCS Haryana Agricultural University, Hisar, 125004, India.
- Department of Plant Science, Mahatma Jyotiba Phule Rohilkhand University, Bareilly, 243006, India.
| | - Priyanka Balyan
- Department of Botany, Deva Nagri P.G. College, CCS University, Meerut, 245206, India
| | - Krishna Pal Singh
- Biophysics Unit, College of Basic Sciences & Humanities, GB Pant University of Agriculture & Technology, Pantnagar, 263145, India
- Vice-Chancellor's Secretariat, Mahatma Jyotiba Phule Rohilkhand University, Bareilly, 243001, India
| | - Om Parkash Dhankher
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, 01003, USA.
| |
Collapse
|
4
|
Lin S, Yang J, Liu Y, Zhang W. MsSPL12 is a positive regulator in alfalfa (Medicago sativa L.) salt tolerance. PLANT CELL REPORTS 2024; 43:101. [PMID: 38498195 DOI: 10.1007/s00299-024-03175-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 02/09/2024] [Indexed: 03/20/2024]
Abstract
KEY MESSAGE Over expression of MsSPL12 improved alfalfa salt tolerance by reducing Na+ accumulation and increasing antioxidant enzyme activity and regulating down-stream gene expression. Improvement of salt tolerance is one of the major goals in alfalfa breeding. Here, we demonstrated that MsSPL12, an alfalfa transcription factor gene highly expressed in the stem cells, plays a positive role in alfalfa salt tolerance. MsSPL12 is localized in the nucleus and shows transcriptional activity in the presence of its C-terminus. To investigate MsSPL12 function in plant response to salt stress, we generated transgenic plants overexpressing either MsSPL12 or a chimeric MsSPL12-SRDX gene that represses the function of MsSPL12 by using the Chimeric REpressor gene-Silencing Technology (CRES-T), and observed that overexpression of MsSPL12 increased the salt tolerance of alfalfa transgenic plants associated with an increase in K+/Na+ ratio and relative water content (RWC) under salt stress treatment, but a reduction in electrolyte leakage (EL), reactive oxygen species (ROS), malondialdehyde (MDA), and proline (Pro) compared to wild type (WT) plants. However, transgenic plants overexpressing MsSPL12-SRDX showed an inhibited plant growth and a reduced salt tolerance. RNA-sequencing and quantitative real-time PCR analyses revealed that MsSPL12 affected the expression of plant abiotic resistance-related genes in multiple physiological pathways. The potential MsSPL12-mediated regulatory pathways based on the differentially expressed genes between the MsSPL12 overexpression transgenics and WT controls were predicted. In summary, our study proves that MsSPL12 is a positive regulator in alfalfa salt tolerance and can be used as a new candidate for manipulation to develop forage crops with enhanced salt tolerance.
Collapse
Affiliation(s)
- Shiwen Lin
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Jie Yang
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yanrong Liu
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Wanjun Zhang
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China.
- Key Lab of Grassland Science in Beijing, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
5
|
Zhang Z, Zhao Y, Chen Y, Li Y, Pan L, Wang S, Wang P, Fan S. Overexpression of TCP9-like gene enhances salt tolerance in transgenic soybean. PLoS One 2023; 18:e0288985. [PMID: 37494336 PMCID: PMC10370689 DOI: 10.1371/journal.pone.0288985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 07/08/2023] [Indexed: 07/28/2023] Open
Abstract
TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTOR (TCP) transcription factors are a plant-specific family and play roles in plant growth, development, and responses to biotic and abiotic stresses. However, little is known about the functions of the TCP transcription factors in the soybean cultivars with tolerance to salt stress. In this study, TCP9-like, a TCP transcription factor, was identified in the soybean cultivars exposed to salt stress. The expression of TCP9-like gene in the roots of salt-tolerant soybean cultivars was higher than that in salt-sensitive cultivars treated with NaCl. The overexpression of TCP9-like enhanced the salt tolerance of the salt-sensitive soybean cultivar 'DN50'. In T2 generation, the plants with TCP9-like overexpression had significantly lower Na+ accumulation and higher K+ accumulation than the WT plants exposed to 200 or 250 mmol/L NaCl. The K+/Na+ ratio in the plants overexpressing TCP9-like was significantly higher than that in WT plants treated with 200 mmol/L NaCl. Meanwhile, the overexpression of TCP9-like up-regulated the expression levels of GmNHX1, GmNHX3, GmSOS1, GmSOS2-like, and GmHKT1, which were involved in the K+/Na+ homeostasis pathway. The findings indicated that TCP9-like mediated the regulation of both Na+ and K+ accumulation to improve the tolerance of soybean to salt stress.
Collapse
Affiliation(s)
- Zhuo Zhang
- Plant Biotechnology Center, College of Agronomy, Jilin Agriculture University, Changchun, Jilin, People's Republic of China
| | - Yuanling Zhao
- Crop Resources Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang, People's Republic of China
| | - Yifan Chen
- Plant Biotechnology Center, College of Agronomy, Jilin Agriculture University, Changchun, Jilin, People's Republic of China
| | - Yueming Li
- Plant Biotechnology Center, College of Agronomy, Jilin Agriculture University, Changchun, Jilin, People's Republic of China
| | - Lijun Pan
- Plant Biotechnology Center, College of Agronomy, Jilin Agriculture University, Changchun, Jilin, People's Republic of China
| | - Siyu Wang
- Plant Biotechnology Center, College of Agronomy, Jilin Agriculture University, Changchun, Jilin, People's Republic of China
| | - Piwu Wang
- Plant Biotechnology Center, College of Agronomy, Jilin Agriculture University, Changchun, Jilin, People's Republic of China
| | - Sujie Fan
- Plant Biotechnology Center, College of Agronomy, Jilin Agriculture University, Changchun, Jilin, People's Republic of China
| |
Collapse
|
6
|
Zhang M, Qin S, Yan J, Li L, Xu M, Liu Y, Zhang W. Genome-wide identification and analysis of TCP family genes in Medicago sativa reveal their critical roles in Na +/K + homeostasis. BMC PLANT BIOLOGY 2023; 23:301. [PMID: 37280506 DOI: 10.1186/s12870-023-04318-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 05/26/2023] [Indexed: 06/08/2023]
Abstract
BACKGROUND Medicago sativa is the most important forage world widely, and is characterized by high quality and large biomass. While abiotic factors such as salt stress can negatively impact the growth and productivity of alfalfa. Maintaining Na+/K+ homeostasis in the cytoplasm helps reduce cell damage and nutritional deprivation, which increases a salt-tolerance of plant. Teosinte Branched1/ Cycloidea/ Proliferating cell factors (TCP) family genes, a group of plant-specific transcription factors (TFs), involved in regulating plant growth and development and abiotic stresses. Recent studies have shown TCPs control the Na+/K+ concentration of plants during salt stress. In order to improve alfalfa salt tolerance, it is important to identify alfalfa TCP genes and investigate if and how they regulate alfalfa Na+/K+ homeostasis. RESULTS Seventy-one MsTCPs including 23 non-redundant TCP genes were identified in the database of alfalfa genome (C.V XinJiangDaYe), they were classified into class I PCF (37 members) and class II: CIN (28 members) and CYC/TB1 (9 members). Their distribution on chromosome were unequally. MsTCPs belonging to PCF were expressed specifically in different organs without regularity, which belonging to CIN class were mainly expressed in mature leaves. MsTCPs belongs to CYC/TB1 clade had the highest expression level at meristem. Cis-elements in the promoter of MsTCPs were also predicted, the results indicated that most of the MsTCPs will be induced by phytohormone and stress treatments, especially by ABA-related stimulus including salinity stress. We found 20 out of 23 MsTCPs were up-regulated in 200 mM NaCl treatment, and MsTCP3/14/15/18 were significantly induced by 10 μM KCl, a K+ deficiency treatment. Fourteen non-redundant MsTCPs contained miR319 target site, 11 of them were upregulated in MIM319 transgenic alfalfa, and among them four (MsTCP3/4/10A/B) genes were directly degraded by miR319. MIM319 transgene alfalfa plants showed a salt sensitive phenotype, which caused by a lower content of potassium in alfalfa at least partly. The expression of potassium transported related genes showed significantly higher expression in MIM319 plants. CONCLUSIONS We systematically analyzes the MsTCP gene family at a genome-wide level and reported that miR319-TCPs model played a function in K+ up-taking and/ or transportation especially in salt stress. The study provide valuable information for future study of TCP genes in alfalfa and supplies candidate genes for salt-tolerance alfalfa molecular-assisted breeding.
Collapse
Affiliation(s)
- Mingxiao Zhang
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Shangqian Qin
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Jianping Yan
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Lin Li
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Mingzhi Xu
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yanrong Liu
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China.
| | - Wanjun Zhang
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
7
|
Yan J, Qiu R, Wang K, Liu Y, Zhang W. Enhancing alfalfa resistance to Spodoptera herbivory by sequestering microRNA396 expression. PLANT CELL REPORTS 2023; 42:805-819. [PMID: 36757447 DOI: 10.1007/s00299-023-02993-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
KEY MESSAGE Sequestering microRNA396 by overexpression of MIM396 enhanced alfalfa resistance to Spodoptera litura larvae, which may be due to increased lignin content and enhanced low-molecular weight flavonoids and glucosinolates biosynthesis. Alfalfa (Medicago sativa), the most important leguminous forage crop, suffers from the outbreak of defoliator insects, especially Spodoptera litura, resulting in heavy losses in yield and forage quality. Here, we found that the expression of alfalfa microRNA396 (miR396) precursor genes and mature miR396 was significantly up-regulated in wounding treatment that simulates feeding injury by defoliator insects. To verify the function of miR396 in alfalfa resistance to insect, we generated MIM396 transgenic alfalfa plants with significantly down-regulated miR396 expression by Agrobacterium-mediated genetic transformation. The MIM396 transgenic alfalfa plants exhibited improved resistance to Spodoptera litura larvae with increased lignin content but decreased JA accumulation. Most of the miR396 putative target GRF genes were up-regulated in MIM396 transgenic lines, and responded to the wounding treatment. By RNA sequencing analysis, we found that the differentially expressed genes related to insect resistance between WT and MIM396 transgenic plants mainly clustered in biosynthesis pathways in lignin, flavonoids and glucosinolates. In addition to the phenotype of enhanced insect resistance, MIM396 transgenic plants also displayed reduced biomass yield and forage quality. Our results broaden the function of miR396 in alfalfa and provide genetic resources for studying alfalfa insect resistance.
Collapse
Affiliation(s)
- Jianping Yan
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Rumeng Qiu
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Kexin Wang
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yanrong Liu
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Wanjun Zhang
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
8
|
Mbinda W, Mukami A. A Review of Recent Advances and Future Directions in the Management of Salinity Stress in Finger Millet. FRONTIERS IN PLANT SCIENCE 2021; 12:734798. [PMID: 34603359 PMCID: PMC8481900 DOI: 10.3389/fpls.2021.734798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/16/2021] [Indexed: 06/13/2023]
Abstract
Salinity stress is a major environmental impediment affecting the growth and production of crops. Finger millet is an important cereal grown in many arid and semi-arid areas of the world characterized by erratic rainfall and scarcity of good-quality water. Finger millet salinity stress is caused by the accumulation of soluble salts due to irrigation without a proper drainage system, coupled with the underlying rocks having a high salt content, which leads to the salinization of arable land. This problem is projected to be exacerbated by climate change. The use of new and efficient strategies that provide stable salinity tolerance across a wide range of environments can guarantee sustainable production of finger millet in the future. In this review, we analyze the strategies that have been used for salinity stress management in finger millet production and discuss potential future directions toward the development of salt-tolerant finger millet varieties. This review also describes how advanced biotechnological tools are being used to develop salt-tolerant plants. The biotechnological techniques discussed in this review are simple to implement, have design flexibility, low cost, and highly efficient. This information provides insights into enhancing finger millet salinity tolerance and improving production.
Collapse
Affiliation(s)
- Wilton Mbinda
- Department of Biochemistry and Biotechnology, Pwani University, Kilifi, Kenya
- Pwani University Biosciences Research Centre (PUBReC), Pwani University, Kilifi, Kenya
| | - Asunta Mukami
- Department of Life Sciences, South Eastern Kenya University, Kitui, Kenya
| |
Collapse
|
9
|
Analysis of Gene Expression Changes in Plants Grown in Salty Soil in Response to Inoculation with Halophilic Bacteria. Int J Mol Sci 2021; 22:ijms22073611. [PMID: 33807153 PMCID: PMC8036567 DOI: 10.3390/ijms22073611] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 03/25/2021] [Accepted: 03/27/2021] [Indexed: 12/24/2022] Open
Abstract
Soil salinity is an increasing problem facing agriculture in many parts of the world. Climate change and irrigation practices have led to decreased yields of some farmland due to increased salt levels in the soil. Plants that have tolerance to salt are thus needed to feed the world's population. One approach addressing this problem is genetic engineering to introduce genes encoding salinity, but this approach has limitations. Another fairly new approach is the isolation and development of salt-tolerant (halophilic) plant-associated bacteria. These bacteria are used as inoculants to stimulate plant growth. Several reports are now available, demonstrating how the use of halophilic inoculants enhance plant growth in salty soil. However, the mechanisms for this growth stimulation are as yet not clear. Enhanced growth in response to bacterial inoculation is expected to be associated with changes in plant gene expression. In this review, we discuss the current literature and approaches for analyzing altered plant gene expression in response to inoculation with halophilic bacteria. Additionally, challenges and limitations to current approaches are analyzed. A further understanding of the molecular mechanisms involved in enhanced plant growth when inoculated with salt-tolerant bacteria will significantly improve agriculture in areas affected by saline soils.
Collapse
|
10
|
Zhu Z, Zhang H, Leng J, Niu H, Chen X, Liu D, Chen Y, Gao N, Ying H. Isolation and characterization of plant growth-promoting rhizobacteria and their effects on the growth of Medicago sativa L. under salinity conditions. Antonie van Leeuwenhoek 2020; 113:1263-1278. [PMID: 32564275 DOI: 10.1007/s10482-020-01434-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 06/07/2020] [Indexed: 12/19/2022]
Abstract
Plant growth-promoting rhizobacteria are a group of free-living bacteria that colonize plant rhizosphere and benefit plant root growth, thereby increasing host plant to cope with salinity induced stress. The aim of this study was to (1) isolate and characterize auxin-producing bacteria showing a high plant growth-promoting (PGP) potential, and (2) evaluate the PGP effects on the growth of Medicago sativa L under salinity stress (130 mM NaCl). Of thirteen isolates, Bacillus megaterium NRCB001 (NRCB001), B. subtilis subsp. subtilis NRCB002 (NRCB002) and B. subtilis NRCB003 (NRCB003) had the ability to produce auxin, which ranged from 47.53 to 154.38 μg ml-1. The three auxin-producing bacterial strains were shown multiple PGP traits, such as producing siderophore and NH3, showing ACC deaminase activity, solubilize phosphate and potassium. Furthermore, NRCB001, NRCB002, and NRCB003 could survive in LB medium containing 1750 mM NaCl. The three auxin-producing with salinity tolerance strains were selected for further analyses. In greenhouse experiments, when inoculated with NRCB001, NRCB002 and NRCB003, dry weight of alfalfa significantly (P < 0.05) increased by 24.1%, 23.1% and 38.5% respectively, compared with those of non-inoculated control seedlings under normal growth condition. When inoculated with NRCB002 and NRCB003, dry weight of alfalfa significantly (P < 0.05) increased by 96.9 and 71.6% respectively, compared with those of non-inoculated control seedlings under 130 mM NaCl condition. Our results indicated that NRCB002 and NRCB003 having PGP traits are promising candidate strains to develop biofertilizers, especially used under salinity stress conditions.
Collapse
Affiliation(s)
- Zhiyu Zhu
- National Engineering Research Center for Biotechnology, School of Biological and Pharmaceutical Engineering, Nanjing Tech University, No. 30, Puzhu Road(s), Nanjing, 211816, China
| | - Huanhuan Zhang
- National Engineering Research Center for Biotechnology, School of Biological and Pharmaceutical Engineering, Nanjing Tech University, No. 30, Puzhu Road(s), Nanjing, 211816, China
| | - Jing Leng
- National Engineering Research Center for Biotechnology, School of Biological and Pharmaceutical Engineering, Nanjing Tech University, No. 30, Puzhu Road(s), Nanjing, 211816, China
| | - Huanqing Niu
- National Engineering Research Center for Biotechnology, School of Biological and Pharmaceutical Engineering, Nanjing Tech University, No. 30, Puzhu Road(s), Nanjing, 211816, China
| | - Xiaochun Chen
- National Engineering Research Center for Biotechnology, School of Biological and Pharmaceutical Engineering, Nanjing Tech University, No. 30, Puzhu Road(s), Nanjing, 211816, China
| | - Dong Liu
- National Engineering Research Center for Biotechnology, School of Biological and Pharmaceutical Engineering, Nanjing Tech University, No. 30, Puzhu Road(s), Nanjing, 211816, China
| | - Yong Chen
- National Engineering Research Center for Biotechnology, School of Biological and Pharmaceutical Engineering, Nanjing Tech University, No. 30, Puzhu Road(s), Nanjing, 211816, China
| | - Nan Gao
- National Engineering Research Center for Biotechnology, School of Biological and Pharmaceutical Engineering, Nanjing Tech University, No. 30, Puzhu Road(s), Nanjing, 211816, China.
| | - Hanjie Ying
- National Engineering Research Center for Biotechnology, School of Biological and Pharmaceutical Engineering, Nanjing Tech University, No. 30, Puzhu Road(s), Nanjing, 211816, China.
| |
Collapse
|
11
|
Chen H, Zeng Y, Yang Y, Huang L, Tang B, Zhang H, Hao F, Liu W, Li Y, Liu Y, Zhang X, Zhang R, Zhang Y, Li Y, Wang K, He H, Wang Z, Fan G, Yang H, Bao A, Shang Z, Chen J, Wang W, Qiu Q. Allele-aware chromosome-level genome assembly and efficient transgene-free genome editing for the autotetraploid cultivated alfalfa. Nat Commun 2020; 11:2494. [PMID: 32427850 PMCID: PMC7237683 DOI: 10.1038/s41467-020-16338-x] [Citation(s) in RCA: 233] [Impact Index Per Article: 46.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 04/28/2020] [Indexed: 02/07/2023] Open
Abstract
Artificially improving traits of cultivated alfalfa (Medicago sativa L.), one of the most important forage crops, is challenging due to the lack of a reference genome and an efficient genome editing protocol, which mainly result from its autotetraploidy and self-incompatibility. Here, we generate an allele-aware chromosome-level genome assembly for the cultivated alfalfa consisting of 32 allelic chromosomes by integrating high-fidelity single-molecule sequencing and Hi-C data. We further establish an efficient CRISPR/Cas9-based genome editing protocol on the basis of this genome assembly and precisely introduce tetra-allelic mutations into null mutants that display obvious phenotype changes. The mutated alleles and phenotypes of null mutants can be stably inherited in generations in a transgene-free manner by cross pollination, which may help in bypassing the debate about transgenic plants. The presented genome and CRISPR/Cas9-based transgene-free genome editing protocol provide key foundations for accelerating research and molecular breeding of this important forage crop.
Collapse
Affiliation(s)
- Haitao Chen
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, 650223, Kunming, China
- Guangdong Sanjie Forage Biotechnology Co., Ltd., 510630, Guangzhou, China
- Sanjie Institute of Forage, 712100, Yangling, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, 650204, Kunming, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yan Zeng
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, 650223, Kunming, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, 650204, Kunming, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yongzhi Yang
- State Key Laboratory of Grassland Agro-Ecosystem, Lanzhou University, 730000, Lanzhou, China
| | - Lingli Huang
- Guangdong Sanjie Forage Biotechnology Co., Ltd., 510630, Guangzhou, China
- Sanjie Institute of Forage, 712100, Yangling, China
- School of Ecology and Environment, Northwestern Polytechnical University, 710072, Xi'an, China
| | - Bolin Tang
- Guangdong Sanjie Forage Biotechnology Co., Ltd., 510630, Guangzhou, China
- Sanjie Institute of Forage, 712100, Yangling, China
- State Key Laboratory of Grassland Agro-Ecosystem, Lanzhou University, 730000, Lanzhou, China
| | - He Zhang
- BGI-Qingdao, 266555, Qingdao, China
| | - Fei Hao
- Center of Special Environmental Biomechanics & Biomedical Engineering, School of Life Sciences, Northwestern Polytechnical University, 710072, Xi'an, China
| | - Wei Liu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, 650223, Kunming, China
- Guangdong Sanjie Forage Biotechnology Co., Ltd., 510630, Guangzhou, China
- Sanjie Institute of Forage, 712100, Yangling, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, 650204, Kunming, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Youhan Li
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, 650223, Kunming, China
| | - Yanbin Liu
- State Key Laboratory of Grassland Agro-Ecosystem, Lanzhou University, 730000, Lanzhou, China
| | - Xiaoshuang Zhang
- Guangdong Sanjie Forage Biotechnology Co., Ltd., 510630, Guangzhou, China
- Sanjie Institute of Forage, 712100, Yangling, China
| | - Ru Zhang
- School of Ecology and Environment, Northwestern Polytechnical University, 710072, Xi'an, China
| | - Yesheng Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, 650223, Kunming, China
| | - Yongxin Li
- School of Ecology and Environment, Northwestern Polytechnical University, 710072, Xi'an, China
| | - Kun Wang
- School of Ecology and Environment, Northwestern Polytechnical University, 710072, Xi'an, China
| | - Hua He
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, 650223, Kunming, China
| | - Zhongkai Wang
- School of Ecology and Environment, Northwestern Polytechnical University, 710072, Xi'an, China
| | | | - Hui Yang
- Center of Special Environmental Biomechanics & Biomedical Engineering, School of Life Sciences, Northwestern Polytechnical University, 710072, Xi'an, China
| | - Aike Bao
- State Key Laboratory of Grassland Agro-Ecosystem, Lanzhou University, 730000, Lanzhou, China
| | - Zhanhuan Shang
- State Key Laboratory of Grassland Agro-Ecosystem, Lanzhou University, 730000, Lanzhou, China
| | - Jianghua Chen
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, 650223, Kunming, China.
| | - Wen Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, 650223, Kunming, China.
- School of Ecology and Environment, Northwestern Polytechnical University, 710072, Xi'an, China.
| | - Qiang Qiu
- School of Ecology and Environment, Northwestern Polytechnical University, 710072, Xi'an, China.
| |
Collapse
|
12
|
Cen H, Wang T, Liu H, Wang H, Tian D, Li X, Cui X, Guan C, Zang H, Li M, Zhang Y. Overexpression of MsASMT1 Promotes Plant Growth and Decreases Flavonoids Biosynthesis in Transgenic Alfalfa ( Medicago sativa L.). FRONTIERS IN PLANT SCIENCE 2020; 11:489. [PMID: 32411162 PMCID: PMC7199503 DOI: 10.3389/fpls.2020.00489] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 04/01/2020] [Indexed: 05/27/2023]
Abstract
Melatonin (N-acetyl-5-methoxytryptamine) is a pleiotropic signaling molecule that plays important roles in plant growth, development and stress responses. Alfalfa (Medicago sativa L.) is an important and widely cultivated leguminous forage crop with high biomass yield and rich nutritional value. The effects of exogenous melatonin content regulation on alfalfa stress tolerance have been investigated in recent years. Here, we isolated and introduced the MsASMT1 (N-acetylserotonin methyltransferase) gene into alfalfa, which significantly improved the endogenous melatonin content. Compared with wild-type (WT) plants, MsASMT1 overexpression (OE-MsASMT1) plants exhibited a series of phenotypic changes, including vigorous growth, increased plant height, enlarged leaves and robust stems with increased cell sizes, cell numbers and vascular bundles, as well as more branches. We also found that the flavonoid content and lignin composition of syringyl to guaiacyl ratio (S/G) were decreased and the cellulose content was increased in OE-MsASMT1 transgenic alfalfa. Further transcriptomic and metabolomic exploration revealed that a large group of genes in phenylalanine pathway related to flavonoids and lignin biosynthesis were significantly altered, accompanied by significantly reduced concentrations of the glycosides of quercetin, kaempferol, formononetin and biochanin in OE-MsASMT1 transgenic alfalfa. Our study first uncovers the effects of endogenous melatonin on alfalfa growth and metabolism. This report provides insights into the regulation effects of melatonin on plant growth and phenylalanine metabolism, especially flavonoids and lignin biosynthesis.
Collapse
|
13
|
Melatonin Application Improves Salt Tolerance of Alfalfa ( Medicago sativa L.) by Enhancing Antioxidant Capacity. PLANTS 2020; 9:plants9020220. [PMID: 32046353 PMCID: PMC7076651 DOI: 10.3390/plants9020220] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/23/2020] [Accepted: 02/06/2020] [Indexed: 12/16/2022]
Abstract
Alfalfa (Medicago sativa L.) is an important and widely cultivated forage grass. The productivity and forage quality of alfalfa are severely affected by salt stress. Melatonin is a bioactive molecule with versatile physiological functions and plays important roles in response to various biotic and abiotic stresses. Melatonin has been proven efficient in improving alfalfa drought and waterlogging tolerance in recent studies. In our reports, we applied melatonin exogenously to explore the effects of melatonin on alfalfa growth and salt resistance. The results demonstrated that melatonin application promoted alfalfa seed germination and seedling growth, and reduced oxidative damage under salt stress. Further application research found that melatonin alleviated salt injury in alfalfa plants under salt stress. The electrolyte leakage, malondialdehyde (MDA) content and H2O2 content were significantly reduced, and the activities of catalase (CAT), peroxidase (POD), and Cu/Zn superoxide dismutase (Cu/Zn-SOD) were increased with melatonin pretreatment compared to control plants under salt stress with the upregulation of genes related to melatonin and antioxidant enzymes biosynthesis. Melatonin was also involved in reducing Na+ accumulation in alfalfa plants. Our study indicates that melatonin plays a primary role as an antioxidant in scavenging H2O2 and enhancing activities of antioxidant enzymes to improve the salt tolerance of alfalfa plants.
Collapse
|
14
|
Liu Y, Li D, Yan J, Wang K, Luo H, Zhang W. MiR319 mediated salt tolerance by ethylene. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:2370-2383. [PMID: 31094071 PMCID: PMC6835123 DOI: 10.1111/pbi.13154] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 05/04/2019] [Accepted: 05/10/2019] [Indexed: 05/03/2023]
Abstract
Salinity-induced accumulation of certain microRNAs accompanied by gaseous phytohormone ethylene production has been recognized as a mechanism of plant salt tolerance. MicroRNA319 (miR319) has been characterized as an important player in abiotic stress resistance in some C3 plants, such as Arabidopsis thaliana and rice. However, its role in the dedicated biomass plant switchgrass (Panicum virgatum L.), a C4 plant, has not been reported. Here, we show crosstalk between miR319 and ethylene (ET) for increasing salt tolerance. By overexpressing Osa-MIR319b and a target mimicry form of miR319 (MIM319), we showed that miR319 positively regulated ET synthesis and salt tolerance in switchgrass. By experimental treatments, we demonstrated that ET-mediated salt tolerance in switchgrass was dose-dependent, and miR319 regulated the switchgrass salt response by fine-tuning ET synthesis. Further experiments showed that the repression of a miR319 target, PvPCF5, in switchgrass also led to enhanced ethylene accumulation and salt tolerance in transgenic plants. Genome-wide transcriptome analysis demonstrated that overexpression of miR319 (OE-miR319) down-regulated the expression of key genes in the methionine (Met) cycle but promoted the expression of genes in ethylene synthesis. The results enrich our understanding of the synergistic effects of the miR319-PvPCF5 module and ethylene synthesis in the salt tolerance of switchgrass, a C4 bioenergy plant.
Collapse
Affiliation(s)
- Yanrong Liu
- Department of Grassland ScienceChina Agricultural UniversityBeijingChina
| | - Dayong Li
- Beijing Vegetable Research Center (BVRC)Beijing Academy of Agricultural and Forestry SciencesNational Engineering Research Center for VegetablesBeijingChina
| | - Jianping Yan
- Department of Grassland ScienceChina Agricultural UniversityBeijingChina
| | - Kexin Wang
- Department of Grassland ScienceChina Agricultural UniversityBeijingChina
| | - Hong Luo
- Department of Genetics and BiochemistryClemson UniversityClemsonSCUSA
| | - Wanjun Zhang
- Department of Grassland ScienceChina Agricultural UniversityBeijingChina
- National Energy R&D Center for Biomass (NECB)China Agricultural UniversityBeijingChina
| |
Collapse
|
15
|
Gao L, Liu Y, Wang X, Li Y, Han R. Lower levels of UV-B light trigger the adaptive responses by inducing plant antioxidant metabolism and flavonoid biosynthesis in Medicago sativa seedlings. FUNCTIONAL PLANT BIOLOGY : FPB 2019; 46:896-906. [PMID: 31196381 DOI: 10.1071/fp19007] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 05/21/2019] [Indexed: 05/14/2023]
Abstract
Ultraviolet-B (UV-B) light, as an intrinsic part of sunlight, has more significant effects on plant growth and photomorphogenesis than other organisms due to plant's sessile growth pattern. In our studies, we have observed that alfalfa (Medicago sativa L.) seedlings are very sensitive to UV-B performance. Seedlings have grown better at lower levels of UV-B light (UV-B irradiation dosage <17.35 μW cm-2 day-1), and have higher UV-resistance. However, the higher levels of UV-B light (UV-B irradiation dosage >17.35 μW cm-2 day-1) has caused severe stress injuries to alfalfa seedlings, and seriously inhibited its growth and development. Chlorophyll biosynthesis and chlorophyll fluorescence have been suppressed under all different dosage of UV-B light conditions. Plant antioxidant enzymes were induced by lower levels of UV-B, but greatly inhibited under higher levels of UV-B light. The contents of flavonoid compounds significantly increased under UV-B light compared with controls, and that was more significant under lower levels of UV-B than higher levels of UV-B. Therefore, we have assumed that the significant induction of plant antioxidant capacity and flavonoid excessive accumulation play a central role in alfalfa UV-B tolerance to lower levels of UV-B irradiation.
Collapse
Affiliation(s)
- Limei Gao
- Department of Biotechnology, College of Life Science, Shanxi Normal University, Linfen 041000, China; and Cell Biology Laboratory, College of Life Science, Shanxi Normal University, Linfen 041000, China; and Corresponding author.
| | - Ying Liu
- Cell Biology Laboratory, College of Life Science, Shanxi Normal University, Linfen 041000, China
| | - Xiaofei Wang
- Cell Biology Laboratory, College of Life Science, Shanxi Normal University, Linfen 041000, China
| | - Yongfeng Li
- Cell Biology Laboratory, College of Life Science, Shanxi Normal University, Linfen 041000, China; and Analysis and Testing Center, Shanxi Normal University, Linfen 041000, China
| | - Rong Han
- Department of Biotechnology, College of Life Science, Shanxi Normal University, Linfen 041000, China; and Cell Biology Laboratory, College of Life Science, Shanxi Normal University, Linfen 041000, China
| |
Collapse
|
16
|
Noori F, Etesami H, Najafi Zarini H, Khoshkholgh-Sima NA, Hosseini Salekdeh G, Alishahi F. Mining alfalfa (Medicago sativa L.) nodules for salinity tolerant non-rhizobial bacteria to improve growth of alfalfa under salinity stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 162:129-138. [PMID: 29990724 DOI: 10.1016/j.ecoenv.2018.06.092] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 06/26/2018] [Accepted: 06/28/2018] [Indexed: 05/25/2023]
Abstract
There are fewer reports on plant growth promoting (PGP) bacteria living in nodules as helper to tolerance to abiotic stress such as salinity and drought. The study was conducted to isolate rhizobial and non-rhizobial drought and salinity tolerant bacteria from the surface sterilized root nodules of alfalfa, grown in saline soils, and evaluate the effects of effective isolates on plant growth under salt stress. Based on drought and salinity tolerance of bacterial isolates and having multiple PGP traits, two non-rhizobial endophytic isolates and one rhizobial endophytic isolate were selected for further identification and characterization. Based on partial sequences of 16 S rRNA genes, non-rhizobial isolates and rhizobial isolate were closely related to Klebsiella sp., Kosakonia cowanii, and Sinorhizobium meliloti, respectively. None of the two non-rhizobial strains were able to form nodules on alfalfa roots under greenhouse and in vitro conditions. Co-inoculation of alfalfa plant with Klebsiella sp. A36, K. cowanii A37, and rhizobial strain S. meliloti ARh29 had a positive effect on plant growth indices under salinity stress. In addition, the single inoculation of non-rhizobial strains without rhizobial strain resulted in an increase in alfalfa growth indices compared to the plants non-inoculated and the ones inoculated with S. meliloti ARh29 alone under salinity stress, indicating that nodule non-rhizobial strains have PGP potentials and may be a promising way for improving effectiveness of Rhizobium bio-fertilizers in salt-affected soils.
Collapse
Affiliation(s)
- Fatemeh Noori
- Department of Biotechnology and Plant Breeding, Sari Agricultural Sciences and Natural Resources University, Sari, Iran
| | - Hassan Etesami
- Agriculture & Natural resources Campus, Faculty of Agricultural Engineering & Technology, Department of Soil Science, University of Tehran, Tehran 31587-77871, Iran.
| | - Hamid Najafi Zarini
- Department of Biotechnology and Plant Breeding, Sari Agricultural Sciences and Natural Resources University, Sari, Iran.
| | - Nayer Azam Khoshkholgh-Sima
- Agriculture Biotechnology Research Institute of Iran (ABRII), Agriculture Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Ghasem Hosseini Salekdeh
- Agriculture Biotechnology Research Institute of Iran (ABRII), Agriculture Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Farshad Alishahi
- Agriculture & Natural resources Campus, Faculty of Agricultural Engineering & Technology, Department of Soil Science, University of Tehran, Tehran 31587-77871, Iran
| |
Collapse
|
17
|
Liu XP, Yu LX. Genome-Wide Association Mapping of Loci Associated with Plant Growth and Forage Production under Salt Stress in Alfalfa ( Medicago sativa L.). FRONTIERS IN PLANT SCIENCE 2017; 8:853. [PMID: 28596776 PMCID: PMC5442208 DOI: 10.3389/fpls.2017.00853] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 05/08/2017] [Indexed: 05/04/2023]
Abstract
Salinity tolerance is highly desirable to sustain alfalfa production in marginal lands that have been rendered saline. In this study, we used a diverse panel of 198 alfalfa accessions for mapping loci associated with plant growth and forage production under salt stress using genome-wide association studies (GWAS). The plants were genotyped using genotyping-by-sequencing (GBS). A greenhouse procedure was used for phenotyping four agronomic and physiological traits affected by salt stress, including dry weight (DW), plant height (PH), leaf chlorophyll content (LCC), and stomatal conductance (SC). For each trait, a stress susceptibility index (SSI) was used to evaluate plant performance under stressed and non-stressed conditions. Marker-trait association identified a total of 42 markers significantly associated with salt tolerance. They were located on all chromosomes except chromosome 2 based on the alignment of their flanking sequences to the reference genome (Medicago truncatula). Of those identified, 13 were associated with multiple traits. Several loci identified in the present study were also identified in previous reports. BLAST search revealed that 19 putative candidate genes linked to 24 significant markers. Among them, B3 DNA-binding protein, Thiaminepyrophosphokinase and IQ calmodulin-binding motif protein were identified among multiple traits in the present and previous studies. With further investigation, these markers and candidates would be useful for developing markers for marker-assisted selection in breeding programs to improve alfalfa cultivars with enhanced tolerance to salt stress.
Collapse
Affiliation(s)
- Xiang-Ping Liu
- United States Department of Agriculture-Agricultural Research Service, Plant Germplasm Introduction and Testing ResearchProsser, WA, United States
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural UniversityDaqing, China
| | - Long-Xi Yu
- United States Department of Agriculture-Agricultural Research Service, Plant Germplasm Introduction and Testing ResearchProsser, WA, United States
| |
Collapse
|
18
|
Cen H, Ye W, Liu Y, Li D, Wang K, Zhang W. Overexpression of a Chimeric Gene, OsDST-SRDX, Improved Salt Tolerance of Perennial Ryegrass. Sci Rep 2016; 6:27320. [PMID: 27251327 PMCID: PMC4890315 DOI: 10.1038/srep27320] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 05/18/2016] [Indexed: 11/22/2022] Open
Abstract
The Drought and Salt Tolerance gene (DST) encodes a C2H2 zinc finger transcription factor, which negatively regulates salt tolerance in rice (Oryza sativa). Phylogenetic analysis of six homologues of DST genes in different plant species revealed that DST genes were conserved evolutionarily. Here, the rice DST gene was linked to an SRDX domain for gene expression repression based on the Chimeric REpressor gene-Silencing Technology (CRES-T) to make a chimeric gene (OsDST-SRDX) construct and introduced into perennial ryegrass by Agrobacterium-mediated transformation. Integration and expression of the OsDST-SRDX in transgenic plants were tested by PCR and RT-PCR, respectively. Transgenic lines overexpressing the OsDST-SRDX fusion gene showed obvious phenotypic differences and clear resistance to salt-shock and to continuous salt stresses compared to non-transgenic plants. Physiological analyses including relative leaf water content, electrolyte leakage, proline content, malondialdehyde (MDA) content, H2O2 content and sodium and potassium accumulation indicated that the OsDST-SRDX fusion gene enhanced salt tolerance in transgenic perennial ryegrass by altering a wide range of physiological responses. To our best knowledge this study is the first report of utilizing Chimeric Repressor gene-Silencing Technology (CRES-T) in turfgrass and forage species for salt-tolerance improvement.
Collapse
Affiliation(s)
- Huifang Cen
- Department of Grassland Science, China Agricultural University, Beijing, 100193, P. R. China
| | - Wenxing Ye
- Department of Grassland Science, China Agricultural University, Beijing, 100193, P. R. China
| | - Yanrong Liu
- Department of Grassland Science, China Agricultural University, Beijing, 100193, P. R. China
| | - Dayong Li
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, P. R. China
| | - Kexin Wang
- Department of Grassland Science, China Agricultural University, Beijing, 100193, P. R. China
| | - Wanjun Zhang
- Department of Grassland Science, China Agricultural University, Beijing, 100193, P. R. China.,National Energy R&D Center for Biomass (NECB), China Agricultural University, Beijing, 100193, P. R. China
| |
Collapse
|
19
|
Zhang WJ, Wang T. Cytohistochemical Determination of Calcium Deposition in Plant Cells. Bio Protoc 2016. [DOI: 10.21769/bioprotoc.1709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
20
|
Yu LX, Liu X, Boge W, Liu XP. Genome-Wide Association Study Identifies Loci for Salt Tolerance during Germination in Autotetraploid Alfalfa (Medicago sativa L.) Using Genotyping-by-Sequencing. FRONTIERS IN PLANT SCIENCE 2016; 7:956. [PMID: 27446182 PMCID: PMC4923157 DOI: 10.3389/fpls.2016.00956] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 06/15/2016] [Indexed: 05/04/2023]
Abstract
Salinity is one of major abiotic stresses limiting alfalfa (Medicago sativa L.) production in the arid and semi-arid regions in US and other counties. In this study, we used a diverse panel of alfalfa accessions previously described by Zhang et al. (2015) to identify molecular markers associated with salt tolerance during germination using genome-wide association study (GWAS) and genotyping-by-sequencing (GBS). Phenotyping was done by germinating alfalfa seeds under different levels of salt stress. Phenotypic data of adjusted germination rates and SNP markers generated by GBS were used for marker-trait association. Thirty six markers were significantly associated with salt tolerance in at least one level of salt treatments. Alignment of sequence tags to the Medicago truncatula genome revealed genetic locations of the markers on all chromosomes except chromosome 3. Most significant markers were found on chromosomes 1, 2, and 4. BLAST search using the flanking sequences of significant markers identified 14 putative candidate genes linked to 23 significant markers. Most of them were repeatedly identified in two or three salt treatments. Several loci identified in the present study had similar genetic locations to the reported QTL associated with salt tolerance in M. truncatula. A locus identified on chromosome 6 by this study overlapped with that by drought in our previous study. To our knowledge, this is the first report on mapping loci associated with salt tolerance during germination in autotetraploid alfalfa. Further investigation on these loci and their linked genes would provide insight into understanding molecular mechanisms by which salt and drought stresses affect alfalfa growth. Functional markers closely linked to the resistance loci would be useful for MAS to improve alfalfa cultivars with enhanced resistance to drought and salt stresses.
Collapse
|