1
|
Hu F, Ye Z, Dong K, Zhang W, Fang D, Cao J. Divergent structures and functions of the Cupin proteins in plants. Int J Biol Macromol 2023; 242:124791. [PMID: 37164139 DOI: 10.1016/j.ijbiomac.2023.124791] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/03/2023] [Accepted: 05/05/2023] [Indexed: 05/12/2023]
Abstract
Cupin superfamily proteins have extensive functions. Their members are not only involved in the development of plants but also responded to various stresses. Whereas, the research on the Cupin members has not attracted enough attention. In this article, we summarized the research progress on these family genes in recent years and explored their evolution, structural characteristics, and biological functions. The significance of members of the Cupin family in the development of plant cell walls, roots, leaves, flowers, fruits, and seeds and their role in stress response are highlighted. Simultaneously, the prospective application of Cupin protein in crop enhancement was introduced. Some members can enhance plant growth, development, and resistance to adversity, thereby increasing crop yield. It will be as a foundation for future effective crop research and breeding.
Collapse
Affiliation(s)
- Fei Hu
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Ziyi Ye
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Kui Dong
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Weimeng Zhang
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Da Fang
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Jun Cao
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, Jiangsu, China.
| |
Collapse
|
2
|
Hu F, Ye Z, Zhang W, Fang D, Cao J. Decipher the molecular evolution and expression patterns of Cupin family genes in oilseed rape. Int J Biol Macromol 2023; 227:437-452. [PMID: 36549611 DOI: 10.1016/j.ijbiomac.2022.12.150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022]
Abstract
Cupin proteins are involved in plant growth and development as well as in response to various stresses. Here, a total of 173 Cupin genes were identified in Brassica napus, and their molecular evolution and expression patterns were analyzed. These genes were classified into ten groups. Motif and exon-intron structure indicated a high degree of conservation within each group during evolution. BnaCupins were distributed on 19 chromosomes and their expansion is mainly contributed by whole-genome duplication (WGD) and segmental duplication events. BnaCupins have undergone severe purifying selection during a long evolutionary process. Meanwhile, some positive selection sites were identified. Expression patterns and cis-element analysis indicated that BnaCupins play significant roles in plant growth and stress responses. In addition, the expression levels of some BnCupins were significantly altered when treated with different conditions (cold, salt, drought, IAA, ABA, and 6-BA). Some BnaCupin interacting proteins, such as glycosyl hydrolase5 (GHs5), carbohydrate kinase (CHKs), ATP-dependent 6-phosphofructokinase (ATP-PFK), S-adenosylmethionine synthase (S-MAT), and aldolase class II (ALD II), were identified by the protein-protein interaction network. It will contribute to enriching our knowledge of the Cupin gene family in B. napus and provide a basis for further studies of their functions.
Collapse
Affiliation(s)
- Fei Hu
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Ziyi Ye
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Weimeng Zhang
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Da Fang
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Jun Cao
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, Jiangsu, China.
| |
Collapse
|
3
|
Design, synthesis, in vitro anti-oxidant evaluation, a-amylase inhibition assay, and molecular docking analysis of 2-(2-benzylidenehydrazinyl)-4,4-diphenyl-1H-imidazol-5(4H)-ones. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.134924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
4
|
Sun L, Zhou A, Zhang F. Crystallization and crystallographic studies of a novel chickpea 11S globulin. Acta Crystallogr F Struct Biol Commun 2022; 78:324-329. [PMID: 36048082 PMCID: PMC9435671 DOI: 10.1107/s2053230x22007919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 08/05/2022] [Indexed: 11/10/2022] Open
Abstract
Chickpea is a crop that is known as a source of high-quality proteins. CL-AI, which belongs to the 11S globulin and cupin superfamily, was initially identified in chickpea seeds. CL-AI has recently been shown to inhibit various types of α-amylases. To determine its molecular mechanism, the crystal structure of CL-AI was solved at a final resolution of 2.2 Å. Structural analysis indicated that each asymmetric unit contains three molecules with threefold symmetry and a head-to-tail association, and each molecule is divided into an α-chain and a β-chain. CL-AI has high structural similarity to other 11S globulins and canonical metal-dependent enzyme-related cupin proteins, whereas its stimilarity to α-amylase inhibitor from Phaseolus vulgaris is quite low. The structure presented here will provide insight into the function of CL-AI.
Collapse
Affiliation(s)
- Linan Sun
- Department of Dermatology, People’s Hospital of SND, Suzhou, Jiangsu 215129, People’s Republic of China
| | - Aiwu Zhou
- Key Laboratory of Cell Differentiation and Apoptosis of The Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People’s Republic of China
| | - Fei Zhang
- Key Laboratory of Cell Differentiation and Apoptosis of The Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People’s Republic of China
| |
Collapse
|
5
|
Peng L, Sun S, Yang B, Zhao J, Li W, Huang Z, Li Z, He Y, Wang Z. Genome-wide association study reveals that the cupin domain protein OsCDP3.10 regulates seed vigour in rice. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:485-498. [PMID: 34665915 PMCID: PMC8882794 DOI: 10.1111/pbi.13731] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 05/06/2023]
Abstract
Seed vigour is an imperative trait for the direct seeding of rice. In this study, we examined the genetic regulation of seedling percentage at the early germination using a genome-wide association study in rice. One major quantitative trait loci qSP3 for seedling percentage was identified, and the candidate gene was validated as qSP3, encoding a cupin domain protein OsCDP3.10 for the synthesis of 52 kDa globulin. Disruption of this gene in Oscdp3.10 mutants reduced the seed vigour, including the germination potential and seedling percentage, at the early germination in rice. The lacking accumulation of 52 kDa globulin was observed in the mature grains of the Oscdp3.10 mutants. The significantly lower amino acid contents were observed in the mature grains and the early germinating seeds of the Oscdp3.10 mutants compared with those of wild-type. Rice OsCDP3.10 regulated seed vigour mainly via modulating the amino acids e.g. Met, Glu, His, and Tyr that contribute to hydrogen peroxide (H2 O2 ) accumulation in the germinating seeds. These results provide important insights into the application of seed priming with the amino acids and the selection of OsCDP3.10 to improve seed vigour in rice.
Collapse
Affiliation(s)
- Liling Peng
- The Laboratory of Seed Science and TechnologyGuangdong Key Laboratory of Plant Molecular BreedingGuangdong Laboratory of Lingnan Modern AgricultureState Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesSouth China Agricultural UniversityGuangzhouChina
| | - Shan Sun
- The Laboratory of Seed Science and TechnologyGuangdong Key Laboratory of Plant Molecular BreedingGuangdong Laboratory of Lingnan Modern AgricultureState Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesSouth China Agricultural UniversityGuangzhouChina
| | - Bin Yang
- Guangzhou Key Laboratory for Research and Development of Crop Germplasm ResourcesZhongkai University of Agriculture and EngineeringGuangzhouChina
| | - Jia Zhao
- The Laboratory of Seed Science and TechnologyGuangdong Key Laboratory of Plant Molecular BreedingGuangdong Laboratory of Lingnan Modern AgricultureState Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesSouth China Agricultural UniversityGuangzhouChina
| | - Wenjun Li
- The Laboratory of Seed Science and TechnologyGuangdong Key Laboratory of Plant Molecular BreedingGuangdong Laboratory of Lingnan Modern AgricultureState Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesSouth China Agricultural UniversityGuangzhouChina
| | - Zhibo Huang
- The Laboratory of Seed Science and TechnologyGuangdong Key Laboratory of Plant Molecular BreedingGuangdong Laboratory of Lingnan Modern AgricultureState Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesSouth China Agricultural UniversityGuangzhouChina
| | - Ziyin Li
- The Laboratory of Seed Science and TechnologyGuangdong Key Laboratory of Plant Molecular BreedingGuangdong Laboratory of Lingnan Modern AgricultureState Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesSouth China Agricultural UniversityGuangzhouChina
| | - Yongqi He
- The Laboratory of Seed Science and TechnologyGuangdong Key Laboratory of Plant Molecular BreedingGuangdong Laboratory of Lingnan Modern AgricultureState Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesSouth China Agricultural UniversityGuangzhouChina
| | - Zhoufei Wang
- The Laboratory of Seed Science and TechnologyGuangdong Key Laboratory of Plant Molecular BreedingGuangdong Laboratory of Lingnan Modern AgricultureState Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesSouth China Agricultural UniversityGuangzhouChina
| |
Collapse
|
6
|
Wang J, Li Y, Li A, Liu RH, Gao X, Li D, Kou X, Xue Z. Nutritional constituent and health benefits of chickpea (Cicer arietinum L.): A review. Food Res Int 2021; 150:110790. [PMID: 34865805 DOI: 10.1016/j.foodres.2021.110790] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 10/08/2021] [Accepted: 10/24/2021] [Indexed: 11/19/2022]
Abstract
Chickpea (Cicer arietinum L.), an annual plant of the Fabaceae family, is mainly grown in temperate and semiarid regions. Its biological activity and beneficial contribution to human health have been scientifically confirmed as an essential source of nutritional components. The objective of this review was to summarize and update latest available scientific data and information, on bioactive components in chickpea, bio-activities, and molecular mechanisms, which has mainly focused on the detection of relevant biochemical indicators, the regulation of signaling pathways, essential genes and proteins. The studies have shown that chickpea have significant multifunctional activities, which are closely related to the functionally active small molecule peptides and phytochemicals of chickpea. Significantly, numerous studies have only addressed the functional activity and mechanisms of single active components of chickpea, however, overlooking the synergy and antagonism between chickpea components, changes of functional active components in different processing methods, as well as the active form of the substances after human digestion and metabolism. Additionally, due to limitations in research methods and techniques, the structure of most functional active substances have not been determined, which makes it difficult to conduct interaction mechanism studies. Consequently, the significant bio-activity of the functional components of chickpea, synergistic and antagonistic effects and activity differences between bioactive components should be further studied.
Collapse
Affiliation(s)
- Junyu Wang
- Department of Food Science, School of Chemical Engineering and Technology, Tianjin University, 300350 Tianjin, China.
| | - Yonghui Li
- Cardiovascular Department, Tianjin Fourth Center Hospital, Tianjin 300140, China.
| | - Ang Li
- Department of Food Science, School of Chemical Engineering and Technology, Tianjin University, 300350 Tianjin, China.
| | - Rui Hai Liu
- Department of Food Science, Stocking Hall, Cornell University, Ithaca, NY 14853, USA.
| | - Xin Gao
- Department of Food Science, School of Chemical Engineering and Technology, Tianjin University, 300350 Tianjin, China.
| | - Dan Li
- Department of Food Science, School of Chemical Engineering and Technology, Tianjin University, 300350 Tianjin, China.
| | - Xiaohong Kou
- Department of Food Science, School of Chemical Engineering and Technology, Tianjin University, 300350 Tianjin, China.
| | - Zhaohui Xue
- Department of Food Science, School of Chemical Engineering and Technology, Tianjin University, 300350 Tianjin, China.
| |
Collapse
|
7
|
Li H, Zhou H, Zhang J, Fu X, Ying Z, Liu X. Proteinaceous α-amylase inhibitors: purification, detection methods, types and mechanisms. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2021. [DOI: 10.1080/10942912.2021.1876087] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- He Li
- National Soybean Processing Industry Technology Innovation Center, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China
| | - Haochun Zhou
- National Soybean Processing Industry Technology Innovation Center, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China
| | - Jian Zhang
- National Soybean Processing Industry Technology Innovation Center, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China
| | - Xiaohang Fu
- National Soybean Processing Industry Technology Innovation Center, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China
| | - Zhiwei Ying
- National Soybean Processing Industry Technology Innovation Center, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China
| | - Xinqi Liu
- National Soybean Processing Industry Technology Innovation Center, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China
| |
Collapse
|
8
|
Dyachenko EA, Kulakova AV, Meleshin AA, Shchennikova AV, Kochieva EZ. Amylase Inhibitor SbAI in Potato Species: Structure, Variability and Expression Pattern. RUSS J GENET+ 2021. [DOI: 10.1134/s102279542101004x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Microstructure of Whole Wheat versus White Flour and Wheat-Chickpea Flour Blends and Dough: Impact on the Glycemic Response of Pan Bread. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2020; 2020:8834960. [PMID: 33083447 PMCID: PMC7557900 DOI: 10.1155/2020/8834960] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 09/10/2020] [Accepted: 09/21/2020] [Indexed: 01/14/2023]
Abstract
Whole foods are generally considered healthier choices compared to processed foods. For nutritional consideration, whole wheat bread is recommended over the white bread. However, it has a similarly high effect on glycemic response (GR) as the white bread. This study is aimed at assessing the microstructure of whole wheat flour (WWF), white flour (WF), chickpea flour (BF), their blends, and dough and the GR of the bread made thereof. Scanning electron microscope analysis showed clear distinctions in the microstructure of the three flours. WWF particle size distribution had the widest spread with a polydispersity index (PDI) of 1.0 (±0.0) and wider average diameter, with z value of 1679.5 (±156.3) compared with the particle size of 658.9 (±160.4) and PDI of 0.740 (±0.04) for WF followed by BF with the particle size of 394.1 (±54.9) and PDI of 0.388 (±0.07) (p < 0.05). The falling number was significantly (p < 0.05) lower for WWF compared to WF or BF, indicating higher alpha-amylase activity. Thus, bread made from WWF without BF substitution exhibited a higher glycemic response similar to the bread made from WF. When partly replaced with BF, the GR of the bread made with WWF or WF reduced significantly (p < 0.05) in healthy individuals.
Collapse
|
10
|
Surya C, Arul John NA, Pandiyan V, Ravikumar S, Amutha P, Sobral AJ, Krishnakumar B. Costus speciosus leaf extract assisted CS-Pt-TiO2 composites: Synthesis, characterization and their bio and photocatalytic applications. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.06.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|