1
|
Mascuñano B, Coto-Elena J, Guerrero-Sánchez VM, Paniagua C, Blanco-Portales R, Caballero JL, Trapero-Casas JL, Jiménez-Díaz RM, Pliego-Alfaro F, Mercado JA, Muñoz-Blanco J, Molina-Hidalgo FJ. Transcriptome analysis of wild olive (Olea Europaea L. subsp. europaea var. sylvestris) clone AC18 provides insight into the role of lignin as a constitutive defense mechanism underlying resistance to Verticillium wilt. BMC PLANT BIOLOGY 2025; 25:292. [PMID: 40045216 PMCID: PMC11884133 DOI: 10.1186/s12870-025-06301-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 02/25/2025] [Indexed: 03/09/2025]
Abstract
Host resistance is the most effective and practical control method for the management of Verticillium wilt in olive caused by Verticillium dahliae, which remains as one of the major current threats to this crop. Regrettably, most olive cultivars of agronomic and commercial interest are susceptible to V. dahliae. We previously demonstrated that wild olive (Olea europaea L. subsp. europaea var. sylvestris) clone AC18 harbours resistance to the highly virulent defoliating (D) V. dahliae pathotype, which may be valuable as rootstock and for breeding new, resistant olive cultivars. Mechanisms underlying disease resistance may be of constitutive or induced nature. In this work we aim to unravel constitutive defences that may be involved in AC18 resistance, by comparing the transcriptome from uninfected stems, of AC18 with that of the highly susceptible wild olive clone AC15, GO-term enrichment analysis revealed terms related to systemic acquired resistance, plant cell wall biogenesis and assembly, and phenylpropanoid and lignin metabolism. qRT-PCR analysis of phenylpropanoid and lignin metabolism-related genes showed differences in their expression between the two wild olive clones. Phenolic content of stem cell walls was higher in the resistant AC18. The total lignin content was similar in resistant and susceptible clones, but they differed in monolignol composition. Results from this work identifies putative key genes in wild olive that could aid in breeding olive cultivars resistant, to D. V. dahliae. The research highlights the constitutive defence mechanisms that are effective in protecting against pathogens and our findings may contribute to the deciphering the molecular basis of VW resistance in olive and the conservation and utilization of wild olive genetic resources to tackle future agricultural challenges towards.
Collapse
Affiliation(s)
- Beatriz Mascuñano
- Department of Biochemistry and Molecular Biology, University of Cordoba, Edificio Severo Ochoa, Campus de Rabanales, Córdoba, E-14014, Spain
| | - Jerónimo Coto-Elena
- Departamento de Botánica y Fisiología Vegetal, Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora' (IHSM-UMA-CSIC), Universidad de Málaga, Málaga, 29071, Spain
| | - Víctor M Guerrero-Sánchez
- Department of Biochemistry and Molecular Biology, University of Cordoba, Edificio Severo Ochoa, Campus de Rabanales, Córdoba, E-14014, Spain
- Vascular Pathophysiology Area, Cardiovascular Proteomics Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, 28029, Spain
| | - Candelas Paniagua
- Departamento de Botánica y Fisiología Vegetal, Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora' (IHSM-UMA-CSIC), Universidad de Málaga, Málaga, 29071, Spain
| | - Rosario Blanco-Portales
- Department of Biochemistry and Molecular Biology, University of Cordoba, Edificio Severo Ochoa, Campus de Rabanales, Córdoba, E-14014, Spain
| | - José L Caballero
- Department of Biochemistry and Molecular Biology, University of Cordoba, Edificio Severo Ochoa, Campus de Rabanales, Córdoba, E-14014, Spain
| | - José L Trapero-Casas
- Institute for Sustainable Agriculture, Spanish National Research Council (Consejo Superior de Investigaciones Científicas), Córdoba, Spain
| | - Rafael M Jiménez-Díaz
- Agronomy Department, University of Córdoba, Edificio C4 Celestino Mutis. Campus de Rabanales, Córdoba, E-14014, Spain
| | - Fernando Pliego-Alfaro
- Departamento de Botánica y Fisiología Vegetal, Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora' (IHSM-UMA-CSIC), Universidad de Málaga, Málaga, 29071, Spain
| | - José A Mercado
- Departamento de Botánica y Fisiología Vegetal, Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora' (IHSM-UMA-CSIC), Universidad de Málaga, Málaga, 29071, Spain
| | - Juan Muñoz-Blanco
- Department of Biochemistry and Molecular Biology, University of Cordoba, Edificio Severo Ochoa, Campus de Rabanales, Córdoba, E-14014, Spain.
| | - Francisco J Molina-Hidalgo
- Department of Biochemistry and Molecular Biology, University of Cordoba, Edificio Severo Ochoa, Campus de Rabanales, Córdoba, E-14014, Spain.
| |
Collapse
|
2
|
Prévitali T, Rouault M, Pichereaux C, Gourion B. Lotus resistance against Ralstonia is enhanced by Mesorhizobium and does not impair mutualism. THE NEW PHYTOLOGIST 2025; 245:1249-1262. [PMID: 39562505 DOI: 10.1111/nph.20276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 10/24/2024] [Indexed: 11/21/2024]
Abstract
Legumes establish nitrogen-fixing symbioses with rhizobia. On the contrary, they can be attacked concomitantly by pathogens, raising the question of potential trade-offs between mutualism and immunity. In order to study such trade-offs, we used a tripartite system involving the model legume Lotus japonicus, its rhizobial symbiont Mesorhizobium loti and the soilborne pathogen Ralstonia solanacearum. We investigated the impact of mutualism on plant defense and the reciprocal influence of plant defense on mutualism. We found that Lotus age-related resistance against Ralstonia was improved by the interaction with rhizobia especially when nodulation is triggered. Conversely, age-related resistance did not compromise nodule organogenesis or functioning under pathogen attack. Proteomic characterization indicates that this resistance is associated with distinct proteome modifications in roots and nodules. This resistance questions the concept of interference between efficient defense reactions and mutualistic interactions and is of great interest for agricultural purposes as it not only restricts pathogen colonization, but would also preserve nitrogen fixation and yield.
Collapse
Affiliation(s)
- Thomas Prévitali
- Laboratoire des Interactions Plantes-Microbes-Environnement (LIPME), Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, F-31326, France
| | - Mathilde Rouault
- Laboratoire des Interactions Plantes-Microbes-Environnement (LIPME), Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, F-31326, France
| | - Carole Pichereaux
- Fédération de Recherche Agrobiosciences, Interactions et Biodiversité (FRAIB), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Castanet-Tolosan, F-31326, France
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, F-31077, France
- Infrastructure Nationale de Protéomique, ProFI, FR 2048, Toulouse, F-31077, France
| | - Benjamin Gourion
- Laboratoire des Interactions Plantes-Microbes-Environnement (LIPME), Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, F-31326, France
| |
Collapse
|
3
|
Webster SS. Tackling vascular wilt disease: A signaling cascade to strengthen the plant cell wall. THE PLANT CELL 2024; 37:koae299. [PMID: 39555651 DOI: 10.1093/plcell/koae299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 11/08/2024] [Indexed: 11/19/2024]
Affiliation(s)
- Shanice S Webster
- Assistant Features Editor, The Plant Cell, American Society of Plant Biologists
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Department of Biology, Duke University, Durham, NC 27708, USA
| |
Collapse
|
4
|
Wang B, Luo C, Li X, Jimenez A, Cai J, Chen J, Li C, Zhang C, Ou L, Pu W, Peng Y, Zhang Z, Cai Y, Valls M, Wu D, Yu F. The FERONIA-RESPONSIVE TO DESICCATION 26 module regulates vascular immunity to Ralstonia solanacearum. THE PLANT CELL 2024; 37:koae302. [PMID: 39535787 DOI: 10.1093/plcell/koae302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 09/19/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Some pathogens colonize plant leaves, but others invade the roots, including the vasculature, causing severe disease symptoms. Plant innate immunity has been extensively studied in leaf pathosystems; however, the precise regulation of immunity against vascular pathogens remains largely unexplored. We previously demonstrated that loss of function of the receptor kinase FERONIA (FER) increases plant resistance to the typical vascular bacterial pathogen Ralstonia solanacearum. Here, we show that upon infection with R. solanacearum, root xylem cell walls in Arabidopsis thaliana become highly lignified. FER is specifically upregulated in the root xylem in response to R. solanacearum infection, and inhibits lignin biosynthesis and resistance to this pathogen. We determined that FER interacts with and phosphorylates the transcription factor RESPONSIVE TO DESICCATION 26 (RD26), leading to its degradation. Overexpression and knockout of RD26 demonstrated that it positively regulates plant resistance to R. solanacearum by directly activating the expression of lignin-related genes. Tissue-specific expression of RD26 in the root xylem confirmed its role in vascular immunity. We confirmed that the FER-RD26 module regulates lignin biosynthesis and resistance against R. solanacearum in tomato (Solanum lycopersicum). Taken together, our findings unveil that the FER-RD26 cascade governs plant immunity against R. solanacearum in vascular tissues by regulating lignin deposition. This cascade may represent a key defense mechanism against vascular pathogens in plants.
Collapse
Affiliation(s)
- Bingqian Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, and Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, China
| | - Cailin Luo
- State Key Laboratory of Chemo/Biosensing and Chemometrics, and Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, China
| | - Xiaoxu Li
- Technology Center, China Tobacco Hunan Industrial Co., Ltd., Changsha 410021, China
| | - Alvaro Jimenez
- Department of Genetics, University of Barcelona, Barcelona, Catalonia 08007, Spain
- Centre for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Bellaterra, Catalonia 08193, Spain
| | - Jun Cai
- State Key Laboratory of Chemo/Biosensing and Chemometrics, and Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, China
| | - Jia Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, and Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, China
| | - Changsheng Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, and Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, China
| | - Chunhui Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, and Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, China
| | - Lijun Ou
- Engineering Research Center of Education, Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha 410125, China
| | - Wenxuan Pu
- Technology Center, China Tobacco Hunan Industrial Co., Ltd., Changsha 410021, China
| | - Yu Peng
- Technology Center, China Tobacco Hunan Industrial Co., Ltd., Changsha 410021, China
| | - Zhenchen Zhang
- Guangdong Key Laboratory for Crops Genetic Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences (GAAS), Guangzhou 510640, China
| | - Yong Cai
- State Key Laboratory of Chemo/Biosensing and Chemometrics, and Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, China
- Yuelushan Laboratory, Changsha 410128, China
| | - Marc Valls
- Department of Genetics, University of Barcelona, Barcelona, Catalonia 08007, Spain
- Centre for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Bellaterra, Catalonia 08193, Spain
| | - Dousheng Wu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, and Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, China
- Yuelushan Laboratory, Changsha 410128, China
| | - Feng Yu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, and Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, China
- Yuelushan Laboratory, Changsha 410128, China
| |
Collapse
|
5
|
Kawa D, Brady SM. Root cell types as an interface for biotic interactions. TRENDS IN PLANT SCIENCE 2022; 27:1173-1186. [PMID: 35792025 DOI: 10.1016/j.tplants.2022.06.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 06/04/2022] [Accepted: 06/09/2022] [Indexed: 05/27/2023]
Abstract
Root responses to environmental stresses show a high level of cell type and developmental stage specificity. Interactions with beneficial and pathogenic organisms - including microbes and parasites - elicit a set of transcriptional responses unique to each root cell type, often dependent on their differentiation state. Localized changes to the cell wall and to the integrity of root cell types can serve as a physical barrier for a range of pests. Conversely, certain microorganisms weaken existing barriers within root cell types. Interactions with microorganisms vary between roots of different developmental origins and cellular architectures. Here we provide an overview of the molecular, architectural, and structural properties of root cell types crucial to both maintaining beneficial interactions and protecting from pathogens.
Collapse
Affiliation(s)
- Dorota Kawa
- Department of Plant Biology and Genome Center, University of California, Davis, CA 95616, USA.
| | - Siobhan M Brady
- Department of Plant Biology and Genome Center, University of California, Davis, CA 95616, USA.
| |
Collapse
|
6
|
Wytinck N, Ziegler DJ, Walker PL, Sullivan DS, Biggar KT, Khan D, Sakariyahu SK, Wilkins O, Whyard S, Belmonte MF. Host induced gene silencing of the Sclerotinia sclerotiorum ABHYDROLASE-3 gene reduces disease severity in Brassica napus. PLoS One 2022; 17:e0261102. [PMID: 36018839 PMCID: PMC9417021 DOI: 10.1371/journal.pone.0261102] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 05/29/2022] [Indexed: 11/19/2022] Open
Abstract
Sclerotinia sclerotiorum is a pathogenic fungus that infects hundreds of crop species, causing extensive yield loss every year. Chemical fungicides are used to control this phytopathogen, but with concerns about increasing resistance and impacts on non-target species, there is a need to develop alternative control measures. In the present study, we engineered Brassica napus to constitutively express a hairpin (hp)RNA molecule to silence ABHYRDOLASE-3 in S. sclerotiorum. We demonstrate the potential for Host Induced Gene Silencing (HIGS) to protect B. napus from S. sclerotiorum using leaf, stem and whole plant infection assays. The interaction between the transgenic host plant and invading pathogen was further characterized at the molecular level using dual-RNA sequencing and at the anatomical level through microscopy to understand the processes and possible mechanisms leading to increased tolerance to this damaging necrotroph. We observed significant shifts in the expression of genes relating to plant defense as well as cellular differences in the form of structural barriers around the site of infection in the HIGS-protected plants. Our results provide proof-of-concept that HIGS is an effective means of limiting damage caused by S. sclerotiorum to the plant and demonstrates the utility of this biotechnology in the development of resistance against fungal pathogens.
Collapse
Affiliation(s)
- Nick Wytinck
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Dylan J. Ziegler
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Philip L. Walker
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Daniel S. Sullivan
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Kirsten T. Biggar
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Deirdre Khan
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Solihu K. Sakariyahu
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Olivia Wilkins
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Steve Whyard
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Mark F. Belmonte
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- * E-mail:
| |
Collapse
|
7
|
Pisuttu C, Lo Piccolo E, Paoli L, Cotrozzi L, Nali C, Pellegrini E, Lorenzini G. Physiochemical responses of Ailanthus altissima under the challenge of Verticillium dahliae: elucidating the decline of one of the world’s worst invasive alien plant species. Biol Invasions 2022. [DOI: 10.1007/s10530-022-02891-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
AbstractNatural infections of Verticillium spp. (Fungi, Ascomycota) on Ailanthus altissima have suggested to consider the biological control as a promising strategy to counteract this invasive plant, which is otherwise difficult to control by traditional mechanical and chemical treatments. Verticillium wilt is able to lead plants to death, throughout a pathogenic mechanism including vessel occlusions and production of degrading enzymes and phytotoxins. In this study, a 10 weeks open air pot experiment was set to investigate the ecophysiological and biochemical responses of Ailanthus trees artificially inoculated in the trunk with the V. dahliae strain VdGL16, previously isolated in Central Italy from the same host. Inoculated plants showed visible injuries starting from 2 weeks post inoculation (wpi), that progressively developed until a final severe defoliation. The fungal infection rapidly compromised the plant water status, and photosynthesis was impaired due to both stomatal and mesophyll limitations from 4 wpi, with subsequent detrimental effects also on PSII activity. Moreover, the disease altered the translocations of nutrients, as confirmed by cation and carbohydrate contents, probably due to a consumption of simple sugars and starch reserves without replacement of new photosynthesized. An accumulation of osmolytes (abscisic acid and proline) and phenylalanine (a precursor of phenylpropanoids) was also reported at 8 wpi, this being a response mechanism that needs to be further elucidated. However, the activation delay of such defence strategy inevitably did not avoid the premature defoliation of plants and the decline of physiochemical parameters, confirming the key role of Verticillium in Ailanthus decay.
Collapse
|
8
|
Kashyap A, Jiménez-Jiménez ÁL, Zhang W, Capellades M, Srinivasan S, Laromaine A, Serra O, Figueras M, Rencoret J, Gutiérrez A, Valls M, Coll NS. Induced ligno-suberin vascular coating and tyramine-derived hydroxycinnamic acid amides restrict Ralstonia solanacearum colonization in resistant tomato. THE NEW PHYTOLOGIST 2022; 234:1411-1429. [PMID: 35152435 DOI: 10.1111/nph.17982] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 01/03/2022] [Indexed: 06/14/2023]
Abstract
Tomato varieties resistant to the bacterial wilt pathogen Ralstonia solanacearum have the ability to restrict bacterial movement in the plant. Inducible vascular cell wall reinforcements seem to play a key role in confining R. solanacearum into the xylem vasculature of resistant tomato. However, the type of compounds involved in such vascular physico-chemical barriers remain understudied, while being a key component of resistance. Here we use a combination of histological and live-imaging techniques, together with spectroscopy and gene expression analysis to understand the nature of R. solanacearum-induced formation of vascular coatings in resistant tomato. We describe that resistant tomato specifically responds to infection by assembling a vascular structural barrier formed by a ligno-suberin coating and tyramine-derived hydroxycinnamic acid amides. Further, we show that overexpressing genes of the ligno-suberin pathway in a commercial susceptible variety of tomato restricts R. solanacearum movement inside the plant and slows disease progression, enhancing resistance to the pathogen. We propose that the induced barrier in resistant plants does not only restrict the movement of the pathogen, but may also prevent cell wall degradation by the pathogen and confer anti-microbial properties, effectively contributing to resistance.
Collapse
Affiliation(s)
- Anurag Kashyap
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, 08193, Bellaterra, Spain
| | | | - Weiqi Zhang
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, 08193, Bellaterra, Spain
| | - Montserrat Capellades
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, 08193, Bellaterra, Spain
- Consejo Superior de Investigaciones Científicas (CSIC), 08001, Barcelona, Spain
| | - Sumithra Srinivasan
- Institute of Material Science of Barcelona (ICMAB), CSIC, Campus UAB, 08193, Bellaterra, Spain
| | - Anna Laromaine
- Institute of Material Science of Barcelona (ICMAB), CSIC, Campus UAB, 08193, Bellaterra, Spain
| | - Olga Serra
- Laboratori del Suro, Biology Department, University of Girona, Campus Montilivi, 17003, Girona, Spain
| | - Mercè Figueras
- Laboratori del Suro, Biology Department, University of Girona, Campus Montilivi, 17003, Girona, Spain
| | - Jorge Rencoret
- Institute of Natural Resources and Agrobiology of Seville (IRNAS), CSIC, 41012, Seville, Spain
| | - Ana Gutiérrez
- Institute of Natural Resources and Agrobiology of Seville (IRNAS), CSIC, 41012, Seville, Spain
| | - Marc Valls
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, 08193, Bellaterra, Spain
- Department of Genetics, University of Barcelona, 08028, Barcelona, Spain
| | - Nuria S Coll
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, 08193, Bellaterra, Spain
- Consejo Superior de Investigaciones Científicas (CSIC), 08001, Barcelona, Spain
| |
Collapse
|
9
|
Dora S, Terrett OM, Sánchez-Rodríguez C. Plant-microbe interactions in the apoplast: Communication at the plant cell wall. THE PLANT CELL 2022; 34:1532-1550. [PMID: 35157079 PMCID: PMC9048882 DOI: 10.1093/plcell/koac040] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 01/29/2022] [Indexed: 05/20/2023]
Abstract
The apoplast is a continuous plant compartment that connects cells between tissues and organs and is one of the first sites of interaction between plants and microbes. The plant cell wall occupies most of the apoplast and is composed of polysaccharides and associated proteins and ions. This dynamic part of the cell constitutes an essential physical barrier and a source of nutrients for the microbe. At the same time, the plant cell wall serves important functions in the interkingdom detection, recognition, and response to other organisms. Thus, both plant and microbe modify the plant cell wall and its environment in versatile ways to benefit from the interaction. We discuss here crucial processes occurring at the plant cell wall during the contact and communication between microbe and plant. Finally, we argue that these local and dynamic changes need to be considered to fully understand plant-microbe interactions.
Collapse
|
10
|
Gkizi D, González Gil A, Pardal AJ, Piquerez SJM, Sergaki C, Ntoukakis V, Tjamos SE. The bacterial biocontrol agent Paenibacillus alvei K165 confers inherited resistance to Verticillium dahliae. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:4565-4576. [PMID: 33829257 PMCID: PMC8163062 DOI: 10.1093/jxb/erab154] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 04/06/2021] [Indexed: 06/12/2023]
Abstract
The biocontrol agent Paenibacillus alvei K165 was previously shown to protect Arabidopsis thaliana plants against Verticillium dahliae. Here we show that K165 also confers inherited immune resistance to V. dahliae. By performing a histone acetyltransferases mutant screen, ChIP assays, and transcriptomic experiments, we were able to show that histone acetylation significantly contributes to the K165 biocontrol activity and establishment of inheritable resistance to V. dahliae. K165 treatment primed the expression of immune-related marker genes and the cinnamyl alcohol dehydrogenase gene CAD3 through the function of histone acetyltransferases. Our results reveal that offspring of plants treated with K165 have primed immunity and enhanced lignification, both contributing towards the K165-mediated inherited immune resistance. Thus, our study paves the way for the use of biocontrol agents for the establishment of inheritable resistance to agronomically important pathogens.
Collapse
Affiliation(s)
- Danai Gkizi
- Laboratory of Plant Pathology, Agricultural University of Athens, Athens, Greece
| | | | - Alonso J Pardal
- School of Life Sciences, University of Warwick, Coventry, UK
| | | | - Chrysi Sergaki
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Vardis Ntoukakis
- School of Life Sciences, University of Warwick, Coventry, UK
- Warwick Integrative Synthetic Biology Centre, University of Warwick, Coventry, UK
| | - Sotirios E Tjamos
- Laboratory of Plant Pathology, Agricultural University of Athens, Athens, Greece
| |
Collapse
|
11
|
Roumani M, Besseau S, Gagneul D, Robin C, Larbat R. Phenolamides in plants: an update on their function, regulation, and origin of their biosynthetic enzymes. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:2334-2355. [PMID: 33315095 DOI: 10.1093/jxb/eraa582] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 12/09/2020] [Indexed: 06/12/2023]
Abstract
Phenolamides represent a family of specialized metabolites, consisting of the association of hydroxycinnamic acid derivatives with aliphatic or aromatic amines. Since the discovery of the first phenolamide in the late 1940s, decades of phytochemical analyses have revealed a high structural diversity for this family and a wide distribution in the plant kingdom. The occurrence of structurally diverse phenolamides in almost all plant organs has led to early hypotheses on their involvement in floral initiation and fertility, as well as plant defense against biotic and abiotic stress. In the present work, we critically review the literature ascribing functional hypotheses to phenolamides and recent evidence on the control of their biosynthesis in response to biotic stress. We additionally provide a phylogenetic analysis of the numerous N-hydroxycinnamoyltransferases involved in the synthesis of phenolamides and discuss the potential role of other enzyme families in their diversification. The data presented suggest multiple evolutionary events that contributed to the extension of the taxonomic distribution and diversity of phenolamides.
Collapse
Affiliation(s)
- Marwa Roumani
- UMR 1121, Laboratoire Agronomie et Environnement (LAE), Université de Lorraine- INRAe, Nancy, France
| | - Sébastien Besseau
- EA 2106, Biomolécules et biotechnologies végétales (BBV), Université de Tours, Tours, France
| | - David Gagneul
- UMR 1158, BioEcoAgro, Université de Lille, INRAe, Université de Liège, UPJV, YNCREA, Université d'Artois, Université Littoral Côte d'Opale, Institut Charles Viollette (ICV), Lille, France
| | - Christophe Robin
- UMR 1121, Laboratoire Agronomie et Environnement (LAE), Université de Lorraine- INRAe, Nancy, France
| | - Romain Larbat
- UMR 1121, Laboratoire Agronomie et Environnement (LAE), Université de Lorraine- INRAe, Nancy, France
| |
Collapse
|
12
|
Kashyap A, Planas-Marquès M, Capellades M, Valls M, Coll NS. Blocking intruders: inducible physico-chemical barriers against plant vascular wilt pathogens. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:184-198. [PMID: 32976552 PMCID: PMC7853604 DOI: 10.1093/jxb/eraa444] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 09/16/2020] [Indexed: 05/20/2023]
Abstract
Xylem vascular wilt pathogens cause devastating diseases in plants. Proliferation of these pathogens in the xylem causes massive disruption of water and mineral transport, resulting in severe wilting and death of the infected plants. Upon reaching the xylem vascular tissue, these pathogens multiply profusely, spreading vertically within the xylem sap, and horizontally between vessels and to the surrounding tissues. Plant resistance to these pathogens is very complex. One of the most effective defense responses in resistant plants is the formation of physico-chemical barriers in the xylem tissue. Vertical spread within the vessel lumen is restricted by structural barriers, namely, tyloses and gels. Horizontal spread to the apoplast and surrounding healthy vessels and tissues is prevented by vascular coating of the colonized vessels with lignin and suberin. Both vertical and horizontal barriers compartmentalize the pathogen at the infection site and contribute to their elimination. Induction of these defenses are tightly coordinated, both temporally and spatially, to avoid detrimental consequences such as cavitation and embolism. We discuss current knowledge on mechanisms underlying plant-inducible structural barriers against major xylem-colonizing pathogens. This knowledge may be applied to engineer metabolic pathways of vascular coating compounds in specific cells, to produce plants resistant towards xylem colonizers.
Collapse
Affiliation(s)
- Anurag Kashyap
- Centre for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Bellaterra, Spain
| | - Marc Planas-Marquès
- Centre for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Bellaterra, Spain
| | | | - Marc Valls
- Centre for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Bellaterra, Spain
- Genetics Department, Universitat de Barcelona, Barcelona, Spain
| | - Núria S Coll
- Centre for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Bellaterra, Spain
| |
Collapse
|
13
|
Berne S, Kovačević N, Kastelec D, Javornik B, Radišek S. Hop Polyphenols in Relation to Verticillium Wilt Resistance and Their Antifungal Activity. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1318. [PMID: 33036218 PMCID: PMC7601901 DOI: 10.3390/plants9101318] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 09/30/2020] [Accepted: 10/03/2020] [Indexed: 11/17/2022]
Abstract
(1) Background: Verticillium wilt (VW) of hop is a devastating disease caused by the soil-borne fungi Verticillium nonalfalfae and Verticillium dahliae. As suggested by quantitative trait locus (QTL) mapping and RNA-Seq analyses, the underlying molecular mechanisms of resistance in hop are complex, consisting of preformed and induced defense responses, including the synthesis of various phenolic compounds. (2) Methods: We determined the total polyphenolic content at two phenological stages in roots and stems of 14 hop varieties differing in VW resistance, examined the changes in the total polyphenols of VW resistant variety Wye Target (WT) and susceptible Celeia (CE) on infection with V. nonalfalfae, and assessed the antifungal activity of six commercial phenolic compounds and total polyphenolic extracts from roots and stems of VW resistant WT and susceptible CE on the growth of two different V. nonalfalfae hop pathotypes. (3) Results: Generally, total polyphenols were higher in roots than stems and increased with maturation of the hop. Before flowering, the majority of VW resistant varieties had a significantly higher content of total polyphenols in stems than susceptible varieties. At the symptomatic stage of VW disease, total polyphenols decreased in VW resistant WT and susceptible CE plants in both roots and stems. The antifungal activity of total polyphenolic extracts against V. nonalfalfae was higher in hop extracts from stems than those from roots. Among the tested phenolic compounds, only p-coumaric acid and tyrosol markedly restricted fungal growth. (4) Conclusions: Although the correlation between VW resistance and total polyphenols content is not straightforward, higher levels of total polyphenols in the stems of the majority of VW resistant hop varieties at early phenological stages probably contribute to fast and efficient activation of signaling pathways, leading to successful defense against V. nonalfalfae infection.
Collapse
Affiliation(s)
- Sabina Berne
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia; (S.B.); (N.K.); (D.K.); (B.J.)
| | - Nataša Kovačević
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia; (S.B.); (N.K.); (D.K.); (B.J.)
| | - Damijana Kastelec
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia; (S.B.); (N.K.); (D.K.); (B.J.)
| | - Branka Javornik
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia; (S.B.); (N.K.); (D.K.); (B.J.)
| | - Sebastjan Radišek
- Slovenian Institute of Hop Research and Brewing, Cesta Žalskega tabora 2, SI-3310 Žalec, Slovenia
| |
Collapse
|
14
|
Noman A, Hussain A, Adnan M, Khan MI, Ashraf MF, Zainab M, Khan KA, Ghramh HA, He S. A novel MYB transcription factor CaPHL8 provide clues about evolution of pepper immunity againstsoil borne pathogen. Microb Pathog 2019; 137:103758. [DOI: 10.1016/j.micpath.2019.103758] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 09/19/2019] [Accepted: 09/20/2019] [Indexed: 12/26/2022]
|
15
|
Yousaf R, Khan MA, Ullah N, Khan I, Hayat O, Shehzad MA, Khan I, Taj F, Ud Din N, Khan A, Naeem I, Ali H. Biosynthesis of anti-leishmanial natural products in callus cultures of Artemisia scoparia. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:1122-1131. [PMID: 30942629 DOI: 10.1080/21691401.2019.1593856] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Clinically, available synthetic chemotherapeutics in the treatment for leishmaniasis are associated with serious complications, such as toxicity and emergence of resistance. Natural products from plants can provide better remedies against the Leishmania parasite and can possibly minimize the associated side effects. In this study, various extracts of the callus cultures of Artimisia scoparia established in response to different plant growth regulators (PGRs) were evaluated for their anti-leishmanial effects against Leishmania tropica promastigotes, followed by an investigation of the possible mechanism of action through reactive apoptosis assay using fluorescent microscopy. Amongst the different callus extracts, higher anti-leishmanial activity (IC50:19.13 µg/mL) was observed in the callus raised in-vitro in the presence of 6-Benzylaminopurine (BA) plus 2,4-Dichlorophenoxyacetic Acid (2,4-D) at the concentration of 1.5 mg/L, each. Further, the results of apoptosis assay showed a large number of early-stage apoptotic (EA) and late-stage apoptotic (LA) cells in the Leishmania under the effect of callus extract grown in-vitro at BA plus 2,4-D. For the determination of the potent natural products in the callus extracts responsible for the anti-leishmanial activity, extracts were subjected to Gas chromatography-mass spectrometry (GC-MS) for the metabolite analysis. Nonetheless, higher levels of the metabolites, such as nerolidol (22%), pelletierine (18%), aspidin (15%) and ascaridole (11%) were detected in the callus grown in vitro at BA plus 2,4-D (1.5 mg/L, each). This protocol determines a novel method of production of anti-leishmanial natural products through callus cultures of A. scoparia, a medicinal plant.
Collapse
Affiliation(s)
- Reema Yousaf
- a Department of Biotechnology, Faculty of Chemical and Life Sciences , Abdul Wali Khan University Mardan (AWKUM) , Mardan , Pakistan
| | - Mubarak Ali Khan
- a Department of Biotechnology, Faculty of Chemical and Life Sciences , Abdul Wali Khan University Mardan (AWKUM) , Mardan , Pakistan
| | - Nazif Ullah
- a Department of Biotechnology, Faculty of Chemical and Life Sciences , Abdul Wali Khan University Mardan (AWKUM) , Mardan , Pakistan
| | - Imdad Khan
- a Department of Biotechnology, Faculty of Chemical and Life Sciences , Abdul Wali Khan University Mardan (AWKUM) , Mardan , Pakistan
| | - Obaid Hayat
- a Department of Biotechnology, Faculty of Chemical and Life Sciences , Abdul Wali Khan University Mardan (AWKUM) , Mardan , Pakistan
| | - Muhammad Aamir Shehzad
- a Department of Biotechnology, Faculty of Chemical and Life Sciences , Abdul Wali Khan University Mardan (AWKUM) , Mardan , Pakistan
| | - Irfan Khan
- a Department of Biotechnology, Faculty of Chemical and Life Sciences , Abdul Wali Khan University Mardan (AWKUM) , Mardan , Pakistan
| | - Faqeer Taj
- a Department of Biotechnology, Faculty of Chemical and Life Sciences , Abdul Wali Khan University Mardan (AWKUM) , Mardan , Pakistan
| | - Nizam Ud Din
- a Department of Biotechnology, Faculty of Chemical and Life Sciences , Abdul Wali Khan University Mardan (AWKUM) , Mardan , Pakistan
| | - Asghar Khan
- a Department of Biotechnology, Faculty of Chemical and Life Sciences , Abdul Wali Khan University Mardan (AWKUM) , Mardan , Pakistan
| | - Ijaz Naeem
- b Department of Biotechnology , University of Swabi , Swabi , Pakistan
| | - Huma Ali
- c Department of Biotechnology , Bacha Khan University , Charsadda , Pakistan
| |
Collapse
|
16
|
Tang Y, Zhang Z, Lei Y, Hu G, Liu J, Hao M, Chen A, Peng Q, Wu J. Cotton WATs Modulate SA Biosynthesis and Local Lignin Deposition Participating in Plant Resistance Against Verticillium dahliae. FRONTIERS IN PLANT SCIENCE 2019; 10:526. [PMID: 31105726 PMCID: PMC6499033 DOI: 10.3389/fpls.2019.00526] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 04/04/2019] [Indexed: 05/06/2023]
Abstract
Verticillium wilt, caused by Verticillium dahliae, seriously limits cotton production. It is difficult to control this pathogen damage mainly due to the complexity of the molecular mechanism of plant resistance to V. dahliae. Here, we identified three homologous cotton Walls Are Thin (WAT) genes, which were designated as GhWAT1, GhWAT2, and GhWAT3. The GhWATs were predominantly expressed in the roots, internodes, and hypocotyls and induced by infection with V. dahliae and treatment with indole-3-acetic acid (IAA) and salicylic acid (SA). GhWAT1-, GhWAT2-, or GhWAT3-silenced plants showed a comparable phenotype and level of resistance with control plants, but simultaneously silenced three GhWATs (GhWAT123-silenced), inhibited plant growth and increased plant resistance to V. dahliae, indicating that these genes were functionally redundant. In the GhWAT123-silenced plants, the expression of SA related genes was significantly upregulated compared with the control, resulting in an increase of SA level. Moreover, the histochemical analysis showed that xylem development was inhibited in GhWAT123-silenced plants compared with the control. However, lignin deposition increased in the xylem of the GhWAT123-silenced plants compared to the control, and there were higher expression levels of lignin synthesis- and lignifications-related genes in the GhWAT123-silenced plants. Collectively, the results showed that GhWATs in triple-silenced plants acts as negative regulators of plant resistance against V. dahliae. The potential mechanism of the WATs functioning in the plant defence can modulate the SA biosynthesis and lignin deposition in the xylem.
Collapse
Affiliation(s)
- Ye Tang
- Hunan Provincial Key Laboratory of Plant Resources Conservation and Utilization, College of Biology and Environmental Sciences, Jishou University, Jishou, China
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Zhennan Zhang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yu Lei
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Guang Hu
- Hunan Provincial Key Laboratory of Plant Resources Conservation and Utilization, College of Biology and Environmental Sciences, Jishou University, Jishou, China
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jianfen Liu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Mengyan Hao
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Aimin Chen
- Key Laboratory for the Creation Cotton Varieties in the Northwest, Ministry of Agriculture, Join Hope Seeds Corporation, Ltd., Changji, China
| | - Qingzhong Peng
- Hunan Provincial Key Laboratory of Plant Resources Conservation and Utilization, College of Biology and Environmental Sciences, Jishou University, Jishou, China
- *Correspondence: Qingzhong Peng, Jiahe Wu,
| | - Jiahe Wu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
- *Correspondence: Qingzhong Peng, Jiahe Wu,
| |
Collapse
|
17
|
Biological control of growth promoting rhizobacteria against verticillium wilt of pepper plant. Biologia (Bratisl) 2018. [DOI: 10.2478/s11756-018-00169-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
18
|
Noman A, Liu Z, Yang S, Shen L, Hussain A, Ashraf MF, Khan MI, He S. Expression and functional evaluation of CaZNF830 during pepper response to Ralstonia solanacearum or high temperature and humidity. Microb Pathog 2018; 118:336-346. [PMID: 29614367 DOI: 10.1016/j.micpath.2018.03.044] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 03/18/2018] [Accepted: 03/23/2018] [Indexed: 11/24/2022]
Abstract
Extensive transcriptional reprogramming after pathogen attack determines immunity to these invaders and plant development. Zinc finger (ZNF) transcription factors regulate important processes in plants such as development, vegetative activities and plant immunity. Despite their immense significance, majority of ZNF transcription factors (TF) involved in pepper immunity and resistance to heat stress have not been focused much. Herein, we identified and functionally characterized CaZNF830 in pepper defense against Ralstonia solanacearum inoculation (RSI) and tolerance to high temperature and high humidity (HTHH). Transient expression analysis of CaZNF830-GFP fusion protein in tobacco leaves revealed its localization to the nucleus. Transcription of CaZNF830 is induced in pepper plants upon RSI or HTHH. Consistent with this, fluorometric GUS enzymatic assay driven by pCaZNF830 presented significantly enhanced activity under RSI and HTHH in comparison with the control plants. The silencing of CaZNF830 by virus induced gene silencing (VIGS) significantly compromised pepper immunity against RSI with enhanced growth of Ralstonia solanacearum in pepper plants. Silencing of CaZNF830 also impaired tolerance to HTHH coupled with decreased expression levels of immunity and thermo-tolerance associated marker genes including CaHIR1, CaNPR1, CaPR1, CaABR1 and CaHSP24. By contrast, the transient over-expression of CaZNF830 in pepper leaves by infiltration of GV3101 cells containing 35S::CaZNF830-HA induced HR mimic cell death, H2O2 accumulation and activated the transcriptions of the tested defense-relative or thermo-tolerance associated marker genes. RT-PCR and immune-blotting assay confirmed the stable expression of HA-tagged CaZNF830 mRNA and protein in pepper. All these results suggest that CaZNF830 acts as a positive regulator of plant immunity against RSI or tolerance to HTHH, it is induced by RSI or HTHH and consequently activate pepper immunity against RSI or tolerance to HTHH by directly or indirectly transcriptional modulation of many defense-linked genes.
Collapse
Affiliation(s)
- Ali Noman
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, PR China; National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China; College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Zhiqin Liu
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, PR China; National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China; College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Sheng Yang
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, PR China; National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China; College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Lei Shen
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, PR China; National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China; College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Ansar Hussain
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, PR China; National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China; College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Muhammad Furqan Ashraf
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, PR China; National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China; College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Muhammad Ifnan Khan
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, PR China; National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China; College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Shuilin He
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, PR China; National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China; College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China.
| |
Collapse
|
19
|
Li S, Su X, Jin Q, Li G, Sun Y, Abdullah M, Cai Y, Lin Y. iTRAQ-Based Identification of Proteins Related to Lignin Synthesis in the Pear Pollinated with Pollen from Different Varieties. Molecules 2018; 23:molecules23030548. [PMID: 29494532 PMCID: PMC6016958 DOI: 10.3390/molecules23030548] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 02/22/2018] [Accepted: 02/26/2018] [Indexed: 01/07/2023] Open
Abstract
Most pears in Anhui Province are a kind of self-incompatible fruit whose quality is strongly influenced by the male pollen. The proteomic variation of Dangshan Su pollinated by different varieties was analysed using the isobaric tag for relative and absolute quantitation (iTRAQ) to investigate the effect of pollination by different varieties on the pear lignin pathway. Among the 3980 proteins identified from the two samples, 139 proteins were identified as differentially expressed proteins (DEPs). Of these proteins, laccase-4 (LAC4), was found to be related with lignin synthesis, and β-glucosidase 15 (BGLU15) and peroxidase 47 (PER47) were involved in the phenylpropanoid pathway. Moreover, the lignin and stone cell contents were lower in DW (Dangshan Su pollinated by Wonhwang) than those in DJ (Dangshan Su pollinated by Jingbaili). The effect of pollination on the synthesis of lignin through the regulation of the expression of PER47, BGLU15 and LAC4 ultimately affects the formation of stone cells and the fruit quality. We report for the first time that different pollinations influence the protein expression profile in the Dangshan Su pear, and this result provides some new epididymal targets for regulating the synthesis of lignin, regulating the content of stone cells and improving the quality of the pears.
Collapse
Affiliation(s)
- Shumei Li
- School of Life Science, Anhui Agricultural University, Hefei 230036, Anhui, China.
| | - Xueqiang Su
- School of Life Science, Anhui Agricultural University, Hefei 230036, Anhui, China.
| | - Qing Jin
- School of Life Science, Anhui Agricultural University, Hefei 230036, Anhui, China.
| | - Guohui Li
- School of Life Science, Anhui Agricultural University, Hefei 230036, Anhui, China.
| | - Yanming Sun
- School of Life Science, Anhui Agricultural University, Hefei 230036, Anhui, China.
| | - Muhammad Abdullah
- School of Life Science, Anhui Agricultural University, Hefei 230036, Anhui, China.
| | - Yongping Cai
- School of Life Science, Anhui Agricultural University, Hefei 230036, Anhui, China.
| | - Yi Lin
- School of Life Science, Anhui Agricultural University, Hefei 230036, Anhui, China.
| |
Collapse
|