1
|
Ritsch M, Brait N, Harvey E, Marz M, Lequime S. Endogenous viral elements: insights into data availability and accessibility. Virus Evol 2024; 10:veae099. [PMID: 39659497 PMCID: PMC11631435 DOI: 10.1093/ve/veae099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 09/19/2024] [Accepted: 11/20/2024] [Indexed: 12/12/2024] Open
Abstract
Endogenous viral elements (EVEs) are remnants of viral genetic material endogenized into the host genome. They have, in the last decades, attracted attention for their role as potential contributors to pathogenesis, drivers of selective advantage for the host, and genomic remnants of ancient viruses. EVEs have a nuanced and complex influence on both host health and evolution, and can offer insights on the deep evolutionary history of viruses. As an emerging field of research, several factors limit a comprehensive understanding of EVEs: they are currently underestimated and periodically overlooked in studies of the host genome, transcriptome, and virome. The absence of standardized guidelines for ensuring EVE-related data availability and accessibility following the FAIR ('findable, accessible, interoperable, and reusable') principles obstructs our ability to gather and connect information. Here, we discuss challenges to the availability and accessibility of EVE-related data and propose potential solutions. We identified the biological and research focus imbalance between different types of EVEs, and their overall biological complexity as genomic loci with viral ancestry, as potential challenges that can be addressed with the development of a user-oriented identification tool. In addition, reports of EVE identification are scattered between different subfields under different keywords, and EVE sequences and associated data are not properly gathered in databases. While developing an open and dedicated database might be ideal, targeted improvements of generalist databases might provide a pragmatic solution to EVE data and metadata accessibility. The implementation of these solutions, as well as the collective effort by the EVE scientific community in discussing and setting guidelines, is now drastically needed to lead the development of EVE research and offer insights into host-virus interactions and their evolutionary history.
Collapse
Affiliation(s)
- Muriel Ritsch
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, Leutragraben 1, Jena 07743, Germany
- European Virus Bioinformatics Center, Leutragraben 1, Jena 07743, Germany
| | - Nadja Brait
- European Virus Bioinformatics Center, Leutragraben 1, Jena 07743, Germany
- Cluster of Microbial Ecology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, P.O. Box 11103, Groningen 9700 CC, The Netherlands
| | - Erin Harvey
- European Virus Bioinformatics Center, Leutragraben 1, Jena 07743, Germany
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Manja Marz
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, Leutragraben 1, Jena 07743, Germany
- European Virus Bioinformatics Center, Leutragraben 1, Jena 07743, Germany
- German Center for Integrative Biodiversity Research (iDiv), Puschstrasse 4, Halle-Jena-Leipzig 04103, Germany
- Michael Stifel Center Jena, Ernst-Abbe-Platz 2, Jena 07743, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Fürstengraben 1, Jena, Thüringen 07745, Germany
- Fritz Lipmann Institute-Leibniz Institute on Aging, Beutenbergstraße 11, Jena 07745, Germany
| | - Sebastian Lequime
- European Virus Bioinformatics Center, Leutragraben 1, Jena 07743, Germany
- Cluster of Microbial Ecology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, P.O. Box 11103, Groningen 9700 CC, The Netherlands
| |
Collapse
|
2
|
Duroy PO, Seguin J, Ravel S, Rajendran R, Laboureau N, Salmon F, Delos JM, Pooggin M, Iskra-Caruana ML, Chabannes M. Endogenous viral elements are targeted by RNA silencing pathways in banana. THE NEW PHYTOLOGIST 2024; 244:1519-1536. [PMID: 39294885 DOI: 10.1111/nph.20112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 08/05/2024] [Indexed: 09/21/2024]
Abstract
Endogenous banana streak virus (eBSV) integrants derived from three distinct species, present in Musa balbisiana (B) but not Musa acuminata (A) banana genomes are able to reconstitute functional episomal viruses causing banana streak disease in interspecific triploid AAB banana hybrids but not in the diploid (BB) parent line, which harbours identical eBSV loci. Here, we investigated the regulation of these eBSV. In-depth characterization of siRNAs, transcripts and methylation derived from eBSV using Illumina and bisulfite sequencing were carried out on eBSV-free Musa acuminata AAA plants and BB or AAB banana plants with eBSV. eBSV loci produce low-abundance transcripts covering most of the viral sequence and generate predominantly 24-nt siRNAs. siRNA accumulation is restricted to duplicated and inverted viral sequences present in eBSV. Both siRNA-accumulating and nonaccumulating sequences of eBSV in BB plants are heavily methylated in all three CG, CHG and CHH contexts. Our data suggest that eBSVs are controlled at the epigenetic level in BB diploids. This regulation not only prevents their awakening and systemic infection of the plant but is also probably involved in the inherent resistance of the BB plants to mealybug-transmitted viral infection. These findings are thus of relevance to other plant resources hosting integrated viruses.
Collapse
Affiliation(s)
- Pierre-Olivier Duroy
- CIRAD, UMR PHIM, Montpellier, F-34398, France
- PHIM Plant Health Institute, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier, France
| | - Jonathan Seguin
- Department of Plant Physiology, Botanical Institute, Zürich-Basel Plant Science Center, University of Basel, Basel, Switzerland
| | - Sébastien Ravel
- CIRAD, UMR PHIM, Montpellier, F-34398, France
- PHIM Plant Health Institute, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier, France
| | - Rajeswaran Rajendran
- Department of Plant Physiology, Botanical Institute, Zürich-Basel Plant Science Center, University of Basel, Basel, Switzerland
| | - Nathalie Laboureau
- CIRAD, UMR PHIM, Montpellier, F-34398, France
- PHIM Plant Health Institute, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier, France
| | - Frédéric Salmon
- CIRAD, UMR AGAP Institut, Capesterre-Belle-Eau, Guadeloupe, F-97130, France
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Capesterre-Belle-Eau, Guadeloupe, France
| | - Jean-Marie Delos
- CIRAD, UMR AGAP Institut, Capesterre-Belle-Eau, Guadeloupe, F-97130, France
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Capesterre-Belle-Eau, Guadeloupe, France
| | - Mikhail Pooggin
- CIRAD, UMR PHIM, Montpellier, F-34398, France
- PHIM Plant Health Institute, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier, France
| | | | - Matthieu Chabannes
- CIRAD, UMR AGAP Institut, Montpellier, F-34398, France
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| |
Collapse
|
3
|
Vassilieff H, Geering ADW, Choisne N, Teycheney PY, Maumus F. Endogenous Caulimovirids: Fossils, Zombies, and Living in Plant Genomes. Biomolecules 2023; 13:1069. [PMID: 37509105 PMCID: PMC10377300 DOI: 10.3390/biom13071069] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 07/30/2023] Open
Abstract
The Caulimoviridae is a family of double-stranded DNA viruses that infect plants. The genomes of most vascular plants contain endogenous caulimovirids (ECVs), a class of repetitive DNA elements that is abundant in some plant genomes, resulting from the integration of viral DNA in the chromosomes of germline cells during episodes of infection that have sometimes occurred millions of years ago. In this review, we reflect on 25 years of research on ECVs that has shown that members of the Caulimoviridae have occupied an unprecedented range of ecological niches over time and shed light on their diversity and macroevolution. We highlight gaps in knowledge and prospects of future research fueled by increased access to plant genome sequence data and new tools for genome annotation for addressing the extent, impact, and role of ECVs on plant biology and the origin and evolutionary trajectories of the Caulimoviridae.
Collapse
Affiliation(s)
| | - Andrew D W Geering
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072, Australia
| | | | - Pierre-Yves Teycheney
- CIRAD, UMR PVBMT, F-97410 Saint-Pierre de La Réunion, France
- UMR PVBMT, Université de la Réunion, F-97410 Saint-Pierre de La Réunion, France
| | - Florian Maumus
- INRAE, URGI, Université Paris-Saclay, 78026 Versailles, France
| |
Collapse
|
4
|
Flegel TW. Viral Induction of Novel Somatic and Germline DNA Functions in Host Arthropods Opens a New Research Frontier in Biology. Front Mol Biosci 2022; 9:847670. [PMID: 35281280 PMCID: PMC8907731 DOI: 10.3389/fmolb.2022.847670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 02/02/2022] [Indexed: 11/17/2022] Open
|
5
|
Wang ZZ, Ye XQ, Huang JH, Chen XX. Virus and endogenous viral element-derived small non-coding RNAs and their roles in insect-virus interaction. CURRENT OPINION IN INSECT SCIENCE 2022; 49:85-92. [PMID: 34974161 DOI: 10.1016/j.cois.2021.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 06/14/2023]
Abstract
RNA interference pathways mediated by different types of small non-coding RNAs (siRNAs, miRNAs and piRNAs) are conserved biological responses to exotic stresses, including viral infection. Aside from the well-established siRNA pathway, the miRNA pathway and the piRNA pathway process viral sequences, exogenously or endogenously, into miRNAs and piRNAs, respectively. During the host-virus interaction, viral sequences, including both coding and non-coding sequences, can be integrated as endogenous viral elements (EVEs) and thereby become present within the germline of a non-viral organism. In recent years, significant progress has been made in characterizing the biogenesis and function of viruses and EVEs associated with snRNAs. Overall, the siRNA pathway acts as the primarily antiviral defense against a wide range of exogenous viruses; the miRNA pathways associated with viruses or EVEs function in antiviral response and host gene regulation; EVE derived piRNAs with a ping-pong signature have the potential to limit cognate viral infection.
Collapse
Affiliation(s)
- Zhi-Zhi Wang
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Xi-Qian Ye
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Jian-Hua Huang
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Xue-Xin Chen
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou 310058, China; State Key Lab of Rice Biology, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
6
|
Niraula PM, Fondong VN. Development and Adoption of Genetically Engineered Plants for Virus Resistance: Advances, Opportunities and Challenges. PLANTS 2021; 10:plants10112339. [PMID: 34834702 PMCID: PMC8623320 DOI: 10.3390/plants10112339] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/24/2021] [Accepted: 10/27/2021] [Indexed: 11/20/2022]
Abstract
Plant viruses cause yield losses to crops of agronomic and economic significance and are a challenge to the achievement of global food security. Although conventional plant breeding has played an important role in managing plant viral diseases, it will unlikely meet the challenges posed by the frequent emergence of novel and more virulent viral species or viral strains. Hence there is an urgent need to seek alternative strategies of virus control that can be more readily deployed to contain viral diseases. The discovery in the late 1980s that viral genes can be introduced into plants to engineer resistance to the cognate virus provided a new avenue for virus disease control. Subsequent advances in genomics and biotechnology have led to the refinement and expansion of genetic engineering (GE) strategies in crop improvement. Importantly, many of the drawbacks of conventional breeding, such as long lead times, inability or difficulty to cross fertilize, loss of desirable plant traits, are overcome by GE. Unfortunately, public skepticism towards genetically modified (GM) crops and other factors have dampened the early promise of GE efforts. These concerns are principally about the possible negative effects of transgenes to humans and animals, as well as to the environment. However, with regards to engineering for virus resistance, these risks are overstated given that most virus resistance engineering strategies involve transfer of viral genes or genomic segments to plants. These viral genomes are found in infected plant cells and have not been associated with any adverse effects in humans or animals. Thus, integrating antiviral genes of virus origin into plant genomes is hardly unnatural as suggested by GM crop skeptics. Moreover, advances in deep sequencing have resulted in the sequencing of large numbers of plant genomes and the revelation of widespread endogenization of viral genomes into plant genomes. This has raised the possibility that viral genome endogenization is part of an antiviral defense mechanism deployed by the plant during its evolutionary past. Thus, GM crops engineered for viral resistance would likely be acceptable to the public if regulatory policies were product-based (the North America regulatory model), as opposed to process-based. This review discusses some of the benefits to be gained from adopting GE for virus resistance, as well as the challenges that must be overcome to leverage this technology. Furthermore, regulatory policies impacting virus-resistant GM crops and some success cases of virus-resistant GM crops approved so far for cultivation are discussed.
Collapse
|
7
|
Cadavid IC, da Fonseca GC, Margis R. HDAC inhibitor affects soybean miRNA482bd expression under salt and osmotic stress. JOURNAL OF PLANT PHYSIOLOGY 2020; 253:153261. [PMID: 32947244 DOI: 10.1016/j.jplph.2020.153261] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 08/07/2020] [Accepted: 08/07/2020] [Indexed: 06/11/2023]
Abstract
MicroRNAs (miRNAs) are small non-coding molecules that modulate gene expression through targeting mRNA by specific-sequence cleavage, translation inhibition, or transcriptional regulation. miRNAs are key molecules in regulatory networks in abiotic stresses such as salt stress and water deficit in plants. Throughout the world, soybean is a critical crop, the production of which is affected by environmental stress conditions. In this study, RNA-Seq libraries from leaves of soybean under salt treatment were analyzed. 17 miRNAs and 31 putative target genes were identified with inverse differential expression patterns, indicating miRNA-target interaction. The differential expression of six miRNAs, including miR482bd-5p, and their potential targets, were confirmed by RT-qPCR. The miR482bd-5p expression was repressed, while its potential HEC1 and BAK1 targets were increased. Polyethylene glycol experiment was used to simulate drought stress, and miR482bd-5p, HEC1, and BAK1 presented a similar expression pattern, as found in salt stress. Histone modifications occur in response to abiotic stress, where histone deacetylases (HDACs) can lead to gene repression and silencing. The miR482bd-5p epigenetic regulation by histone deacetylation was evaluated by using the SAHA-HDAC inhibitor. The miR482bd-5p was up-regulated, and HEC1 was down-regulated under SAHA-salt treatment. It suggests an epigenetic regulation, where the miRNA gene is repressed by HDAC under salt stress, reducing its transcription, with an associated increase in the HEC1 target expression.
Collapse
Affiliation(s)
- Isabel Cristina Cadavid
- Programa de Pós-graduação em Biologia Celular e Molecular (PPGBCM), Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | | - Rogerio Margis
- Programa de Pós-graduação em Biologia Celular e Molecular (PPGBCM), Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Departamento de Biofisica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| |
Collapse
|
8
|
Pooggin MM. Small RNA-Omics for Plant Virus Identification, Virome Reconstruction, and Antiviral Defense Characterization. Front Microbiol 2018; 9:2779. [PMID: 30524398 PMCID: PMC6256188 DOI: 10.3389/fmicb.2018.02779] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 10/30/2018] [Indexed: 11/13/2022] Open
Abstract
RNA interference (RNAi)-based antiviral defense generates small interfering RNAs that represent the entire genome sequences of both RNA and DNA viruses as well as viroids and viral satellites. Therefore, deep sequencing and bioinformatics analysis of small RNA population (small RNA-ome) allows not only for universal virus detection and genome reconstruction but also for complete virome reconstruction in mixed infections. Viral infections (like other stress factors) can also perturb the RNAi and gene silencing pathways regulating endogenous gene expression and repressing transposons and host genome-integrated endogenous viral elements which can potentially be released from the genome and contribute to disease. This review describes the application of small RNA-omics for virus detection, virome reconstruction and antiviral defense characterization in cultivated and non-cultivated plants. Reviewing available evidence from a large and ever growing number of studies of naturally or experimentally infected hosts revealed that all families of land plant viruses, their satellites and viroids spawn characteristic small RNAs which can be assembled into contigs of sufficient length for virus, satellite or viroid identification and for exhaustive reconstruction of complex viromes. Moreover, the small RNA size, polarity and hotspot profiles reflect virome interactions with the plant RNAi machinery and allow to distinguish between silent endogenous viral elements and their replicating episomal counterparts. Models for the biogenesis and functions of small interfering RNAs derived from all types of RNA and DNA viruses, satellites and viroids as well as endogenous viral elements are presented and discussed.
Collapse
Affiliation(s)
- Mikhail M. Pooggin
- Institut National de la Recherche Agronomique, UMR BGPI, Montpellier, France
| |
Collapse
|
9
|
Warner BE, Ballinger MJ, Yerramsetty P, Reed J, Taylor DJ, Smith TJ, Bruenn JA. Cellular production of a counterfeit viral protein confers immunity to infection by a related virus. PeerJ 2018; 6:e5679. [PMID: 30280045 PMCID: PMC6166632 DOI: 10.7717/peerj.5679] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 08/29/2018] [Indexed: 11/20/2022] Open
Abstract
DNA copies of many non-retroviral RNA virus genes or portions thereof (NIRVs) are present in the nuclear genomes of many eukaryotes. These have often been preserved for millions of years of evolution, suggesting that they play an important cellular function. One possible function is resistance to infection by related viruses. In some cases, this appears to occur through the piRNA system, but in others by way of counterfeit viral proteins encoded by NIRVs. In the fungi, NIRVs may be as long as 1,400 uninterrupted codons. In one such case in the yeast Debaryomyces hansenii, one of these genes provides immunity to a related virus by virtue of expression of a counterfeit viral capsid protein, which interferes with assembly of viral capsids by negative complementation. The widespread occurrence of non-retroviral RNA virus genes in eukaryotes may reflect an underappreciated method of host resistance to infection. This work demonstrates for the first time that an endogenous host protein encoded by a gene that has been naturally acquired from a virus and fixed in a eukaryote can interfere with the replication of a related virus and do so by negative complementation.
Collapse
Affiliation(s)
- Benjamin E Warner
- Department of Biological Sciences, The State University of New York at Buffalo, Buffalo, NY, USA
| | - Matthew J Ballinger
- Department of Biological Sciences, The State University of New York at Buffalo, Buffalo, NY, USA
| | - Pradeep Yerramsetty
- Department of Biological Sciences, The State University of New York at Buffalo, Buffalo, NY, USA
| | - Jennifer Reed
- Department of Biological Sciences, The State University of New York at Buffalo, Buffalo, NY, USA
| | - Derek J Taylor
- Department of Biological Sciences, The State University of New York at Buffalo, Buffalo, NY, USA
| | - Thomas J Smith
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch Galveston, Galveston, TX, United States of America
| | - Jeremy A Bruenn
- Department of Biological Sciences, The State University of New York at Buffalo, Buffalo, NY, USA
| |
Collapse
|
10
|
Kondo H, Chiba S, Maruyama K, Andika IB, Suzuki N. A novel insect-infecting virga/nege-like virus group and its pervasive endogenization into insect genomes. Virus Res 2017; 262:37-47. [PMID: 29169832 DOI: 10.1016/j.virusres.2017.11.020] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 11/17/2017] [Accepted: 11/18/2017] [Indexed: 12/14/2022]
Abstract
Insects are the host and vector of diverse viruses including those that infect vertebrates, plants, and fungi. Recent wide-scale transcriptomic analyses have uncovered the existence of a number of novel insect viruses belonging to an alphavirus-like superfamily (virgavirus/negevirus-related lineage). In this study, through an in silico search using publicly available insect transcriptomic data, we found numerous virus-like sequences related to insect virga/nege-like viruses. Phylogenetic analysis showed that these novel viruses and related virus-like sequences fill the major phylogenetic gaps between insect and plant virga/negevirus lineages. Interestingly, one of the phylogenetic clades represents a unique insect-infecting virus group. Its members encode putative coat proteins which contained a conserved domain similar to that usually found in the coat protein of plant viruses in the family Virgaviridae. Furthermore, we discovered endogenous viral elements (EVEs) related to virga/nege-like viruses in the insect genomes, which enhances our understanding on their evolution. Database searches using the sequence of one member from this group revealed the presence of EVEs in a wide range of insect species, suggesting that there has been prevalent infection by this virus group since ancient times. Besides, we present detailed EVE integration profiles of this virus group in some species of the Bombus genus of bee families. A large variation in EVE patterns among Bombus species suggested that while some integration events occurred after the species divergence, others occurred before it. Our analyses support the view that insect and plant virga/nege-related viruses might share common virus origin(s).
Collapse
Affiliation(s)
- Hideki Kondo
- Institute of Plant Science and Resources (IPSR), Okayama University, Kurashiki 710-0046, Japan.
| | - Sotaro Chiba
- Asian Satellite Campuses Institute, Nagoya University, Nagoya 464-8601, Japan; Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Kazuyuki Maruyama
- Institute of Plant Science and Resources (IPSR), Okayama University, Kurashiki 710-0046, Japan
| | - Ida Bagus Andika
- Institute of Plant Science and Resources (IPSR), Okayama University, Kurashiki 710-0046, Japan
| | - Nobuhiro Suzuki
- Institute of Plant Science and Resources (IPSR), Okayama University, Kurashiki 710-0046, Japan
| |
Collapse
|
11
|
Kreuze JF, Valkonen JP. Utilization of engineered resistance to viruses in crops of the developing world, with emphasis on sub-Saharan Africa. Curr Opin Virol 2017; 26:90-97. [PMID: 28800552 PMCID: PMC5669357 DOI: 10.1016/j.coviro.2017.07.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 07/24/2017] [Accepted: 07/25/2017] [Indexed: 02/08/2023]
Abstract
Viral diseases in crop plants constitute a major obstacle to food security in the developing world. Subsistence crops, including cassava, sweetpotato, potato, banana, papaya, common bean, rice and maize are often infected with RNA and/or DNA viruses that cannot be controlled with pesticides. Hence, healthy planting materials and virus-resistant cultivars are essential for high yields of good quality. However, resistance genes are not available for all viral diseases of crop plants. Therefore, virus resistance engineered in plants using modern biotechnology methods is an important addition to the crop production toolbox.
Collapse
Affiliation(s)
| | - Jari Pt Valkonen
- Department of Agricultural Sciences, University of Helsinki, FI-00014 Helsinki, Finland.
| |
Collapse
|
12
|
Fondong VN. The Search for Resistance to Cassava Mosaic Geminiviruses: How Much We Have Accomplished, and What Lies Ahead. FRONTIERS IN PLANT SCIENCE 2017; 8:408. [PMID: 28392798 PMCID: PMC5365051 DOI: 10.3389/fpls.2017.00408] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 03/09/2017] [Indexed: 05/23/2023]
Abstract
The cassava mosaic disease (CMD), which occurs in all cassava growing regions of Africa and the Indian subcontinent, is caused by cassava mosaic geminiviruses (CMGs). CMGs are considered to be the most damaging vector-borne plant pathogens. So far, the most successful approach used to control these viruses has been the transfer of a polygenic recessive resistance locus, designated CMD1, from wild cassava to cassava cultivars. Further progress in harnessing natural resistance to contain CMGs has come from the discovery of the dominant monogenic resistance locus, CMD2, in some West African cassava cultivars. CMD2 has been combined with CMD1 through genetic crosses. Because of the limitations of the cassava breeding approach, especially with regard to time required to produce a variety and the loss of preferred agronomic attributes, efforts have been directed toward the deployment of genetic engineering approaches. Most of these approaches have been centered on RNA silencing strategies, developed mainly in the model plant Nicotiana benthamiana. Early RNA silencing platforms assessed for CMG resistance have been use of viral genes for co-suppression, antisense suppression or for hairpin RNAs-mediated gene silencing. Here, progress and challenges in the deployment of these approaches in the control of CMGs are discussed. Novel functional genomics approaches with potential to overcome some of the drawbacks of the current strategies are also discussed.
Collapse
Affiliation(s)
- Vincent N. Fondong
- Department of Biological Sciences, Delaware State UniversityDover, DE, USA
| |
Collapse
|
13
|
Marcon HS, Costa-Silva J, Lorenzetti APR, Marino CL, Domingues DS. Genome-wide analysis of EgEVE_1, a transcriptionally active endogenous viral element associated to small RNAs in Eucalyptus genomes. Genet Mol Biol 2017; 40:217-225. [PMID: 28235127 PMCID: PMC5452135 DOI: 10.1590/1678-4685-gmb-2016-0086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 10/10/2016] [Indexed: 11/22/2022] Open
Abstract
Endogenous viral elements (EVEs) are the result of heritable horizontal gene transfer from viruses to hosts. In the last years, several EVE integration events were reported in plants by the exponential availability of sequenced genomes. Eucalyptus grandis is a forest tree species with a sequenced genome that is poorly studied in terms of evolution and mobile genetic elements composition. Here we report the characterization of E. grandis endogenous viral element 1 (EgEVE_1), a transcriptionally active EVE with a size of 5,664 bp. Phylogenetic analysis and genomic distribution demonstrated that EgEVE_1 is a newly described member of the Caulimoviridae family, distinct from the recently characterized plant Florendoviruses. Genomic distribution of EgEVE_1 and Florendovirus is also distinct. EgEVE_1 qPCR quantification in Eucalyptus urophylla suggests that this genome has more EgEVE_1 copies than E. grandis. EgEVE_1 transcriptional activity was demonstrated by RT-qPCR in five Eucalyptus species and one intrageneric hybrid. We also identified that Eucalyptus EVEs can generate small RNAs (sRNAs),that might be involved in de novo DNA methylation and virus resistance. Our data suggest that EVE families in Eucalyptus have distinct properties, and we provide the first comparative analysis of EVEs in Eucalyptus genomes.
Collapse
Affiliation(s)
- Helena Sanches Marcon
- Departamento de Botânica, Instituto de Biociências, Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP), Rio Claro, SP, Brazil.,Departamento de Genética, Instituto de Biociências, Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP), Botucatu, SP, Brazil
| | - Juliana Costa-Silva
- Programa de Pós-graduação em Bioinformática, PPGBIOINFO, Universidade Tecnológica Federal do Paraná, Cornélio Procópio, PR, Brazil
| | | | - Celso Luis Marino
- Departamento de Genética, Instituto de Biociências, Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP), Botucatu, SP, Brazil
| | - Douglas Silva Domingues
- Departamento de Botânica, Instituto de Biociências, Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP), Rio Claro, SP, Brazil.,Programa de Pós-graduação em Bioinformática, PPGBIOINFO, Universidade Tecnológica Federal do Paraná, Cornélio Procópio, PR, Brazil
| |
Collapse
|
14
|
Rodrigues NF, Christoff AP, da Fonseca GC, Kulcheski FR, Margis R. Unveiling Chloroplast RNA Editing Events Using Next Generation Small RNA Sequencing Data. FRONTIERS IN PLANT SCIENCE 2017; 8:1686. [PMID: 29033962 PMCID: PMC5626879 DOI: 10.3389/fpls.2017.01686] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 09/13/2017] [Indexed: 05/21/2023]
Abstract
Organellar RNA editing involves the modification of nucleotide sequences to maintain conserved protein functions, mainly by reverting non-neutral codon mutations. The loss of plastid editing events, resulting from mutations in RNA editing factors or through stress interference, leads to developmental, physiological and photosynthetic alterations. Recently, next generation sequencing technology has generated the massive discovery of sRNA sequences and expanded the number of sRNA data. Here, we present a method to screen chloroplast RNA editing using public sRNA libraries from Arabidopsis, soybean and rice. We mapped the sRNAs against the nuclear, mitochondrial and plastid genomes to confirm predicted cytosine to uracil (C-to-U) editing events and identify new editing sites in plastids. Among the predicted editing sites, 40.57, 34.78, and 25.31% were confirmed using sRNAs from Arabidopsis, soybean and rice, respectively. SNP analysis revealed 58.2, 43.9, and 37.5% new C-to-U changes in the respective species and identified known and new putative adenosine to inosine (A-to-I) RNA editing in tRNAs. The present method and data reveal the potential of sRNA as a reliable source to identify new and confirm known editing sites.
Collapse
Affiliation(s)
- Nureyev F. Rodrigues
- Programa de Posgraduação em Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Ana P. Christoff
- Programa de Posgraduação em Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Guilherme C. da Fonseca
- Programa de Posgraduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Franceli R. Kulcheski
- Programa de Pósgraduação em Biologia Celular e do Desenvolvimento, Departamento de Biologia Celular, Genética e Embriologia, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Rogerio Margis
- Programa de Posgraduação em Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Programa de Posgraduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Departamento de Biofísica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- *Correspondence: Rogerio Margis
| |
Collapse
|
15
|
Mascia T, Gallitelli D. Synergies and antagonisms in virus interactions. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 252:176-192. [PMID: 27717453 DOI: 10.1016/j.plantsci.2016.07.015] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Revised: 07/22/2016] [Accepted: 07/27/2016] [Indexed: 05/25/2023]
Abstract
Metagenomic surveys and data from next generation sequencing revealed that mixed infections among plant viruses are probably a rule rather than an exception in natural pathosystems. The documented cases may range from synergism to antagonism, which may depend from the spatiotemporal order of arrival of the viruses on the host and upon the host itself. In synergistic interactions, the measurable differences in replication, phenotypic and cytopathological changes, cellular tropism, within host movement, and transmission rate of one of the two viruses or both are increased. Conversely, a decrease in replication, or inhibition of one or more of the above functions by one virus against the other, leads to an antagonistic interaction. Viruses may interact directly and by transcomplementation of defective functions or indirectly, through responses mediated by the host like the defense mechanism based on RNA silencing. Outcomes of these interactions can be applied to the risk assessment of transgenic crops expressing viral proteins, or cross-protected crops for the identification of potential hazards. Prior to experimental evidence, mathematical models may help in forecasting challenges deriving from the great variety of pathways of synergistic and antagonistic interactions. Actually, it seems that such predictions do not receive sufficient credit in the framework of agriculture.
Collapse
Affiliation(s)
- Tiziana Mascia
- Dipartimento di Scienze del Suolo della Pianta e degli Alimenti, Università degli Studi di Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy; Istituto del CNR per la Protezione sostenibile delle Piante, Unità Operativa di Supporto di Bari, Via Amendola 165/A, 70126 Bari, Italy
| | - Donato Gallitelli
- Dipartimento di Scienze del Suolo della Pianta e degli Alimenti, Università degli Studi di Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy; Istituto del CNR per la Protezione sostenibile delle Piante, Unità Operativa di Supporto di Bari, Via Amendola 165/A, 70126 Bari, Italy.
| |
Collapse
|