1
|
Li W, Xiong R, Chu Z, Peng X, Cui G, Dong L. Transcript-Wide Identification and Characterization of the BBX Gene Family in Trichosanthes kirilowii and Its Potential Roles in Development and Abiotic Stress. PLANTS (BASEL, SWITZERLAND) 2025; 14:975. [PMID: 40265903 PMCID: PMC11946252 DOI: 10.3390/plants14060975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/10/2025] [Accepted: 03/19/2025] [Indexed: 04/24/2025]
Abstract
The B-box (BBX) protein has an impact on flowering physiology, photomorphogenesis, shade effects, and responses to both biotic and abiotic stresses. Although recent research described the BBX gene family in numerous plants, knowledge of the BBX gene in Trichosanthes kirilowii was sparse. In this study, we identified a total of 25 TkBBX genes, and phylogenetic analysis showed that these genes were divided into five subfamilies. Analyses of gene structure and motifs for each group found relative conservation. Ka/Ks values showed that most TkBBX genes have undergone negative selection. qRT-PCR analyses revealed that TkBBX1, TkBB4, TkBBX5, TkBBX7, TkBBX15, TkBBX16, TkBBX17, TkBBX19, and TkBBX21 genes respond to salt and drought treatment. Furthermore, we cloned TkBBX7 and TkBBX17 genes and performed a subcellular localization experiment, which revealed that these two genes were both located in the nucleus. Transgenic yeast experiments demonstrated that TkBBX7 and TkBBX17 enhanced yeast tolerance to both salt and drought stresses. These findings provide a theoretical foundation for further investigation on the functions of TkBBX genes in Trichosanthes kirilowii.
Collapse
Affiliation(s)
- Weiwen Li
- Key Laboratory of Horticultural Crop Germplasm Innovation and Utilization (Co-Construction by Ministry and Province), Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei 230001, China; (R.X.); (Z.C.); (X.P.); (G.C.)
- Anhui Provincial Key Laboratory for Germplasm Resources Creation and High-Efficiency Cultivation of Horticultural Crops, Hefei 230001, China
| | - Rui Xiong
- Key Laboratory of Horticultural Crop Germplasm Innovation and Utilization (Co-Construction by Ministry and Province), Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei 230001, China; (R.X.); (Z.C.); (X.P.); (G.C.)
- Anhui Provincial Key Laboratory for Germplasm Resources Creation and High-Efficiency Cultivation of Horticultural Crops, Hefei 230001, China
| | - Zhuannan Chu
- Key Laboratory of Horticultural Crop Germplasm Innovation and Utilization (Co-Construction by Ministry and Province), Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei 230001, China; (R.X.); (Z.C.); (X.P.); (G.C.)
- Anhui Provincial Key Laboratory for Germplasm Resources Creation and High-Efficiency Cultivation of Horticultural Crops, Hefei 230001, China
| | - Xingxing Peng
- Key Laboratory of Horticultural Crop Germplasm Innovation and Utilization (Co-Construction by Ministry and Province), Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei 230001, China; (R.X.); (Z.C.); (X.P.); (G.C.)
- Anhui Provincial Key Laboratory for Germplasm Resources Creation and High-Efficiency Cultivation of Horticultural Crops, Hefei 230001, China
| | - Guangsheng Cui
- Key Laboratory of Horticultural Crop Germplasm Innovation and Utilization (Co-Construction by Ministry and Province), Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei 230001, China; (R.X.); (Z.C.); (X.P.); (G.C.)
- Anhui Provincial Key Laboratory for Germplasm Resources Creation and High-Efficiency Cultivation of Horticultural Crops, Hefei 230001, China
| | - Ling Dong
- Key Laboratory of Horticultural Crop Germplasm Innovation and Utilization (Co-Construction by Ministry and Province), Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei 230001, China; (R.X.); (Z.C.); (X.P.); (G.C.)
- Anhui Provincial Key Laboratory for Germplasm Resources Creation and High-Efficiency Cultivation of Horticultural Crops, Hefei 230001, China
| |
Collapse
|
2
|
Yang Y, Wei J, Tian X, Liu C, Li X, Bu Q. OsBBX2 Delays Flowering by Repressing Hd3a Expression Under Long-Day Conditions in Rice. PLANTS (BASEL, SWITZERLAND) 2024; 14:48. [PMID: 39795308 PMCID: PMC11723354 DOI: 10.3390/plants14010048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 12/17/2024] [Accepted: 12/24/2024] [Indexed: 01/13/2025]
Abstract
Members of the B-Box (BBX) family of proteins play crucial roles in the growth and development of rice. Here, we identified a rice BBX protein, Oryza sativa BBX2 (OsBBX2), which exhibits the highest expression in the root. The transcription of OsBBX2 follows a diurnal rhythm under photoperiodic conditions, peaking at dawn. Functional analysis revealed that OsBBX2 possesses transcriptional repression activity. The BBX2 was overexpressed in the rice japonica cultivar Longjing 11 (LJ11), in which Ghd7 and PRR37 were non-functional or exhibited weak functionality. The overexpression of OsBBX2 (OsBBX2 OE) resulted in a delayed heading date under a long-day (LD) condition, whereas the bbx2 mutant exhibited flowering patterns similar to the wild type (WT). Additionally, transcripts of Ehd1, Hd3a, and RFT1 were downregulated in the OsBBX2 OE lines under the LD condition. OsBBX2 interacted with Hd1 (BBX18), and the bbx2 hd1 double mutant displayed a late flowering phenotype comparable to that of hd1. Furthermore, OsBBX2 enhanced the transcriptional repression of Hd3a through its interaction with Hd1, as demonstrated in the protoplast-based assay. Taken together, these findings suggest that the OsBBX2 delays flowering by interacting with Hd1 and co-repressing Hd3a transcription.
Collapse
Affiliation(s)
- Yusi Yang
- College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin 150080, China
| | - Jiaming Wei
- State Key Laboratory of Black Soils Conservation and Utilization, Key Laboratory of Soybean Molecular Design Breeding, NortheastInstitute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaojie Tian
- State Key Laboratory of Black Soils Conservation and Utilization, Key Laboratory of Soybean Molecular Design Breeding, NortheastInstitute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China
| | - Changhua Liu
- College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin 150080, China
| | - Xiufeng Li
- State Key Laboratory of Black Soils Conservation and Utilization, Key Laboratory of Soybean Molecular Design Breeding, NortheastInstitute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China
| | - Qingyun Bu
- State Key Laboratory of Black Soils Conservation and Utilization, Key Laboratory of Soybean Molecular Design Breeding, NortheastInstitute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China
| |
Collapse
|
3
|
Song Z, Bian Y, Xiao Y, Xu D. B-BOX proteins:Multi-layered roles of molecular cogs in light-mediated growth and development in plants. JOURNAL OF PLANT PHYSIOLOGY 2024; 299:154265. [PMID: 38754343 DOI: 10.1016/j.jplph.2024.154265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 05/05/2024] [Accepted: 05/05/2024] [Indexed: 05/18/2024]
Abstract
B-box containing proteins (BBXs) are a class of zinc-ligating transcription factors or regulators that play essential roles in various physiological and developmental processes in plants. They not only directly associate with target genes to regulate their transcription, but also interact with other transcription factors to mediate target genes' expression, thus forming a complex transcriptional network ensuring plants' adaptation to dynamically changing light environments. This review summarizes and highlights the molecular and biochemical properties of BBXs, as well as recent advances with a focus on their critical regulatory functions in photomorphogenesis (de-etiolation), shade avoidance, photoperiodic-mediated flowering, and secondary metabolite biosynthesis and accumulation in plants.
Collapse
Affiliation(s)
- Zhaoqing Song
- Key Laboratory of Biology and Genetics Improvement of Soybean, Ministry of Agriculture, Zhongshan Biological Breeding Laboratory (ZSBBL), National Innovation Platform for Soybean Breeding and Industry-Education Integration, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yeting Bian
- Key Laboratory of Biology and Genetics Improvement of Soybean, Ministry of Agriculture, Zhongshan Biological Breeding Laboratory (ZSBBL), National Innovation Platform for Soybean Breeding and Industry-Education Integration, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuntao Xiao
- Key Laboratory of Biology and Genetics Improvement of Soybean, Ministry of Agriculture, Zhongshan Biological Breeding Laboratory (ZSBBL), National Innovation Platform for Soybean Breeding and Industry-Education Integration, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Dongqing Xu
- Key Laboratory of Biology and Genetics Improvement of Soybean, Ministry of Agriculture, Zhongshan Biological Breeding Laboratory (ZSBBL), National Innovation Platform for Soybean Breeding and Industry-Education Integration, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
4
|
Lei L, Cao L, Ding G, Zhou J, Luo Y, Bai L, Xia T, Chen L, Wang J, Liu K, Lei Q, Xie T, Yang G, Wang X, Sun S, Lai Y. OsBBX11 on qSTS4 links to salt tolerance at the seeding stage in Oryza sativa L. ssp. Japonica. FRONTIERS IN PLANT SCIENCE 2023; 14:1139961. [PMID: 36968393 PMCID: PMC10030886 DOI: 10.3389/fpls.2023.1139961] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Rice has been reported to be highly sensitive to salt stress at the seedling stage. However, the lack of target genes that can be used for improving salt tolerance has resulted in several saline soils unsuitable for cultivation and planting. To characterize new salt-tolerant genes, we used 1,002 F2:3 populations derived from Teng-Xi144 and Long-Dao19 crosses as the phenotypic source to systematically characterize seedlings' survival days and ion concentration under salt stress. Utilizing QTL-seq resequencing technology and a high-density linkage map based on 4,326 SNP markers, we identified qSTS4 as a major QTL influencing seedling salt tolerance, which accounted for 33.14% of the phenotypic variation. Through functional annotation, variation detection and qRT-PCR analysis of genes within 46.9 Kb of qSTS4, it was revealed that there was one SNP in the promoter region of OsBBX11, which resulted in a significant response difference between the two parents to salt stress. Transgenic plants using knockout-based technology and demonstrated that Na+ and K+ in the roots of the functional-loss-type OsBBX11 were translocated largely to the leaves under 120 mmol/L NaCl compared with the wild-type, causing osbbx11 leaves to die after 12 days of salt stress due to an imbalance in osmotic pressure. In conclusion, this study identified OsBBX11 as a salt-tolerance gene, and one SNPs in the OsBBX11 promoter region can be used to identify its interacting transcription factors. This provides a theoretical basis for finding the molecular mechanism of OsBBX11 upstream and downstream regulation of salt tolerance and molecular design breeding in the future.
Collapse
Affiliation(s)
- Lei Lei
- Postdoctoral Scientific Research Station of Heilongjiang Academy of Agricultural Sciences, Harbin, China
- Institute of Crop Cultivation and Tillage, Heilongjiang Academy of Agricultural Sciences, Harbin, China
- Heilongjiang Rice Quality Improvement and Genetic Breeding Engineering Research Center, Harbin, China
- Northeast of National Center of Technology Innovation for Saline-Alkali Tolerant Rice, Harbin, China
| | - Liangzi Cao
- Institute of Crop Cultivation and Tillage, Heilongjiang Academy of Agricultural Sciences, Harbin, China
- Heilongjiang Rice Quality Improvement and Genetic Breeding Engineering Research Center, Harbin, China
- Northeast of National Center of Technology Innovation for Saline-Alkali Tolerant Rice, Harbin, China
| | - Guohua Ding
- Institute of Crop Cultivation and Tillage, Heilongjiang Academy of Agricultural Sciences, Harbin, China
- Heilongjiang Rice Quality Improvement and Genetic Breeding Engineering Research Center, Harbin, China
- Northeast of National Center of Technology Innovation for Saline-Alkali Tolerant Rice, Harbin, China
| | - Jinsong Zhou
- Institute of Crop Cultivation and Tillage, Heilongjiang Academy of Agricultural Sciences, Harbin, China
- Heilongjiang Rice Quality Improvement and Genetic Breeding Engineering Research Center, Harbin, China
- Northeast of National Center of Technology Innovation for Saline-Alkali Tolerant Rice, Harbin, China
| | - Yu Luo
- Institute of Crop Cultivation and Tillage, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Liangming Bai
- Institute of Crop Cultivation and Tillage, Heilongjiang Academy of Agricultural Sciences, Harbin, China
- Heilongjiang Rice Quality Improvement and Genetic Breeding Engineering Research Center, Harbin, China
| | - Tianshu Xia
- Institute of Crop Cultivation and Tillage, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Lei Chen
- Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Jiangxu Wang
- Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Kai Liu
- Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Qingjun Lei
- Branch of Animal Husbandry and Veterinary of Heilongjiang Academy of Agricultural Sciences, Qiqihar, China
| | - Tingting Xie
- Institute of Crop Cultivation and Tillage, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Guang Yang
- Institute of Crop Cultivation and Tillage, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Xueyang Wang
- Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Shichen Sun
- Institute of Crop Cultivation and Tillage, Heilongjiang Academy of Agricultural Sciences, Harbin, China
- Heilongjiang Rice Quality Improvement and Genetic Breeding Engineering Research Center, Harbin, China
- Northeast of National Center of Technology Innovation for Saline-Alkali Tolerant Rice, Harbin, China
| | - Yongcai Lai
- Institute of Crop Cultivation and Tillage, Heilongjiang Academy of Agricultural Sciences, Harbin, China
- Northeast of National Center of Technology Innovation for Saline-Alkali Tolerant Rice, Harbin, China
| |
Collapse
|
5
|
Cao J, Yuan J, Zhang Y, Chen C, Zhang B, Shi X, Niu R, Lin F. Multi-layered roles of BBX proteins in plant growth and development. STRESS BIOLOGY 2023; 3:1. [PMID: 37676379 PMCID: PMC10442040 DOI: 10.1007/s44154-022-00080-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 12/18/2022] [Indexed: 09/08/2023]
Abstract
Light and phytohormone are external and internal cues that regulate plant growth and development throughout their life cycle. BBXs (B-box domain proteins) are a group of zinc finger proteins that not only directly govern the transcription of target genes but also associate with other factors to create a meticulous regulatory network to precisely regulate numerous aspects of growth and developmental processes in plants. Recent studies demonstrate that BBXs play pivotal roles in light-controlled plant growth and development. Besides, BBXs have been documented to regulate phytohormone-mediated physiological procedures. In this review, we summarize and highlight the multi-faced role of BBXs, with a focus in photomorphogenesis, photoperiodic flowering, shade avoidance, abiotic stress, and phytohormone-mediated growth and development in plant.
Collapse
Affiliation(s)
- Jing Cao
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Jiale Yuan
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Yingli Zhang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Chen Chen
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Beihong Zhang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Xianming Shi
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Rui Niu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Fang Lin
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
6
|
Kumar S, Jeevaraj T, Yunus MH, Chakraborty S, Chakraborty N. The plant cytoskeleton takes center stage in abiotic stress responses and resilience. PLANT, CELL & ENVIRONMENT 2023; 46:5-22. [PMID: 36151598 DOI: 10.1111/pce.14450] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/16/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
Stress resilience behaviours in plants are defensive mechanisms that develop under adverse environmental conditions to promote growth, development and yield. Over the past decades, improving stress resilience, especially in crop species, has been a focus of intense research for global food security and economic growth. Plants have evolved specific mechanisms to sense external stress and transmit information to the cell interior and generate appropriate responses. Plant cytoskeleton, comprising microtubules and actin filaments, takes a center stage in stress-induced signalling pathways, either as a direct target or as a signal transducer. In the past few years, it has become apparent that the function of the plant cytoskeleton and other associated proteins are not merely limited to elementary processes of cell growth and proliferation, but they also function in stress response and resilience. This review summarizes recent advances in the role of plant cytoskeleton and associated proteins in abiotic stress management. We provide a thorough overview of the mechanisms that plant cells employ to withstand different abiotic stimuli such as hypersalinity, dehydration, high temperature and cold, among others. We also discuss the crucial role of the plant cytoskeleton in organellar positioning under the influence of high light intensity.
Collapse
Affiliation(s)
- Sunil Kumar
- Stress Biology, National Institute of Plant Genome Research, New Delhi, India
| | - Theboral Jeevaraj
- Stress Biology, National Institute of Plant Genome Research, New Delhi, India
| | - Mohd H Yunus
- Stress Biology, National Institute of Plant Genome Research, New Delhi, India
| | - Subhra Chakraborty
- Stress Biology, National Institute of Plant Genome Research, New Delhi, India
| | | |
Collapse
|
7
|
Ouyang Y, Zhang X, Wei Y, He Y, Zhang X, Li Z, Wang C, Zhang H. AcBBX5, a B-box transcription factor from pineapple, regulates flowering time and floral organ development in plants. FRONTIERS IN PLANT SCIENCE 2022; 13:1060276. [PMID: 36507446 PMCID: PMC9729951 DOI: 10.3389/fpls.2022.1060276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 11/03/2022] [Indexed: 06/17/2023]
Abstract
Flowering is an important factor to ensure the success of plant reproduction, and reasonable flowering time is crucial to the crop yield. BBX transcription factors can regulate several growth and development processes. However, there is little research on whether BBX is involved in flower formation and floral organ development of pineapple. In this study, AcBBX5, a BBX family gene with two conserved B-box domains, was identified from pineapple. Subcellular localization analysis showed that AcBBX5 was located in the nucleus. Transactivation analysis indicated that AcBBX5 had no significant toxic effects on the yeast system and presented transcriptional activation activity in yeast. Overexpression of AcBBX5 delayed flowering time and enlarged flower morphology in Arabidopsis. Meanwhile, the expression levels of AtFT, AtSOC1, AtFUL and AtSEP3 were decreased, and the transcription levels of AtFLC and AtSVP were increased in AcBBX5-overexpressing Arabidopsis, which might lead to delayed flowering of transgenic plants. Furthermore, transcriptome data and QRT-PCR results showed that AcBBX5 was expressed in all floral organs, with the high expression levels in stamens, ovaries and petals. Yeast one-hybrid and dual luciferase assay results showed that AcBBX5 bound to AcFT promoter and inhibited AcFT gene expression. In conclusion, AcBBX5 was involved in flower bud differentiation and floral organ development, which provides an important reference for studying the functions of BBX and the molecular regulation of flower.
Collapse
Affiliation(s)
- Yanwei Ouyang
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Sanya Nanfan Research Institute, Hainan University, Haikou, China
| | - Xiumei Zhang
- Key Laboratory of Ministry of Agriculture for Tropical Fruit Biology, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
| | - Yongzan Wei
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Hainan Institute for Tropical Agricultural Resources, Haikou, China
| | - Yukun He
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Sanya Nanfan Research Institute, Hainan University, Haikou, China
| | - Xiaohan Zhang
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Sanya Nanfan Research Institute, Hainan University, Haikou, China
| | - Ziqiong Li
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Sanya Nanfan Research Institute, Hainan University, Haikou, China
| | - Can Wang
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Sanya Nanfan Research Institute, Hainan University, Haikou, China
| | - Hongna Zhang
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Sanya Nanfan Research Institute, Hainan University, Haikou, China
- Key Laboratory of Ministry of Agriculture for Tropical Fruit Biology, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
| |
Collapse
|
8
|
Nian L, Zhang X, Liu X, Li X, Liu X, Yang Y, Haider FU, Zhu X, Ma B, Mao Z, Xue Z. Characterization of B-box family genes and their expression profiles under abiotic stresses in the Melilotus albus. FRONTIERS IN PLANT SCIENCE 2022; 13:990929. [PMID: 36247587 PMCID: PMC9559383 DOI: 10.3389/fpls.2022.990929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/25/2022] [Indexed: 06/16/2023]
Abstract
B-box (BBX) proteins are one of the zinc-finger transcription factor that plays a critical role in plant development, growth, and multiple stress responses. Although BBX genes have been reported in many model organisms, no comprehensive study has yet been conducted on the BBX genes in Melilotus albus, and the biological functions of this family remain unknown. In this study, a total of 20 BBX (MaBBX) genes were identified in M. albus and were phylogenetically divided into five clades. BBX members within the same clade showed similar conserved domain, suggesting similarity of potential biological function. Analysis of MaBBX conserved motifs showed that every subfamily contained two common motifs. Distribution mapping shows that BBX proteins are nonrandomly localized in eight chromosomes. The synteny showed that most homologous gene pairs of the MaBBX gene family were amplified by segmental replication, which meant segmental replication was the main way for the MaBBX gene family to evolve. Additionally, the cis-element analysis predicted light-responsive, various hormone and stress-related elements in the promoter regions of MaBBXs. Furthermore, the expression levels of all 20 MaBBX genes were detected by qRT-PCR under salt, cold, and dark stresses in M. albus. Moreover, it was observed that 16 genes had higher expression levels after 3 h of salt treatment, 10 genes were significantly upregulated after 3 h of cold treatment, and all genes were up regulated after 3 h of dark treatment, and then appeared to decline. In addition, it was also noticed that MaBBX13 may be an important candidate for improving tolerance to abiotic stress. The prediction of protein tertiary structure showed that the tertiary structures of members of the same subfamily of MaBBX proteins were highly similar. The hypothesis exhibited that most of the MaBBX proteins were predicted to be localized to the nucleus and cytoplasm and was validated by transient expression assays of MaBBX15 in tobacco leaf epidermal cells. This study provides useful information for further investigating and researching the regulatory mechanisms of BBX family genes in response to abiotic stresses in M. albus.
Collapse
Affiliation(s)
- Lili Nian
- College of Forestry, Gansu Agricultural University, Lanzhou, China
| | - Xiaoning Zhang
- College of Forestry, Gansu Agricultural University, Lanzhou, China
| | - Xingyu Liu
- College of Forestry, Gansu Agricultural University, Lanzhou, China
| | - Xiaodan Li
- College of Management, Gansu Agricultural University, Lanzhou, China
| | - Xuelu Liu
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou, China
| | - Yingbo Yang
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou, China
| | - Fasih Ullah Haider
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou, China
| | - Xiaolin Zhu
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Biao Ma
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou, China
| | - Zixuan Mao
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou, China
| | - Zongyang Xue
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
9
|
Li C, Pei J, Yan X, Cui X, Tsuruta M, Liu Y, Lian C. A poplar B-box protein PtrBBX23 modulates the accumulation of anthocyanins and proanthocyanidins in response to high light. PLANT, CELL & ENVIRONMENT 2021; 44:3015-3033. [PMID: 34114251 DOI: 10.1111/pce.14127] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 05/14/2021] [Accepted: 06/01/2021] [Indexed: 05/20/2023]
Abstract
Flavonoids, which modulate plant resistance to various stresses, can be induced by high light. B-box (BBX) transcription factors (TFs) play crucial roles in the transcriptional regulation of flavonoids biosynthesis, but limited information is available on the association of BBX proteins with high light. We present a detailed overview of 45 Populus trichocarpa BBX TFs. Phylogenetic relationships, gene structure, tissue-specific expression patterns and expression profiles were determined under 10 stress or phytohormone treatments to screen candidate BBX proteins associated with the flavonoid pathway. Sixteen candidate genes were identified, of which five were expressed predominantly in young leaves and roots, and BBX23 showed the most distinct response to high light. Overexpression of BBX23 in poplar activated expression of MYB TFs and structural genes in the flavonoid pathway, thereby promoting the accumulation of proanthocyanidins and anthocyanins. CRISPR/Cas9-generated knockout of BBX23 resulted in the opposite trend. Furthermore, the phenotype induced by BBX23 overexpression was enhanced under exposure to high light. BBX23 was capable of binding directly to the promoters of proanthocyanidin- and anthocyanin-specific genes, and its interaction with HY5 enhanced activation activity. We identified novel regulators of flavonoid biosynthesis in poplar, thereby enhancing our general understanding of the transcriptional regulatory mechanisms involved.
Collapse
Affiliation(s)
- Chaofeng Li
- Laboratory of Forest Symbiology, Asian Research Center for Bioresource and Environmental Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Jinli Pei
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Xin Yan
- Plant Biotechnology Research Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Xin Cui
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
| | - Momi Tsuruta
- Laboratory of Forest Symbiology, Asian Research Center for Bioresource and Environmental Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Ying Liu
- International Joint Laboratory of Forest Symbiology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Chunlan Lian
- Laboratory of Forest Symbiology, Asian Research Center for Bioresource and Environmental Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
10
|
Genome-Wide Identification and Expression Analysis of BBX Transcription Factors in Iris germanica L. Int J Mol Sci 2021; 22:ijms22168793. [PMID: 34445524 PMCID: PMC8396303 DOI: 10.3390/ijms22168793] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/09/2021] [Accepted: 08/12/2021] [Indexed: 11/17/2022] Open
Abstract
The family of B-box (BBX) transcription factors contains one or two B-BOX domains and sometimes also features a highly conserved CCT domain, which plays important roles in plant growth, development and stress response. Nevertheless, no systematic study of the BBX gene family in Iris germanica L. has been undertaken. In this study, a set of six BBX TF family genes from I. germanica was identified based on transcriptomic sequences, and clustered into three clades according to phylogenetic analysis. A transient expression analysis revealed that all six BBX proteins were localized in the nucleus. A yeast one-hybrid assay demonstrated that IgBBX3 has transactivational activity, while IgBBX1, IgBBX2, IgBBX4, and IgBBX5 have no transcriptional activation ability. The transcript abundance of IgBBXs in different tissues was divided into two major groups. The expression of IgBBX1, IgBBX2, IgBBX3 and IgBBX5 was higher in leaves, whereas IgBBX4 and IgBBX6 was higher in roots. The stress response patterns of six IgBBX were detected under phytohormone treatments and abiotic stresses. The results of this study lay the basis for further research on the functions of BBX gene family members in plant hormone and stress responses, which will promote their application in I. germanica breeding.
Collapse
|
11
|
Ma R, Chen J, Huang B, Huang Z, Zhang Z. The BBX gene family in Moso bamboo (Phyllostachys edulis): identification, characterization and expression profiles. BMC Genomics 2021; 22:533. [PMID: 34256690 PMCID: PMC8276415 DOI: 10.1186/s12864-021-07821-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 06/17/2021] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND The BBX (B-box) family are zinc finger protein (ZFP) transcription factors that play an essential role in plant growth, development and response to abiotic stresses. Although BBX genes have been characterized in many model organisms, genome-wide identification of the BBX family genes have not yet been reported in Moso bamboo (Phyllostachys edulis), and the biological functions of this family remain unknown. RESULT In the present study, we identified 27 BBX genes in the genome of Moso bamboo, and analysis of their conserved motifs and multiple sequence alignments revealed that they all shared highly similar structures. Additionally, phylogenetic and homology analyses indicated that PeBBX genes were divided into three clusters, with whole-genome duplication (WGD) events having facilitated the expansion of this gene family. Light-responsive and stress-related cis-elements were identified by analyzing cis-elements in the promoters of all PeBBX genes. Short time-series expression miner (STEM) analysis revealed that the PeBBX genes had spatiotemporal-specific expression patterns and were likely involved in the growth and development of bamboo shoots. We further explored the downstream target genes of PeBBXs, and GO/KEGG enrichment analysis predicted multiple functions of BBX target genes, including those encoding enzymes involved in plant photosynthesis, pyruvate metabolism and glycolysis/gluconeogenesis. CONCLUSIONS In conclusion, we analyzed the PeBBX genes at multiple different levels, which will contribute to further studies of the BBX family and provide valuable information for the functional validation of this family.
Collapse
Affiliation(s)
- Ruifang Ma
- State Key Laboratory of Subtropical Forest Cultivation, Zhejiang A&F University, Lin'an, Zhejiang, 311300, Hangzhou, China
- School of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, Zhejiang, 311300, Hangzhou, China
| | - Jialu Chen
- State Key Laboratory of Subtropical Forest Cultivation, Zhejiang A&F University, Lin'an, Zhejiang, 311300, Hangzhou, China
- School of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, Zhejiang, 311300, Hangzhou, China
| | - Bin Huang
- State Key Laboratory of Subtropical Forest Cultivation, Zhejiang A&F University, Lin'an, Zhejiang, 311300, Hangzhou, China
- School of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, Zhejiang, 311300, Hangzhou, China
| | - Zhinuo Huang
- State Key Laboratory of Subtropical Forest Cultivation, Zhejiang A&F University, Lin'an, Zhejiang, 311300, Hangzhou, China
- School of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, Zhejiang, 311300, Hangzhou, China
| | - Zhijun Zhang
- State Key Laboratory of Subtropical Forest Cultivation, Zhejiang A&F University, Lin'an, Zhejiang, 311300, Hangzhou, China.
- School of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, Zhejiang, 311300, Hangzhou, China.
| |
Collapse
|
12
|
Talar U, Kiełbowicz-Matuk A. Beyond Arabidopsis: BBX Regulators in Crop Plants. Int J Mol Sci 2021; 22:ijms22062906. [PMID: 33809370 PMCID: PMC7999331 DOI: 10.3390/ijms22062906] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 01/16/2023] Open
Abstract
B-box proteins represent diverse zinc finger transcription factors and regulators forming large families in various plants. A unique domain structure defines them—besides the highly conserved B-box domains, some B-box (BBX) proteins also possess CCT domain and VP motif. Based on the presence of these specific domains, they are mostly classified into five structural groups. The particular members widely differ in structure and fulfill distinct functions in regulating plant growth and development, including seedling photomorphogenesis, the anthocyanins biosynthesis, photoperiodic regulation of flowering, and hormonal pathways. Several BBX proteins are additionally involved in biotic and abiotic stress response. Overexpression of some BBX genes stimulates various stress-related genes and enhanced tolerance to different stresses. Moreover, there is evidence of interplay between B-box and the circadian clock mechanism. This review highlights the role of BBX proteins as a part of a broad regulatory network in crop plants, considering their participation in development, physiology, defense, and environmental constraints. A description is also provided of how various BBX regulators involved in stress tolerance were applied in genetic engineering to obtain stress tolerance in transgenic crops.
Collapse
|
13
|
Chai J, Zhu S, Li C, Wang C, Cai M, Zheng X, Zhou L, Zhang H, Sheng P, Wu M, Jin X, Cheng Z, Zhang X, Lei C, Ren Y, Lin Q, Zhou S, Guo X, Wang J, Zhao Z, Wan J. OsRE1 interacts with OsRIP1 to regulate rice heading date by finely modulating Ehd1 expression. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:300-310. [PMID: 32757315 PMCID: PMC7868965 DOI: 10.1111/pbi.13462] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 07/24/2020] [Indexed: 05/06/2023]
Abstract
Heading date is a key agronomic trait affecting crop yield. In rice, Early heading date 1 (Ehd1) is an important B-type response regulator in determination of heading date. Although many regulatory factors of Ehd1 expression have been functionally characterized, the direct regulators of Ehd1 largely remain to be identified. Here, we identified a new regulator of Ehd1, OsRE1, that directly binds to the A-box motif in the Ehd1 promoter. Osre1 confers an early heading phenotype due to elevated expression levels of Ehd1. OsRE1 is a nucleus-localized bZIP transcription factor with a diurnal rhythmic expression pattern. Furthermore, we identified an OsRE1-interacting protein, OsRIP1, and demonstrated that OsRIP1 can repress the transcript expression of Ehd1 in an OsRE1-dependent manner. Our genetic data showed that OsRE1 and OsRIP1 may function upstream of Ehd1 in regulating heading date. Together, our results suggest that OsRE1 functions cooperatively with OsRIP1 to regulate heading date through finely modulating the expression of Ehd1. In addition, OsRE1 and OsRIP1 are two minor heading date regulators, which are more desirable for fine-tuning heading date to improve rice regional adaptability.
Collapse
Affiliation(s)
- Juntao Chai
- National Key Laboratory for Crop Genetics and Germplasm EnhancementNanjing Agricultural UniversityNanjingChina
| | - Shanshan Zhu
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Chaonan Li
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Chunming Wang
- National Key Laboratory for Crop Genetics and Germplasm EnhancementNanjing Agricultural UniversityNanjingChina
| | - Maohong Cai
- National Key Laboratory for Crop Genetics and Germplasm EnhancementNanjing Agricultural UniversityNanjingChina
| | - Xiaoming Zheng
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Liang Zhou
- National Key Laboratory for Crop Genetics and Germplasm EnhancementNanjing Agricultural UniversityNanjingChina
| | - Huan Zhang
- National Key Laboratory for Crop Genetics and Germplasm EnhancementNanjing Agricultural UniversityNanjingChina
| | - Peike Sheng
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Mingming Wu
- National Key Laboratory for Crop Genetics and Germplasm EnhancementNanjing Agricultural UniversityNanjingChina
| | - Xin Jin
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Zhijun Cheng
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Xin Zhang
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Cailin Lei
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Yulong Ren
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Qibing Lin
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Shirong Zhou
- National Key Laboratory for Crop Genetics and Germplasm EnhancementNanjing Agricultural UniversityNanjingChina
| | - Xiuping Guo
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Jie Wang
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Zhichao Zhao
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Jianmin Wan
- National Key Laboratory for Crop Genetics and Germplasm EnhancementNanjing Agricultural UniversityNanjingChina
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| |
Collapse
|
14
|
Liu Y, Lin G, Yin C, Fang Y. B-box transcription factor 28 regulates flowering by interacting with constans. Sci Rep 2020; 10:17789. [PMID: 33082412 PMCID: PMC7575571 DOI: 10.1038/s41598-020-74445-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 10/01/2020] [Indexed: 11/26/2022] Open
Abstract
B-box transcription factors (BBXs) are important regulators of flowering, photomorphogenesis, shade-avoidance, abiotic and biotic stresses and plant hormonal pathways. In Arabidopsis, 32 BBX proteins have been identified and classified into five groups based on their structural domains. Little is known about the fifth group members (BBX26–BBX32) and the detailed molecular mechanisms relevant to their functions. Here we identified B-box transcription factor 28 (BBX28) that interacts with Constans (CO), a transcriptional activator of Flowering Locus T (FT). Overexpressing BBX28 leads to late flowering with dramatically decreased FT transcription, and bbx28 deficient mutant displays a weak early flowering phenotype under long days (LD), indicating that BBX28 plays a negative and redundant role in flowering under LD. Additionally, the interaction between BBX28 and CO decreases the recruitment of CO to FT locus without affecting the transcriptional activation activity of CO. Moreover, the N-terminal cysteines, especially those within the B-box domain, are indispensable for the heterodimerization between BBX28 and CO and activation of CO on FT transcription. Genetic evidences show that the later flowering caused by BBX28 overexpression is compromised by CO ectopic expression. Collectively, these results supported that BBX28 functions with CO and FT to negatively regulate Arabidopsis flowering, in which the N-terminal conserved cysteines of BBX28 might play a central role.
Collapse
Affiliation(s)
- Yin Liu
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.,National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200032, China
| | - Guang Lin
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200032, China
| | - Chunmei Yin
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yuda Fang
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China. .,National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200032, China.
| |
Collapse
|
15
|
Song Z, Bian Y, Liu J, Sun Y, Xu D. B-box proteins: Pivotal players in light-mediated development in plants. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2020; 62:1293-1309. [PMID: 32237198 DOI: 10.1111/jipb.12935] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 03/25/2020] [Indexed: 05/05/2023]
Abstract
Light signals mediate a number of physiological and developmental processes in plants, such as flowering, photomorphogenesis, and pigment accumulation. Emerging evidence has revealed that a group of B-box proteins (BBXs) function as central players in these light-mediated developmental processes. B-box proteins are a class of zinc-coordinated transcription factors or regulators that not only directly mediate the transcription of target genes but also interact with various other factors to create a complex regulatory network involved in the precise control of plant growth and development. This review summarizes and highlights the recent findings concerning the critical regulatory functions of BBXs in photoperiodic flowering, light signal transduction and light-induced pigment accumulation and their molecular modes of action at the transcriptional and post-translational levels in plants.
Collapse
Affiliation(s)
- Zhaoqing Song
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yeting Bian
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jiujie Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuting Sun
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Dongqing Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
16
|
Zhang X, Yao Y, Li X, Zhang L, Fan S. Transcriptomic analysis identifies novel genes and pathways for salt stress responses in Suaeda salsa leaves. Sci Rep 2020; 10:4236. [PMID: 32144380 PMCID: PMC7060309 DOI: 10.1038/s41598-020-61204-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 02/24/2020] [Indexed: 02/07/2023] Open
Abstract
Salinity is a critical abiotic stress, which significantly impacts the agricultural yield worldwide. Identification of the molecular mechanisms underlying the salt tolerance in euhalophyte Suaeda salsa is conducive to the development of salt-resistant crops. In the present study, high-throughput RNA sequencing was performed after S. salsa leaves were exposed to 300 mM NaCl for 7 days, and 7,753 unigenes were identified as differently expressed genes (DEGs) in S. salsa, including 3,638 increased and 4,115 decreased unigenes. Moreover, hundreds of pathways were predicted to participate in salt stress response in S. salsa by Gene Ontology (GO), MapMan and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses, including ion transport and sequestration as well as photoprotection of photosystem (PS) II. The GO enrichment analysis indicated that genes related to ion transport, reactive oxygen species (ROS) scavenging and transcriptional factors were highly expressed upon NaCl treatment. The excessive Na+ and Cl- ions were supposed to be absorbed into the vacuole for ion sequestration and balance adjustment by potassium transporters (such as KEA3) with high expressions. Moreover, we predicted that mutiple candidate genes associated with photosynthesis (such as PSB33 and ABA4), ROS (such as TAU9 and PHI8) and transcriptional regulation (HB-7 and MYB78) pathways could mitigate salt stress-caused damage in S. salsa.
Collapse
Affiliation(s)
- Xuejie Zhang
- Key Lab of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, 250014, Shandong, China
| | - Yan Yao
- Key Lab of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, 250014, Shandong, China
| | - Xiaotong Li
- Key Lab of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, 250014, Shandong, China
| | - Luoyan Zhang
- Key Lab of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, 250014, Shandong, China.
| | - Shoujin Fan
- Key Lab of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, 250014, Shandong, China.
| |
Collapse
|
17
|
Qi F, Zhang F. Cell Cycle Regulation in the Plant Response to Stress. FRONTIERS IN PLANT SCIENCE 2020; 10:1765. [PMID: 32082337 PMCID: PMC7002440 DOI: 10.3389/fpls.2019.01765] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 12/17/2019] [Indexed: 05/19/2023]
Abstract
As sessile organisms, plants face a variety of environmental challenges. Their reproduction and survival depend on their ability to adapt to these stressors, which include water, heat stress, high salinity, and pathogen infection. Failure to adapt to these stressors results in programmed cell death and decreased viability, as well as reduced productivity in the case of crop plants. The growth and development of plants are maintained by meiosis and mitosis as well as endoreduplication, during which DNA replicates without cytokinesis, leading to polyploidy. As in other eukaryotes, the cell cycle in plants consists of four stages (G1, S, G2, and M) with two major check points, namely, the G1/S check point and G2/M check point, that ensure normal cell division. Progression through these checkpoints involves the activity of cyclin-dependent kinases and their regulatory subunits known as cyclins. In order for plants to survive, cell cycle control must be balanced with adaption to dynamic environmental conditions. In this review, we summarize recent advances in our understanding of cell cycle regulation in plants, with a focus on the molecular interactions of cell cycle machinery in the context of stress tolerance.
Collapse
Affiliation(s)
- Feifei Qi
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Institute of Biomedical Sciences, College of Life Sciences, Shandong Normal University, Jinan, China
| | | |
Collapse
|
18
|
Cao Y, Chen M, Dong D, Xie S, Liu M. Environmental pollutants damage airway epithelial cell cilia: Implications for the prevention of obstructive lung diseases. Thorac Cancer 2020; 11:505-510. [PMID: 31975505 PMCID: PMC7049516 DOI: 10.1111/1759-7714.13323] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/03/2020] [Accepted: 01/04/2020] [Indexed: 01/11/2023] Open
Abstract
Mucociliary epithelium lining the upper and lower respiratory tract constitutes the first line of defense of the airway and lungs against inhaled pollutants and pathogens. The concerted beating of multiciliated cells drives mucociliary clearance. Abnormalities in both the structure and function of airway cilia have been implicated in obstructive lung diseases. Emerging evidence reveals a close correlation between lung diseases and environmental stimuli such as sulfur dioxide and tobacco particles. However, the underlying mechanism remains to be described. In this review, we emphasize the importance of airway cilia in mucociliary clearance and discuss how environmental pollutants affect the structure and function of airway cilia, thus shedding light on the function of airway cilia in preventing obstructive lung diseases and revealing the negative effects of environmental pollutants on human health.
Collapse
Affiliation(s)
- Yu Cao
- College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, Shandong Normal University, Jinan, China
| | - Miao Chen
- College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, Shandong Normal University, Jinan, China
| | - Dan Dong
- College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, Shandong Normal University, Jinan, China
| | - Songbo Xie
- College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, Shandong Normal University, Jinan, China
| | - Min Liu
- College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, Shandong Normal University, Jinan, China
| |
Collapse
|
19
|
Guo XX, Dai C, Wang R, Qu XJ, Zhang XJ. Characterization and phylogenetic analysis of the complete plastome of Alopecurus japonicus (Gramineae), an annual weed. Mitochondrial DNA B Resour 2020; 5:396-397. [PMID: 33366573 PMCID: PMC7748505 DOI: 10.1080/23802359.2019.1704189] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 12/07/2019] [Indexed: 11/08/2022] Open
Abstract
Alopecurus japonicus is a weed in summer crop field, which is harmful to wheat crops. The complete plastome of A. japonicus was reported in this study. The genome was 136,408 bp in length, consisting of an 80,512 bp large single-copy region, a 12,836 bp small single-copy region, and two 21,530 bp inverted repeat regions. The GC content of this plastome was 38.3%. A total of 112 genes were annotated for the plastome of A. japonicus, containing 78 protein-coding genes (PCGs), 30 tRNAs, and 4 rRNAs. Phylogenetic analysis showed that A. japonicus was sister to Alopecurus aequalis.
Collapse
Affiliation(s)
- Xiu-Xiu Guo
- Key Lab of Plant Stress Research, College of Life Sciences, Shandong Normal University, Ji’nan, PR China
| | - Chen Dai
- Key Lab of Plant Stress Research, College of Life Sciences, Shandong Normal University, Ji’nan, PR China
| | - Rong Wang
- Key Lab of Plant Stress Research, College of Life Sciences, Shandong Normal University, Ji’nan, PR China
| | - Xiao-Jian Qu
- Key Lab of Plant Stress Research, College of Life Sciences, Shandong Normal University, Ji’nan, PR China
| | - Xue-Jie Zhang
- Key Lab of Plant Stress Research, College of Life Sciences, Shandong Normal University, Ji’nan, PR China
| |
Collapse
|
20
|
Ping Q, Cheng P, Huang F, Ren L, Cheng H, Guan Z, Fang W, Chen S, Chen F, Jiang J. The heterologous expression in Arabidopsis thaliana of a chrysanthemum gene encoding the BBX family transcription factor CmBBX13 delays flowering. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 144:480-487. [PMID: 31655346 DOI: 10.1016/j.plaphy.2019.10.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 10/10/2019] [Accepted: 10/15/2019] [Indexed: 05/22/2023]
Abstract
Members of the B Box (BBX) family of proteins are known to be important for directing the growth and development of the Arabidopsis thaliana plant. Here, an analysis of a newly isolated chrysanthemum gene encoding a BBX family member implied that it was a likely ortholog of AtBBX13. The gene (designated CmBBX13) was most actively transcribed in the leaves and stem apex. CmBBX13 transcription was arrhythmic under either continuous darkness or continuous light, so the observed diurnal variation in its transcription appeared not to respond to the circadian clock. The outcome of transiently expressing CmBBX13 in onion epidermal cells suggested that the CmBBX13 protein localized to the nucleus. Both a yeast- and a protoplast-based assay showed that the protein has transactivational activity. When CmBBX13 was constitutively expressed in A. thaliana, flowering was delayed under both short and long day conditions. The presence of the transgene also down-regulated a number of genes known to promote flowering, including APETALA1 (AP1), SUPPRESSOR OF OVEREXPRESSION OF CO 1 (SOC1), FLOWERING LOCUS T (FT) and FD, while simultaneously up-regulating the floral inhibitor-encoding genes FLOWERING LOCUS C (FLC) and TARGET OF EAT 2 (TOE2). The data suggested that CmBBX13 regulates flowering time independently of the photoperiod pathway.
Collapse
Affiliation(s)
- Qi Ping
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, The Key Laboratory of Landscaping, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Peilei Cheng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, The Key Laboratory of Landscaping, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Fei Huang
- Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences, Shanghai, 201602, China.
| | - Liping Ren
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, The Key Laboratory of Landscaping, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Hua Cheng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, The Key Laboratory of Landscaping, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Zhiyong Guan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, The Key Laboratory of Landscaping, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Weimin Fang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, The Key Laboratory of Landscaping, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Sumei Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, The Key Laboratory of Landscaping, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Fadi Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, The Key Laboratory of Landscaping, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Jiafu Jiang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, The Key Laboratory of Landscaping, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
21
|
Sun X, Han G, Meng Z, Lin L, Sui N. Roles of malic enzymes in plant development and stress responses. PLANT SIGNALING & BEHAVIOR 2019; 14:e1644596. [PMID: 31322479 PMCID: PMC6768271 DOI: 10.1080/15592324.2019.1644596] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 06/30/2019] [Accepted: 07/02/2019] [Indexed: 05/12/2023]
Abstract
Malic enzyme (ME) comprises a family of proteins with multiple isoforms located in different compartments of eukaryotic cells. It is a key enzyme regulating malic acid metabolism and can catalyze the reversible reaction of oxidative decarboxylation of malic acid. And it is also one of the important enzymes in plant metabolism and is involved in multiple metabolic processes. ME is widely present in plants and mainly discovered in cytoplasmic stroma, mitochondria, chloroplasts. It is involved in plant growth, development, and stress response. Plants are stressed by various environmental factors such as drought, high salt, and high temperature during plant growth, and the mechanisms of plant response to various environmental stresses are synergistic. Numerous studies have shown that ME participates in the process of coping with the above environmental factors by increasing water use efficiency, improving photosynthesis of plants, providing reducing power, and so on. In this review, we discuss the important role of ME in plant development and plant stress response, and prospects for its application. It provides a theoretical basis for the future use of ME gene for molecular resistance breeding.
Collapse
Affiliation(s)
- Xi Sun
- Shandong Provincial Key Laboratory of Plant Stress, College of life Sciences, Shandong Normal University, Jinan, PR China
| | - Guoliang Han
- Shandong Provincial Key Laboratory of Plant Stress, College of life Sciences, Shandong Normal University, Jinan, PR China
| | - Zhe Meng
- Shandong Provincial Key Laboratory of Plant Stress, College of life Sciences, Shandong Normal University, Jinan, PR China
| | - Lin Lin
- Water Research Institute of Shandong Province, Jinan, PR China
| | - Na Sui
- Shandong Provincial Key Laboratory of Plant Stress, College of life Sciences, Shandong Normal University, Jinan, PR China
| |
Collapse
|
22
|
Li J, Liu M. Biological features and regulatory mechanisms of salt tolerance in plants. J Cell Biochem 2019; 120:10914-10920. [PMID: 30784118 DOI: 10.1002/jcb.28474] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 01/11/2019] [Indexed: 01/24/2023]
Abstract
Halophytes play a vital role in saline agriculture because these plants are necessary to increase the food supply to meet the demands of the growing world population. In addition, the transfer of salt-resistance genes from halophytes using genetic technologies has the potential to increase the salt tolerance of xerophytes. Characterization of some particularly promising halophyte model organisms has revealed the important new insights into the salt tolerance mechanisms used by plants. Numerous advances using these model systems have improved our understanding of salt tolerance regulation and salt tolerance-associated changes in gene expression, and these mechanisms have important implications for saline agriculture. Recent findings provide a basis for future studies of salt tolerance in plants, as well as the development of improved strategies for saline agriculture to increase yields of food, feed, and fuel crops.
Collapse
Affiliation(s)
- Jingrui Li
- Institute of Biomedical Sciences, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Min Liu
- Institute of Biomedical Sciences, College of Life Sciences, Shandong Normal University, Jinan, China
| |
Collapse
|
23
|
Ma H, Liu M. The microtubule cytoskeleton acts as a sensor for stress response signaling in plants. Mol Biol Rep 2019; 46:5603-5608. [PMID: 31098806 DOI: 10.1007/s11033-019-04872-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 05/13/2019] [Indexed: 01/17/2023]
Abstract
Stress tolerance pathways are protective mechanisms that have evolved to protect plant growth and increase production under various environmental stress conditions. Enhancing stress tolerance in crop plants has become an area of intense study with aims of increasing crop production and enhancing economic benefits. A growing number of studies suggest that in addition to playing vital roles in mechanical architecture and cell division, microtubules are also involved the adaptation to severe environmental conditions in plants. However, the mechanisms that integrate microtubule regulation, cellular metabolism and cell signaling in plant stress responses remain unclear. Recent studies suggest that microtubules act as sensors for different abiotic stresses and maintain mechanical stability by forming bundles. Characterizing the diverse roles of plant microtubules is vital to furthering our understanding of stress tolerance in plants.
Collapse
Affiliation(s)
- Huixian Ma
- College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Min Liu
- College of Life Sciences, Shandong Normal University, Jinan, 250014, China.
| |
Collapse
|
24
|
Vaishak KP, Yadukrishnan P, Bakshi S, Kushwaha AK, Ramachandran H, Job N, Babu D, Datta S. The B-box bridge between light and hormones in plants. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 191:164-174. [PMID: 30640143 DOI: 10.1016/j.jphotobiol.2018.12.021] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/23/2018] [Accepted: 12/27/2018] [Indexed: 11/29/2022]
Abstract
Plant development is meticulously modulated by interactions between the surrounding environment and the endogenous phytohormones. Light, as an external signal coordinates with the extensive networks of hormones inside the plant to execute its effects on growth and development. Several proteins in plants have been identified for their crucial roles in mediating light regulated development. Among these are the B-box (BBX) family of transcription factors characterized by the presence of zinc-finger B-box domain in their N-terminal region. In Arabidopsis there are 32 BBX proteins that are divided into five structural groups on the basis of the domains present. Several BBX proteins play important roles in seedling photomorphogenesis, neighbourhood detection and photoperiodic regulation of flowering. There is increasing evidence that besides light signaling BBX proteins also play integral roles in several hormone signaling pathways in plants. Here we attempt to comprehensively integrate the roles of multiple BBX proteins in various light and hormone signaling pathways. We further discuss the role of the BBX proteins in mediating crosstalk between the two signaling pathways to harmonize plant growth and development. Finally, we try to analyse the conservation of BBX genes across species and discuss the role of BBX proteins in regulating economically important traits in crop plants.
Collapse
Affiliation(s)
- K P Vaishak
- Plant Cell and Development Biology Lab, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal, India; School of Biological Sciences, Indian Institute of Science Education and Research (IISER) Thiruvananthapuram, India
| | - Premachandran Yadukrishnan
- Plant Cell and Development Biology Lab, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal, India
| | - Souvika Bakshi
- Plant Cell and Development Biology Lab, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal, India
| | - Amit Kumar Kushwaha
- Plant Cell and Development Biology Lab, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal, India
| | - Harshil Ramachandran
- Plant Cell and Development Biology Lab, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal, India
| | - Nikhil Job
- Plant Cell and Development Biology Lab, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal, India
| | - Dion Babu
- Plant Cell and Development Biology Lab, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal, India
| | - Sourav Datta
- Plant Cell and Development Biology Lab, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal, India.
| |
Collapse
|
25
|
Chen M, Xie S. Therapeutic targeting of cellular stress responses in cancer. Thorac Cancer 2018; 9:1575-1582. [PMID: 30312004 PMCID: PMC6275842 DOI: 10.1111/1759-7714.12890] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 09/13/2018] [Accepted: 09/14/2018] [Indexed: 11/30/2022] Open
Abstract
Similar to bacteria, yeast, and other organisms that have evolved pathways to respond to environmental stresses, cancer cells develop mechanisms that increase genetic diversity to facilitate adaptation to a variety of stressful conditions, including hypoxia, nutrient deprivation, exposure to DNA-damaging agents, and immune responses. To survive, cancer cells trigger mechanisms that drive genomic instability and mutation, alter gene expression programs, and reprogram the metabolic pathways to evade growth inhibition signaling and immune surveillance. A deeper understanding of the molecular mechanisms that underlie the pathways used by cancer cells to overcome stresses will allow us to develop more efficacious strategies for cancer therapy. Herein, we overview several key stresses imposed on cancer cells, including oxidative, metabolic, mechanical, and genotoxic, and discuss the mechanisms that drive cancer cell responses. The therapeutic implications of these responses are also considered, as these factors pave the way for the targeting of stress adaption pathways in order to slow cancer progression and block resistance to therapy.
Collapse
Affiliation(s)
- Miao Chen
- College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Institute of Biomedical SciencesShandong Normal UniversityJinanChina
| | - Songbo Xie
- College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Institute of Biomedical SciencesShandong Normal UniversityJinanChina
| |
Collapse
|
26
|
Zhao P, Wang J, Zhao W, Ma X, Sun H. Antifatigue and antiaging effects of Chinese rice wine in mice. Food Sci Nutr 2018; 6:2386-2394. [PMID: 30510739 PMCID: PMC6261172 DOI: 10.1002/fsn3.830] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 09/11/2018] [Accepted: 09/13/2018] [Indexed: 12/20/2022] Open
Abstract
Chinese rice wine (CRW) is widely known for keeping good health and commonly used in the traditional Chinese medicine prescription guiding drug. This study assesses the effects of CRW on antifatigue and antiaging activities in mice models. Mice were randomly divided into four groups performing with 0.25 ml of distilled water, 0.15, 0.25, and 0.4 ml of CRW for 15 consecutive days. The CRW could obviously increase the content of liver glycogen (LG) and decrease the levels of blood lactic acid (BLA)and blood urea nitrogen (BUN) to improve antifatigue ability. In antiaging assay, CRW significantly increased the activity of SOD in liver, the activities of GSH-Px and CAT in brain cortex, body quality, thymus index, and spleen index, and decreased liver MDA levels, liver total cholesterol content, and AChE levels in hippocampus. The CRW has potent antifatigue ability and could minimize the occurrence of age-associated disorders.
Collapse
Affiliation(s)
- Pan Zhao
- Key Laboratory of Animal Resistance Biology of Shandong ProvinceSchool of Life ScienceShandong Normal UniversityJinanChina
| | - Jing Wang
- Key Laboratory of Animal Resistance Biology of Shandong ProvinceSchool of Life ScienceShandong Normal UniversityJinanChina
| | - Wei Zhao
- Institute of Millet CropsHebei Academy of Agriculture and Forestry SciencesJiazhuang ShiChina
| | - Xiaoli Ma
- Central LaboratoryJinan Central Hospital Affiliated to Shandong UniversityJinanChina
| | - Haiji Sun
- Key Laboratory of Animal Resistance Biology of Shandong ProvinceSchool of Life ScienceShandong Normal UniversityJinanChina
| |
Collapse
|
27
|
Dally N, Eckel M, Batschauer A, Höft N, Jung C. Two CONSTANS-LIKE genes jointly control flowering time in beet. Sci Rep 2018; 8:16120. [PMID: 30382124 PMCID: PMC6208394 DOI: 10.1038/s41598-018-34328-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 09/21/2018] [Indexed: 11/19/2022] Open
Abstract
Breeding vegetative crops (e.g. beets, cabbage, forage grasses) is challenged by two conflicting aims. For field production, flowering must be avoided while flowering and seed set is necessary for breeding and seed production. The biennial species sugar beet makes shoot elongation (‘bolting’) followed by flowering after a long period of cold temperatures. Field production in northern geographical regions starts in spring. A thickened storage root is formed only during vegetative growth. It is expected that winter beets, which are sown before winter would have a much higher yield potential. However, field production was not possible so far due to bolting after winter. We propose a strategy to breed winter beets exploiting haplotype variation at two major bolting time loci, B and B2. Both genes encode transcription factors controlling the expression of two orthologs of the Arabidopsis gene FLOWERING LOCUS T (FT). We detected an epistatic interaction between both genes because F2 plants homozygous for two B/B2 mutant alleles did not bolt even after vernalization. Fluorescence complementation studies revealed that both proteins form a heterodimer in vivo. In non-bolting plants, the bolting activator BvFT2 was completely downregulated whereas the repressor BvFT1 was upregulated which suggests that both genes acquire a CONSTANS (CO) like function in beet. Like CO, B and B2 proteins house CCT and BBX domains which, in contrast to CO are split between the two beet genes. We propose an alternative regulation of FT orthologs in beet that can be exploited to breed winter beets.
Collapse
Affiliation(s)
- Nadine Dally
- UKSH Campus Kiel, Hematology Laboratory Kiel, Langer Segen 8-10, D-24105, Kiel, Germany
| | - Maike Eckel
- Department of Plant Physiology and Photobiology, Faculty of Biology, Philipps-University of Marburg, Karl-von-Frisch-Str. 8, D-35032, Marburg, Germany
| | - Alfred Batschauer
- Department of Plant Physiology and Photobiology, Faculty of Biology, Philipps-University of Marburg, Karl-von-Frisch-Str. 8, D-35032, Marburg, Germany
| | - Nadine Höft
- Plant Breeding Institute, Christian-Albrechts-University of Kiel, Am Botanischen Garten 1-9, D-24118, Kiel, Germany
| | - Christian Jung
- Plant Breeding Institute, Christian-Albrechts-University of Kiel, Am Botanischen Garten 1-9, D-24118, Kiel, Germany.
| |
Collapse
|
28
|
Zeng L, Liu X, Zhou Z, Li D, Zhao X, Zhu L, Luo Y, Hu S. Identification of a G2-like transcription factor, OsPHL3, functions as a negative regulator of flowering in rice by co-expression and reverse genetic analysis. BMC PLANT BIOLOGY 2018; 18:157. [PMID: 30081823 PMCID: PMC6091178 DOI: 10.1186/s12870-018-1382-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 08/01/2018] [Indexed: 05/25/2023]
Abstract
BACKGROUND Flowering time is a key trait for regional adaption and seed production in rice (Oryza sativa L.). Forward and reverse genetic studies have characterized a number of flowering-time genes. However, co-expression analysis has not been used to identify the flowering-time genes. RESULTS We predicted a G2-like family transcription factor, OsPHL3, by co-expression networks analysis with photoperiodic flowering pathway genes. OsPHL3 contains a MYB-CC domain, and was localized in the nucleus with transcriptional activation potential. OsPHL3 was mainly expressed in the leaves and exhibited a circadian rhythmic expression pattern. Rice lines overexpressing OsPHL3 showed a delayed flowering time in the genetic background of TP309 under both long-day (Beijing) and short-day (Hainan) conditions. By contrast, the knockout rice lines of OsPHL3 by CRISPR/Cas9 technology promoted flowering time regardless of genetic backgrounds (i.e. Nipponbare and TP309) or day length. Further analysis indicated that OsPHL3 delayed flowering time by down-regulating the expression of Hd3a and RFT1 through promoting Hd1 under long-day conditions (LDs), or suppressing Ehd1/Hd1 under short-day conditions (SDs). CONCLUSIONS Our results suggested that co-expression analysis is a useful strategy for identifying novel flowering-time genes in rice.
Collapse
Affiliation(s)
- Liping Zeng
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, NO.1 Beichen West Road, Chaoyang District, Beijing, 100101 China
- University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing, 100049 China
| | - Xue Liu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, NO.1 Beichen West Road, Chaoyang District, Beijing, 100101 China
| | - Zhuangzhi Zhou
- State Key Laboratory of Plant Genomics and National Center For Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, NO.1 Beichen West Road, Chaoyang District, Beijing, 100101 China
| | - Dayong Li
- State Key Laboratory of Plant Genomics and National Center For Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, NO.1 Beichen West Road, Chaoyang District, Beijing, 100101 China
| | - Xianfeng Zhao
- State Key Laboratory of Plant Genomics and National Center For Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, NO.1 Beichen West Road, Chaoyang District, Beijing, 100101 China
| | - Lihuang Zhu
- State Key Laboratory of Plant Genomics and National Center For Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, NO.1 Beichen West Road, Chaoyang District, Beijing, 100101 China
| | - Yingfeng Luo
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, NO.1 Beichen West Road, Chaoyang District, Beijing, 100101 China
- University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing, 100049 China
| | - Songnian Hu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, NO.1 Beichen West Road, Chaoyang District, Beijing, 100101 China
- University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing, 100049 China
| |
Collapse
|
29
|
Chen M, Li Y, Liu Z, Qu Y, Zhang H, Li D, Zhou J, Xie S, Liu M. Exopolysaccharides from a Codonopsis pilosula endophyte activate macrophages and inhibit cancer cell proliferation and migration. Thorac Cancer 2018; 9:630-639. [PMID: 29577649 PMCID: PMC5928371 DOI: 10.1111/1759-7714.12630] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 02/24/2018] [Accepted: 02/24/2018] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Exopolysaccharides with structural diversity have shown wide applications in biomaterial, food, and pharmaceutical industries. Herein, we isolated an endophytic strain, 14-DS-1, from the traditional medicinal plant Codonopsis pilosula to elucidate the characteristics and anti-cancer activities of purified exopolysaccharides. METHODS HPLC and GC-MS were conducted to purify and characterize the exopolysaccharides isolated from 14-DS-1. Quantitative RT-PCR, cell migration assays, immunofluorescence staining, and flow cytometry analysis were conducted to investighate the biological activity of DSPS. RESULTS We demonstrated that exopolysaccharides isolated from 14-DS-1 (DSPS), which were predominately composed of six monosaccharides, showed anti-cancer activities. Biological activity analysis revealed that exposure to DSPS induced macrophage activation and polarization by promoting the production of TNF-α and nitric oxide. Further analysis revealed that DSPS treatment promoted macrophage infiltration, whereas cancer cell migration was suppressed. In addition, DSPS exposure led to S-phase arrest and apoptosis in cancer cells. Immunofluorescence staining revealed that treatment with DSPS resulted in defects in spindle orientation and positioning. CONCLUSION These findings thus suggest that DSPS may have promising potential in cancer therapy.
Collapse
Affiliation(s)
- Min Chen
- State Key Laboratory of Microbial Technology, School of Life Sciences, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Shandong University, Jinan, Shandong, China
| | - Yuanyuan Li
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Zhu Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Yajun Qu
- State Key Laboratory of Microbial Technology, School of Life Sciences, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Shandong University, Jinan, Shandong, China
| | - Huajie Zhang
- State Key Laboratory of Microbial Technology, School of Life Sciences, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Shandong University, Jinan, Shandong, China
| | - Dengwen Li
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Jun Zhou
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China.,Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Songbo Xie
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Min Liu
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, College of Life Sciences, Shandong Normal University, Jinan, China
| |
Collapse
|
30
|
Sun S, Zhou J. Molecular mechanisms underlying stress response and adaptation. Thorac Cancer 2018; 9:218-227. [PMID: 29278299 PMCID: PMC5792716 DOI: 10.1111/1759-7714.12579] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Accepted: 11/19/2017] [Indexed: 12/28/2022] Open
Abstract
Environmental stresses are ubiquitous and unavoidable to all living things. Organisms respond and adapt to stresses through defined regulatory mechanisms that drive changes in gene expression, organismal morphology, or physiology. Immune responses illustrate adaptation to bacterial and viral biotic stresses in animals. Dysregulation of the genotoxic stress response system is frequently associated with various types of human cancer. With respect to plants, especially halophytes, complicated systems have been developed to allow for plant growth in high salt environments. In addition, drought, waterlogging, and low temperatures represent other common plant stresses. In this review, we summarize representative examples of organismal response and adaptation to various stresses. We also discuss the molecular mechanisms underlying the above phenomena with a focus on the improvement of organismal tolerance to unfavorable environments.
Collapse
Affiliation(s)
- Shuang Sun
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Institute of Biomedical Sciences, College of Life SciencesShandong Normal UniversityJinanChina
| | - Jun Zhou
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Institute of Biomedical Sciences, College of Life SciencesShandong Normal UniversityJinanChina
| |
Collapse
|
31
|
Wu W, Zheng XM, Chen D, Zhang Y, Ma W, Zhang H, Sun L, Yang Z, Zhao C, Zhan X, Shen X, Yu P, Fu Y, Zhu S, Cao L, Cheng S. OsCOL16, encoding a CONSTANS-like protein, represses flowering by up-regulating Ghd7 expression in rice. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 260:60-69. [PMID: 28554475 DOI: 10.1016/j.plantsci.2017.04.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 03/31/2017] [Accepted: 04/03/2017] [Indexed: 05/22/2023]
Abstract
Flowering time is an important agronomic trait that coordinates the plant life cycle with regional adaptability and thereby impacts yield potentials for cereal crops. The CONSTANS (CO)-like gene family plays vital roles in the regulation of flowering time. CO-like proteins are typically divided into four phylogenetic groups in rice. Several genes from groups I, III, and IV have been functionally characterized, though little is known about the genes of group II in rice. We report the functional characterization in rice of a constitutive floral inhibitor, OsCOL16, encoding a group-II CO-like protein that delays flowering time and increases plant height and grain yield. Overexpression of OsCOL16 resulted in late heading under both long-day and short-day conditions. OsCOL16 expression exhibits a diurnal oscillation and serves as a transcription factor with transcriptional activation activity. We determined that OsCOL16 up-regulates the expression of the floral repressor Ghd7, leading to down-regulation of the expression of Ehd1, Hd3a, and RFT1. Moreover, genetic diversity and evolutionary analyses suggest that remarkable differences in flowering times correlate with two major alleles of OsCOL16. Our combined molecular biology and phylogeographic analyses revealed that OsCOL16 plays an important role in regulating rice photoperiodic flowering, allowing for environmental adaptation of rice.
Collapse
Affiliation(s)
- Weixun Wu
- Zhejiang Key Laboratory of Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, PR China
| | - Xiao-Ming Zheng
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Daibo Chen
- Zhejiang Key Laboratory of Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, PR China
| | - Yingxin Zhang
- Zhejiang Key Laboratory of Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, PR China
| | - Weiwei Ma
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Huan Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Lianping Sun
- Zhejiang Key Laboratory of Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, PR China
| | - Zhengfu Yang
- Zhejiang Key Laboratory of Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, PR China
| | - Chunde Zhao
- Zhejiang Key Laboratory of Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, PR China
| | - Xiaodeng Zhan
- Zhejiang Key Laboratory of Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, PR China
| | - Xihong Shen
- Zhejiang Key Laboratory of Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, PR China
| | - Ping Yu
- Zhejiang Key Laboratory of Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, PR China
| | - Yaping Fu
- Zhejiang Key Laboratory of Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, PR China
| | - Shanshan Zhu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Liyong Cao
- Zhejiang Key Laboratory of Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, PR China.
| | - Shihua Cheng
- Zhejiang Key Laboratory of Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, PR China.
| |
Collapse
|
32
|
Liu H, Gu F, Dong S, Liu W, Wang H, Chen Z, Wang J. CONSTANS-like 9 (COL9) delays the flowering time in Oryza sativa by repressing the Ehd1 pathway. Biochem Biophys Res Commun 2016; 479:173-178. [PMID: 27620492 DOI: 10.1016/j.bbrc.2016.09.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 09/02/2016] [Indexed: 12/15/2022]
Abstract
Flowering or heading is one of most important agronomic traits in rice. It has been characterized that CONSTANS (CO) and CONSTANS-like (COL) proteins are critical flowering regulators in response to photoperiodic stress in plants. We have previously identified that the COL family member OsCOL9 can positively enhance the rice blast resistance. In the present study, we aimed to explore the functional role of OsCOL9 in modulating the photoperiodic flowering. Our data showed that overexpression of OsCOL9 delayed the flowering time under both short-day (SD) and long-day (LD) conditions, leading to suppressed expressions of EHd1, RFT and Hd3a at the mRNA Level. OsCOL9 expression exhibited two types of circadian patterns under different daylight conditions, and it could delay the heading date by suppressing the Ehd1 photoperiodic flowering pathway. In contrast, the expressions of previously reported flowering regulators were not significantly changed in OsCOL9 transgenic plants, indicating that OsCOL9 functioned independently of other flowering pathways. In addition, OsCOL9 served as a potential yield gene, and its deficiency reduced the grain number of main panicle in plants. Furthermore, yeast two-hybrid assay indicated that OsCOL9 physically interacted with Receptor for Activated C-kinase 1 (OsRACK1). Rhythmic pattern analysis suggested that OsRACK1 responded to the change of daylight, which was regulated by the circadian clock. Taken together, our results revealed that OsCOL9 could delay the flowering time in rice by repressing the Ehd1 pathway.
Collapse
Affiliation(s)
- Hao Liu
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Fengwei Gu
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Shuangyu Dong
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Wei Liu
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Hui Wang
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Zhiqiang Chen
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou 510642, China.
| | - Jiafeng Wang
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
33
|
Ren L, Liu T, Cheng Y, Sun J, Gao J, Dong B, Chen S, Chen F, Jiang J. Transcriptomic analysis of differentially expressed genes in the floral transition of the summer flowering chrysanthemum. BMC Genomics 2016; 17:673. [PMID: 27552984 PMCID: PMC4995656 DOI: 10.1186/s12864-016-3024-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 08/18/2016] [Indexed: 01/04/2023] Open
Abstract
Background Chrysanthemum is a leading cut flower species. Most conventional cultivars flower during the fall, but the Chrysanthemum morifolium ‘Yuuka’ flowers during the summer, thereby filling a gap in the market. To date, investigations of flowering time determination have largely focused on fall-flowering types. Little is known about molecular basis of flowering time in the summer-flowering chrysanthemum. Here, the genome-wide transcriptome of ‘Yuuka’ was acquired using RNA-Seq technology, with a view to shedding light on the molecular basis of the shift to reproductive growth as induced by variation in the photoperiod. Results Two sequencing libraries were prepared from the apical meristem and leaves of plants exposed to short days, three from plants exposed to long days and one from plants sampled before any photoperiod treatment was imposed. From the ~316 million clean reads obtained, 115,300 Unigenes were assembled. In total 70,860 annotated sequences were identified by reference to various databases. A number of transcription factors and genes involved in flowering pathways were found to be differentially transcribed. Under short days, genes acting in the photoperiod and gibberellin pathways might accelerate flowering, while under long days, the trehalose-6-phosphate and sugar signaling pathways might be promoted, while the phytochrome B pathway might block flowering. The differential transcription of eight of the differentially transcribed genes was successfully validated using quantitative real time PCR. Conclusions A transcriptome analysis of the summer-flowering cultivar ‘Yuuka’ has been described, along with a global analysis of floral transition under various daylengths. The large number of differentially transcribed genes identified confirmed the complexity of the regulatory machinery underlying floral transition. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3024-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Liping Ren
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.,Jiangsu Province Engineering Lab for Modern Facility Agriculture Technology & Equipment, No. 1 Weigang, Nanjing, 210095, Jiangsu Province, China.,School of Biology and Food Engineering, Fuyang Normal University, Fuyang, 236037, Anhui Province, China
| | - Tao Liu
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yue Cheng
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jing Sun
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jiaojiao Gao
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Bin Dong
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Sumei Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Fadi Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.,Jiangsu Province Engineering Lab for Modern Facility Agriculture Technology & Equipment, No. 1 Weigang, Nanjing, 210095, Jiangsu Province, China
| | - Jiafu Jiang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|