1
|
Ren H, Ou Q, Pu Q, Lou Y, Yang X, Han Y, Liu S. Comprehensive Review on Bimolecular Fluorescence Complementation and Its Application in Deciphering Protein-Protein Interactions in Cell Signaling Pathways. Biomolecules 2024; 14:859. [PMID: 39062573 PMCID: PMC11274695 DOI: 10.3390/biom14070859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/14/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Signaling pathways are responsible for transmitting information between cells and regulating cell growth, differentiation, and death. Proteins in cells form complexes by interacting with each other through specific structural domains, playing a crucial role in various biological functions and cell signaling pathways. Protein-protein interactions (PPIs) within cell signaling pathways are essential for signal transmission and regulation. The spatiotemporal features of PPIs in signaling pathways are crucial for comprehending the regulatory mechanisms of signal transduction. Bimolecular fluorescence complementation (BiFC) is one kind of imaging tool for the direct visualization of PPIs in living cells and has been widely utilized to uncover novel PPIs in various organisms. BiFC demonstrates significant potential for application in various areas of biological research, drug development, disease diagnosis and treatment, and other related fields. This review systematically summarizes and analyzes the technical advancement of BiFC and its utilization in elucidating PPIs within established cell signaling pathways, including TOR, PI3K/Akt, Wnt/β-catenin, NF-κB, and MAPK. Additionally, it explores the application of this technology in revealing PPIs within the plant hormone signaling pathways of ethylene, auxin, Gibberellin, and abscisic acid. Using BiFC in conjunction with CRISPR-Cas9, live-cell imaging, and ultra-high-resolution microscopy will enhance our comprehension of PPIs in cell signaling pathways.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Shiping Liu
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China; (H.R.); (Q.O.); (Q.P.); (Y.L.); (X.Y.); (Y.H.)
| |
Collapse
|
2
|
Meena KK, Sorty AM, Bitla U, Shinde AL, Kumar S, Wakchaure GC, Kumar S, Kanwat M, Singh DP. Stress-responsive gene regulation conferring salinity tolerance in wheat inoculated with ACC deaminase producing facultative methylotrophic actinobacterium. FRONTIERS IN PLANT SCIENCE 2023; 14:1249600. [PMID: 37780501 PMCID: PMC10534068 DOI: 10.3389/fpls.2023.1249600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 08/21/2023] [Indexed: 10/03/2023]
Abstract
Microbes enhance crop resilience to abiotic stresses, aiding agricultural sustainability amid rising global land salinity. While microbes have proven effective via seed priming, soil amendments, and foliar sprays in diverse crops, their mechanisms remain less explored. This study explores the utilization of ACC deaminase-producing Nocardioides sp. to enhance wheat growth in saline environments and the molecular mechanisms underlying Nocardioides sp.-mediated salinity tolerance in wheat. The Nocardioides sp. inoculated seeds were grown under four salinity regimes viz., 0 dS m-1, 5 dS m-1, 10 dS m-1, and 15 dS m-1, and vegetative growth parameters including shoot-root length, germination percentage, seedling vigor index, total biomass, and shoot-root ratio were recorded. The Nocardioides inoculated wheat plants performed well under saline conditions compared to uninoculated plants and exhibited lower shoot:root (S:R) ratio (1.52 ± 0.14 for treated plants against 1.84 ± 0.08 for untreated plants) at salinity level of 15 dS m-1 and also showed improved biomass at 5 dS m-1 and 10 dS m-1. Furthermore, the inoculated plants also exhibited higher protein content viz., 22.13 mg g-1, 22.10 mg g-1, 22.63 mg g-1, and 23.62 mg g-1 fresh weight, respectively, at 0 dS m-1, 5 dS m-1, 10 dS m-1, and 15 dS m-1. The mechanisms were studied in terms of catalase, peroxidase, superoxide dismutase, and ascorbate peroxidase activity, free radical scavenging potential, in-situ localization of H2O2 and superoxide ions, and DNA damage. The inoculated seedlings maintained higher enzymatic and non-enzymatic antioxidant potential, which corroborated with reduced H2O2 and superoxide localization within the tissue. The gene expression profiles of 18 stress-related genes involving abscisic acid signaling, salt overly sensitive (SOS response), ion transporters, stress-related transcription factors, and antioxidant enzymes were also analyzed. Higher levels of stress-responsive gene transcripts, for instance, TaABARE (~+7- and +10-fold at 10 dS m-1 and 15 dS m-1); TaHAk1 and hkt1 (~+4- and +8-fold at 15 dS m-1); antioxidant enzymes CAT, MnSOD, POD, APX, GPX, and GR (~+4, +3, +5, +4, +9, and +8 folds and), indicated actively elevated combat mechanisms in inoculated seedlings. Our findings emphasize Nocardioides sp.-mediated wheat salinity tolerance via ABA-dependent cascade and salt-responsive ion transport system. This urges additional study of methylotrophic microbes to enhance crop abiotic stress resilience.
Collapse
Affiliation(s)
- Kamlesh K. Meena
- Division of Integrated Farming System, Indian Council of Agricultural Research (ICAR)-Central Arid Zone Research Institute, Jodhpur, India
| | - Ajay M. Sorty
- School of Soil Stress Management, Indian Council of Agricultural Research (ICAR)-National Institute of Abiotic Stress Management, Baramati, India
- Department of Environmental Science–Environmental Microbiology, Aarhus University, Roskilde, Denmark
| | - Utkarsh Bitla
- School of Soil Stress Management, Indian Council of Agricultural Research (ICAR)-National Institute of Abiotic Stress Management, Baramati, India
| | - Akash L. Shinde
- School of Soil Stress Management, Indian Council of Agricultural Research (ICAR)-National Institute of Abiotic Stress Management, Baramati, India
| | - Satish Kumar
- School of Soil Stress Management, Indian Council of Agricultural Research (ICAR)-National Institute of Abiotic Stress Management, Baramati, India
- Department of Biochemistry, Indian Council of Agricultural Research (ICAR)-Directorate of Onion and Garlic Research, Pune, India
| | - Goraksha C. Wakchaure
- School of Soil Stress Management, Indian Council of Agricultural Research (ICAR)-National Institute of Abiotic Stress Management, Baramati, India
| | - Shrvan Kumar
- Division of Integrated Farming System, Indian Council of Agricultural Research (ICAR)-Central Arid Zone Research Institute, Jodhpur, India
| | - Manish Kanwat
- Division of Integrated Farming System, Indian Council of Agricultural Research (ICAR)-Central Arid Zone Research Institute, Jodhpur, India
| | - Dhananjaya P. Singh
- Indian Council of Agricultural Research (ICAR)-Crop Improvement Division, Indian Institute of Vegetable Research, Varanasi, India
| |
Collapse
|
3
|
Yan P, Tuo D, Shen W, Deng H, Zhou P, Gao X. A Nimble Cloning-compatible vector system for high-throughput gene functional analysis in plants. PLANT COMMUNICATIONS 2023; 4:100471. [PMID: 36352791 PMCID: PMC10030367 DOI: 10.1016/j.xplc.2022.100471] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 05/04/2023]
Abstract
Plant expression vectors are essential tools for gene functional analysis and molecular plant breeding. The gene of interest is transferred to the vector by molecular cloning technology. Nimble Cloning is a newly developed molecular cloning method with the advantages of simplicity, efficiency, and standardization. In this study, we developed a "pNC" vector system that contains 55 Nimble Cloning-compatible vectors for functional analysis of genes in plants. These vectors contain the NC frame flanked by unique adapters for one-step and standardized Nimble Cloning. We demonstrate that the pNC vectors are convenient and effective for the functional analysis of plant genes, including the study of gene ectopic expression, protein subcellular localization, protein-protein interaction, gene silencing (RNAi), virus-induced gene silencing, promoter activity, and CRISPR-Cas9-mediated genome editing. The "pNC" vector system represents a high-throughput toolkit that can facilitate the large-scale analysis of plant functional genomics.
Collapse
Affiliation(s)
- Pu Yan
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Sanya Research Institute, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Science & Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute of Tropical Agricultural Resources, Haikou 571101, China.
| | - Decai Tuo
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Sanya Research Institute, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Science & Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute of Tropical Agricultural Resources, Haikou 571101, China
| | - Wentao Shen
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Sanya Research Institute, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Science & Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute of Tropical Agricultural Resources, Haikou 571101, China
| | - Haida Deng
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Sanya Research Institute, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Science & Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute of Tropical Agricultural Resources, Haikou 571101, China
| | - Peng Zhou
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Sanya Research Institute, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Science & Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute of Tropical Agricultural Resources, Haikou 571101, China.
| | - Xinzheng Gao
- Department of Biology, Hainan Medical University, Haikou, China.
| |
Collapse
|
4
|
Lu QSM, Tian L. An efficient and specific CRISPR-Cas9 genome editing system targeting soybean phytoene desaturase genes. BMC Biotechnol 2022; 22:7. [PMID: 35168613 PMCID: PMC8845245 DOI: 10.1186/s12896-022-00737-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 02/08/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Genome editing by CRISPR/Cas9 has become a popular approach to induce targeted mutations for crop trait improvement. Soybean (Glycine max L. Merr.) is an economically important crop worldwide. Although gene editing has been demonstrated in soybean, its utilization in stably transformed plants through whole plant regeneration is still not widespread, largely due to difficulties with transformation or low mutation efficiencies. RESULTS We sought to establish a simple, efficient, and specific CRISPR/Cas9 system to induce heritable mutations in soybean through stable transformation. We targeted phytoene desaturase (PDS) genes due to the distinctive dwarf and albino phenotypes of the loss of function mutant. To evaluate gene editing efficiency and specificity, three constructs targeting each of the two homologous soybean PDS genes specifically, as well as two constructs targeting both simultaneously with one guide RNA were created. Instead of using cotyledonary nodes from germinated seedlings, we used 'half-seed' explants derived from imbibed seeds for Agrobacterium-mediated transformation of cultivar Williams 82. Transformed plants for all five constructs were recovered. Dwarf and albino phenotypes were observed in transgenic plants harboring the constructs targeting both PDS genes. Gene editing at the desired loci was detected in the majority of T0 transgenic plants, with 75-100% mutation efficiencies. Indel frequencies varied widely among plants (3-100%), with those exhibiting visible mutant phenotypes showing higher frequencies (27-100%). Deletion was the predominant mutation type, although 1-nucleotide insertion was also observed. Constructs designed to target only one PDS gene did not induce mutation in the other homologous counterpart; and no mutation at several potential off-target loci was detected, indicating high editing specificity. Modifications in both PDS genes were transmitted to T1 progenies, including plants that were negative for transgene detection. Strong mutant phenotypes were also observed in T1 plants. CONCLUSIONS Using simple constructs containing one guide RNA, we demonstrated efficient and specific CRISPR/Cas9-mediated mutagenesis in stably transformed soybean plants, and showed that the mutations could be inherited in progenies, even in plants that lost transgenes through segregation. The established system can be employed to edit other genes for soybean trait improvement.
Collapse
Affiliation(s)
- Qing Shi Mimmie Lu
- Agriculture and Agri-Food Canada, London Research and Development Center, 1391 Sandford Street, London, ON N5V 4T3 Canada
| | - Lining Tian
- Agriculture and Agri-Food Canada, London Research and Development Center, 1391 Sandford Street, London, ON N5V 4T3 Canada
| |
Collapse
|
5
|
Yadala R, Ratnikava M, Lermontova I. Bimolecular Fluorescence Complementation to Test for Protein-Protein Interactions and to Uncover Regulatory Mechanisms During Gametogenesis. Methods Mol Biol 2022; 2484:107-120. [PMID: 35461448 DOI: 10.1007/978-1-0716-2253-7_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Bimolecular fluorescence complementation (BiFC) assay is one of the sensitive techniques that allows to investigate direct protein-protein interactions (PPI) in vivo and visualize the subcellular localization of interacting proteins. It is based on splitting of a fluorescent protein into two nonfluorescent parts accordingly fused to two putative interacting partners. If interaction between studied proteins is possible, nonfluorescent parts come to close proximity resulting in reconstitution of the functional fluorescent protein and giving fluorescence under certain wavelength. BiFC analysis implies transient or stable expression of the proteins of interest and can be used as a method to test or validate the direct PPI in various biological pathways, including the regulation of gametogenesis, which is the main focus of this book. In our protocol we give detailed information for beginners about three main steps of BiFC analysis of centromeric protein interactions. These steps include (1) generation of appropriate expression clones with the help of Gateway cloning technology, (2) infiltration of Nicotiana benthamiana plants by Agrobacteria containing generated constructs, and (3) microscopic analysis of plants under fluorescence microscope. Also, we discuss appropriate negative controls that can be used for evaluation as well as recommendable vector systems, possible artifacts and measures to avoid artifactual interactions for BiFC assay.
Collapse
Affiliation(s)
- Ramakrishna Yadala
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Maryia Ratnikava
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Inna Lermontova
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany.
| |
Collapse
|
6
|
Ursache R, Fujita S, Dénervaud Tendon V, Geldner N. Combined fluorescent seed selection and multiplex CRISPR/Cas9 assembly for fast generation of multiple Arabidopsis mutants. PLANT METHODS 2021; 17:111. [PMID: 34717688 PMCID: PMC8556964 DOI: 10.1186/s13007-021-00811-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 10/16/2021] [Indexed: 05/22/2023]
Abstract
BACKGROUND Multiplex CRISPR-Cas9-based genome editing is an efficient method for targeted disruption of gene function in plants. Use of CRISPR-Cas9 has increased rapidly in recent years and is becoming a routine method for generating single and higher order Arabidopsis thaliana mutants. Low entry, reliable assembly of CRISPR/Cas9 vectors and efficient mutagenesis is necessary to enable a maximum of researchers to break through the genetic redundancy within plant multi-gene families and allow for a plethora of gene function studies that have been previously unachievable. It will also allow routine de novo generation of mutations in ever more complex genetic backgrounds that make introgression of pre-existing alleles highly cumbersome. RESULTS To facilitate rapid and efficient use of CRISPR/Cas9 for Arabidopsis research, we developed a CRISPR/Cas9-based toolbox for generating mutations at multiple genomic loci, using two-color fluorescent seed selection. In our system, up-to eight gRNAs can be routinely introduced into a binary vector carrying either a FastRed, FastGreen or FastCyan fluorescent seed selection cassette. FastRed and FastGreen binary vectors can be co-transformed as a cocktail via floral dip to introduce sixteen gRNAs at the same time. The seeds can be screened either for red or green fluorescence, or for the presence of both colors. Importantly, in the second generation after transformation, Cas9 free plants are identified simply by screening the non-fluorescent seeds. Our collection of binary vectors allows to choose between two widely-used promoters to drive Cas enzymes, either the egg cell-specific (pEC1.2) from A. thaliana or the constitutive promoter from Petroselinum crispum (PcUBi4-2). Available enzymes are "classical" Cas9 codon-optimized for A. thaliana and a recently reported, intron-containing version of Cas9 codon-optimized for Zea mays, zCas9i. We observed the highest efficiency in producing knockout phenotypes by using intron-containing zCas9i driven under egg-cell specific pEC1.2 promoter. Finally, we introduced convenient restriction sites flanking promoter, Cas9 and fluorescent selection cassette in some of the T-DNA vectors, thus allowing straightforward swapping of all three elements for further adaptation and improvement of the system. CONCLUSION A rapid, simple and flexible CISPR/Cas9 cloning system was established that allows assembly of multi-guide RNA constructs in a robust and reproducible fashion, by avoiding generation of very big constructs. The system enables a flexible, fast and efficient screening of single or higher order A. thaliana mutants.
Collapse
Affiliation(s)
- Robertas Ursache
- Department of Plant Molecular Biology, University of Lausanne, 1015, Lausanne, Switzerland.
| | - Satoshi Fujita
- Department of Plant Molecular Biology, University of Lausanne, 1015, Lausanne, Switzerland
- UMR5546 CNRS, Toulouse-INP, University of Toulouse, 24 Chemin de Borde Rouge, Auzeville Tolosane, 31320, France
| | | | - Niko Geldner
- Department of Plant Molecular Biology, University of Lausanne, 1015, Lausanne, Switzerland.
| |
Collapse
|