1
|
Fu X, Yang Z, Guo L, Luo L, Tao Y, Lan T, Hu J, Li Z, Luo K, Xu C. Restorer of fertility like 30, encoding a mitochondrion-localized pentatricopeptide repeat protein, regulates wood formation in poplar. HORTICULTURE RESEARCH 2024; 11:uhae188. [PMID: 39247885 PMCID: PMC11377185 DOI: 10.1093/hr/uhae188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 07/01/2024] [Indexed: 09/10/2024]
Abstract
Nuclear-mitochondrial communication is crucial for plant growth, particularly in the context of cytoplasmic male sterility (CMS) repair mechanisms linked to mitochondrial genome mutations. The restorer of fertility-like (RFL) genes, known for their role in CMS restoration, remain largely unexplored in plant development. In this study, we focused on the evolutionary relationship of RFL family genes in poplar specifically within the dioecious Salicaceae plants. PtoRFL30 was identified to be preferentially expressed in stem vasculature, suggesting a distinct correlation with vascular cambium development. Transgenic poplar plants overexpressing PtoRFL30 exhibited a profound inhibition of vascular cambial activity and xylem development. Conversely, RNA interference-mediated knockdown of PtoRFL30 led to increased wood formation. Importantly, we revealed that PtoRFL30 plays a crucial role in maintaining mitochondrial functional homeostasis. Treatment with mitochondrial activity inhibitors delayed wood development in PtoRFL30-RNAi transgenic plants. Further investigations unveiled significant variations in auxin accumulation levels within vascular tissues of PtoRFL30-transgenic plants. Wood development anomalies resulting from PtoRFL30 overexpression and knockdown were rectified by NAA and NPA treatments, respectively. Our findings underscore the essential role of the PtoRFL30-mediated mitochondrion-auxin signaling module in wood formation, shedding light on the intricate nucleus-organelle communication during secondary vascular development.
Collapse
Affiliation(s)
- Xiaokang Fu
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing 400715, China
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Ziwei Yang
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing 400715, China
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Li Guo
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Lianjia Luo
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Yuanxun Tao
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Ting Lan
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Jian Hu
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Zeyu Li
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Keming Luo
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing 400715, China
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Changzheng Xu
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing 400715, China
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
2
|
Li W, Li Y, Shi H, Wang H, Ji K, Zhang L, Wang Y, Dong Y, Li Y. ZmMPK6, a mitogen-activated protein kinase, regulates maize kernel weight. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:3287-3299. [PMID: 38457358 DOI: 10.1093/jxb/erae104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 03/07/2024] [Indexed: 03/10/2024]
Abstract
Kernel weight is a critical agronomic trait in maize production. Many genes are related to kernel weight but only a few of them have been applied to maize breeding and cultivation. Here, we identify a novel function of maize mitogen-activated protein kinase 6 (ZmMPK6) in the regulation of maize kernel weight. Kernel weight was reduced in zmmpk6 mutants and increased in ZmMPK6-overexpressing lines. In addition, starch granules, starch content, protein content, and grain-filling characteristics were also affected by the ZmMPK6 expression level. ZmMPK6 is mainly localized in the nucleus and cytoplasm, widely distributed across various tissues, and is expressed during kernel development, which is consistent with its role in kernel weight. Thus, these results provide new insights into the role of ZmMPK6, a mitogen-activated protein kinase, in maize kernel weight, and could be applied to further molecular breeding for kernel quality and yield in maize.
Collapse
Affiliation(s)
- Wenyu Li
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Longzi Lake Campus, Zhengzhou, Henan 450046, China
| | - Yayong Li
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Longzi Lake Campus, Zhengzhou, Henan 450046, China
| | - Huiyue Shi
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Longzi Lake Campus, Zhengzhou, Henan 450046, China
| | - Han Wang
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Longzi Lake Campus, Zhengzhou, Henan 450046, China
| | - Kun Ji
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Longzi Lake Campus, Zhengzhou, Henan 450046, China
| | - Long Zhang
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Longzi Lake Campus, Zhengzhou, Henan 450046, China
| | - Yan Wang
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Longzi Lake Campus, Zhengzhou, Henan 450046, China
| | - Yongbin Dong
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Longzi Lake Campus, Zhengzhou, Henan 450046, China
| | - Yuling Li
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Longzi Lake Campus, Zhengzhou, Henan 450046, China
| |
Collapse
|
3
|
Liu Y, Do S, Huynh H, Li JX, Liu YG, Du ZY, Chen MX. Importance of pre-mRNA splicing and its study tools in plants. ADVANCED BIOTECHNOLOGY 2024; 2:4. [PMID: 39883322 PMCID: PMC11740881 DOI: 10.1007/s44307-024-00009-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/06/2023] [Accepted: 12/30/2023] [Indexed: 01/31/2025]
Abstract
Alternative splicing (AS) significantly enriches the diversity of transcriptomes and proteomes, playing a pivotal role in the physiology and development of eukaryotic organisms. With the continuous advancement of high-throughput sequencing technologies, an increasing number of novel transcript isoforms, along with factors related to splicing and their associated functions, are being unveiled. In this review, we succinctly summarize and compare the different splicing mechanisms across prokaryotes and eukaryotes. Furthermore, we provide an extensive overview of the recent progress in various studies on AS covering different developmental stages in diverse plant species and in response to various abiotic stresses. Additionally, we discuss modern techniques for studying the functions and quantification of AS transcripts, as well as their protein products. By integrating genetic studies, quantitative methods, and high-throughput omics techniques, we can discover novel transcript isoforms and functional splicing factors, thereby enhancing our understanding of the roles of various splicing modes in different plant species.
Collapse
Affiliation(s)
- Yue Liu
- National Key Laboratory of Wheat Improvement, College of Life Science, Shandong Agricultural University, Taian, Shandong, China
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, China
| | - Sally Do
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI, 96822, USA
| | - Henry Huynh
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI, 96822, USA
| | - Jing-Xin Li
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, China
| | - Ying-Gao Liu
- National Key Laboratory of Wheat Improvement, College of Life Science, Shandong Agricultural University, Taian, Shandong, China.
| | - Zhi-Yan Du
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI, 96822, USA.
| | - Mo-Xian Chen
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, China.
| |
Collapse
|
4
|
Li X, Jiang Y. Research Progress of Group II Intron Splicing Factors in Land Plant Mitochondria. Genes (Basel) 2024; 15:176. [PMID: 38397166 PMCID: PMC10887915 DOI: 10.3390/genes15020176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/16/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024] Open
Abstract
Mitochondria are important organelles that provide energy for the life of cells. Group II introns are usually found in the mitochondrial genes of land plants. Correct splicing of group II introns is critical to mitochondrial gene expression, mitochondrial biological function, and plant growth and development. Ancestral group II introns are self-splicing ribozymes that can catalyze their own removal from pre-RNAs, while group II introns in land plant mitochondria went through degenerations in RNA structures, and thus they lost the ability to self-splice. Instead, splicing of these introns in the mitochondria of land plants is promoted by nuclear- and mitochondrial-encoded proteins. Many proteins involved in mitochondrial group II intron splicing have been characterized in land plants to date. Here, we present a summary of research progress on mitochondrial group II intron splicing in land plants, with a major focus on protein splicing factors and their probable functions on the splicing of mitochondrial group II introns.
Collapse
Affiliation(s)
| | - Yueshui Jiang
- School of Life Sciences, Qufu Normal University, Qufu 273165, China;
| |
Collapse
|
5
|
Fang Y, Liu H, Qin L, Qi F, Sun Z, Wu J, Dong W, Huang B, Zhang X. Identification of QTL for kernel weight and size and analysis of the pentatricopeptide repeat (PPR) gene family in cultivated peanut (Arachis hypogaea L.). BMC Genomics 2023; 24:495. [PMID: 37641021 PMCID: PMC10463326 DOI: 10.1186/s12864-023-09568-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/09/2023] [Indexed: 08/31/2023] Open
Abstract
Peanut (Arachis hypogaea L.) is an important oilseed crop worldwide. Improving its yield is crucial for sustainable peanut production to meet increasing food and industrial requirements. Deciphering the genetic control underlying peanut kernel weight and size, which are essential components of peanut yield, would facilitate high-yield breeding. A high-density single nucleotide polymorphism (SNP)-based linkage map was constructed using a recombinant inbred lines (RIL) population derived from a cross between the variety Yuanza9102 and a germplasm accession wt09-0023. Kernel weight and size quantitative trait loci (QTLs) were co-localized to a 0.16 Mb interval on Arahy07 using inclusive composite interval mapping (ICIM). Analysis of SNP, and Insertion or Deletion (INDEL) markers in the QTL interval revealed a gene encoding a pentatricopeptide repeat (PPR) superfamily protein as a candidate closely linked with kernel weight and size in cultivated peanut. Examination of the PPR gene family indicated a high degree of collinearity of PPR genes between A. hypogaea and its diploid progenitors, Arachis duranensis and Arachis ipaensis. The candidate PPR gene, Arahy.JX1V6X, displayed a constitutive expression pattern in developing seeds. These findings lay a foundation for further fine mapping of QTLs related to kernel weight and size, as well as validation of candidate genes in cultivated peanut.
Collapse
Affiliation(s)
- Yuanjin Fang
- College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
- Henan Academy of Agricultural Sciences/Henan Institute of Crop Molecular Breeding/Shennong Laboratory/Key Laboratory of Oil Crops in Huang-Huai-Hai Planis, Ministry of Agriculture and Rural Affairs/Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou, 450002, China
| | - Hua Liu
- Henan Academy of Agricultural Sciences/Henan Institute of Crop Molecular Breeding/Shennong Laboratory/Key Laboratory of Oil Crops in Huang-Huai-Hai Planis, Ministry of Agriculture and Rural Affairs/Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou, 450002, China
| | - Li Qin
- Henan Academy of Agricultural Sciences/Henan Institute of Crop Molecular Breeding/Shennong Laboratory/Key Laboratory of Oil Crops in Huang-Huai-Hai Planis, Ministry of Agriculture and Rural Affairs/Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou, 450002, China
| | - Feiyan Qi
- Henan Academy of Agricultural Sciences/Henan Institute of Crop Molecular Breeding/Shennong Laboratory/Key Laboratory of Oil Crops in Huang-Huai-Hai Planis, Ministry of Agriculture and Rural Affairs/Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou, 450002, China
| | - Ziqi Sun
- Henan Academy of Agricultural Sciences/Henan Institute of Crop Molecular Breeding/Shennong Laboratory/Key Laboratory of Oil Crops in Huang-Huai-Hai Planis, Ministry of Agriculture and Rural Affairs/Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou, 450002, China
| | - Jihua Wu
- Shangqiu Academy of Agriculture and Forestry, Shangqiu, 476002, China
| | - Wenzhao Dong
- Henan Academy of Agricultural Sciences/Henan Institute of Crop Molecular Breeding/Shennong Laboratory/Key Laboratory of Oil Crops in Huang-Huai-Hai Planis, Ministry of Agriculture and Rural Affairs/Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou, 450002, China
| | - Bingyan Huang
- Henan Academy of Agricultural Sciences/Henan Institute of Crop Molecular Breeding/Shennong Laboratory/Key Laboratory of Oil Crops in Huang-Huai-Hai Planis, Ministry of Agriculture and Rural Affairs/Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou, 450002, China.
| | - Xinyou Zhang
- College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China.
- Henan Academy of Agricultural Sciences/Henan Institute of Crop Molecular Breeding/Shennong Laboratory/Key Laboratory of Oil Crops in Huang-Huai-Hai Planis, Ministry of Agriculture and Rural Affairs/Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou, 450002, China.
| |
Collapse
|
6
|
Genome-Wide Association Study for Grain Protein, Thousand Kernel Weight, and Normalized Difference Vegetation Index in Bread Wheat (Triticum aestivum L.). Genes (Basel) 2023; 14:genes14030637. [PMID: 36980909 PMCID: PMC10048783 DOI: 10.3390/genes14030637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/24/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
Genomic regions governing grain protein content (GPC), 1000 kernel weight (TKW), and normalized difference vegetation index (NDVI) were studied in a set of 280 bread wheat genotypes. The genome-wide association (GWAS) panel was genotyped using a 35K Axiom array and phenotyped in three environments. A total of 26 marker-trait associations (MTAs) were detected on 18 chromosomes covering the A, B, and D subgenomes of bread wheat. The GPC showed the maximum MTAs (16), followed by NDVI (6), and TKW (4). A maximum of 10 MTAs was located on the B subgenome, whereas, 8 MTAs each were mapped on the A and D subgenomes. In silico analysis suggest that the SNPs were located on important putative candidate genes such as NAC domain superfamily, zinc finger RING-H2-type, aspartic peptidase domain, folylpolyglutamate synthase, serine/threonine-protein kinase LRK10, pentatricopeptide repeat, protein kinase-like domain superfamily, cytochrome P450, and expansin. These candidate genes were found to have different roles including regulation of stress tolerance, nutrient remobilization, protein accumulation, nitrogen utilization, photosynthesis, grain filling, mitochondrial function, and kernel development. The effects of newly identified MTAs will be validated in different genetic backgrounds for further utilization in marker-aided breeding.
Collapse
|
7
|
Sun Q, Li Y, Gong D, Hu A, Zhong W, Zhao H, Ning Q, Tan Z, Liang K, Mu L, Jackson D, Zhang Z, Yang F, Qiu F. A NAC-EXPANSIN module enhances maize kernel size by controlling nucellus elimination. Nat Commun 2022; 13:5708. [PMID: 36175574 PMCID: PMC9522829 DOI: 10.1038/s41467-022-33513-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 09/21/2022] [Indexed: 11/17/2022] Open
Abstract
Maize early endosperm development is initiated in coordination with elimination of maternal nucellar tissues. However, the underlying mechanisms are largely unknown. Here, we characterize a major quantitative trait locus for maize kernel size and weight that encodes an EXPANSIN gene, ZmEXPB15. The encoded β-expansin protein is expressed specifically in nucellus, and positively controls kernel size and weight by promoting nucellus elimination. We further show that two nucellus-enriched transcription factors (TFs), ZmNAC11 and ZmNAC29, activate ZmEXPB15 expression. Accordingly, these two TFs also promote kernel size and weight through nucellus elimination regulation, and genetic analyses support their interaction with ZmEXPB15. Importantly, hybrids derived from a ZmEXPB15 overexpression line have increased kernel weight, demonstrates its potential value in breeding. Together, we reveal a pathway modulating the cellular processes of maternal nucellus elimination and early endosperm development, and an approach to improve kernel weight.
Collapse
Affiliation(s)
- Qin Sun
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070, Wuhan, Hubei, China
| | - Yunfu Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070, Wuhan, Hubei, China
| | - Dianming Gong
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070, Wuhan, Hubei, China
| | - Aoqing Hu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070, Wuhan, Hubei, China
| | - Wanshun Zhong
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070, Wuhan, Hubei, China
| | - Hailiang Zhao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070, Wuhan, Hubei, China
| | - Qiang Ning
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070, Wuhan, Hubei, China
| | - Zengdong Tan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070, Wuhan, Hubei, China
| | - Kun Liang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070, Wuhan, Hubei, China
| | - Luyao Mu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070, Wuhan, Hubei, China
| | - David Jackson
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070, Wuhan, Hubei, China
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, 11724, USA
| | - Zuxin Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, 430070, Wuhan, Hubei, China
| | - Fang Yang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070, Wuhan, Hubei, China.
- Hubei Hongshan Laboratory, 430070, Wuhan, Hubei, China.
| | - Fazhan Qiu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070, Wuhan, Hubei, China.
- Hubei Hongshan Laboratory, 430070, Wuhan, Hubei, China.
| |
Collapse
|
8
|
Yang J, Cui Y, Zhang X, Yang Z, Lai J, Song W, Liang J, Li X. Maize PPR278 Functions in Mitochondrial RNA Splicing and Editing. Int J Mol Sci 2022; 23:ijms23063035. [PMID: 35328469 PMCID: PMC8949463 DOI: 10.3390/ijms23063035] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/03/2022] [Accepted: 03/08/2022] [Indexed: 02/01/2023] Open
Abstract
Pentatricopeptide repeat (PPR) proteins are a large protein family in higher plants and play important roles during seed development. Most reported PPR proteins function in mitochondria. However, some PPR proteins localize to more than one organelle; functional characterization of these proteins remains limited in maize (Zea mays L.). Here, we cloned and analyzed the function of a P-subfamily PPR protein, PPR278. Loss-function of PPR278 led to a lower germination rate and other defects at the seedling stage, as well as smaller kernels compared to the wild type. PPR278 was expressed in all investigated tissues. Furthermore, we determined that PPR278 is involved in the splicing of two mitochondrial transcripts (nad2 intron 4 and nad5 introns 1 and 4), as well as RNA editing of C-to-U sites in 10 mitochondrial transcripts. PPR278 localized to the nucleus, implying that it may function as a transcriptional regulator during seed development. Our data indicate that PPR278 is involved in maize seed development via intron splicing and RNA editing in mitochondria and has potential regulatory roles in the nucleus.
Collapse
Affiliation(s)
- Jing Yang
- National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China;
- State Key Laboratory of Plant Physiology and Biochemistry, China Agricultural University, Beijing 100193, China; (Y.C.); (X.Z.); (Z.Y.); (J.L.); (W.S.)
- National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100193, China
| | - Yang Cui
- State Key Laboratory of Plant Physiology and Biochemistry, China Agricultural University, Beijing 100193, China; (Y.C.); (X.Z.); (Z.Y.); (J.L.); (W.S.)
- National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100193, China
| | - Xiangbo Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, China Agricultural University, Beijing 100193, China; (Y.C.); (X.Z.); (Z.Y.); (J.L.); (W.S.)
- National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100193, China
| | - Zhijia Yang
- State Key Laboratory of Plant Physiology and Biochemistry, China Agricultural University, Beijing 100193, China; (Y.C.); (X.Z.); (Z.Y.); (J.L.); (W.S.)
- National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100193, China
| | - Jinsheng Lai
- State Key Laboratory of Plant Physiology and Biochemistry, China Agricultural University, Beijing 100193, China; (Y.C.); (X.Z.); (Z.Y.); (J.L.); (W.S.)
- National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100193, China
| | - Weibin Song
- State Key Laboratory of Plant Physiology and Biochemistry, China Agricultural University, Beijing 100193, China; (Y.C.); (X.Z.); (Z.Y.); (J.L.); (W.S.)
- National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100193, China
| | - Jingang Liang
- Development Center of Science and Technology, Ministry of Agriculture and Rural Affairs, Beijing 100176, China
- Correspondence: (J.L.); (X.L.)
| | - Xinhai Li
- National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China;
- Correspondence: (J.L.); (X.L.)
| |
Collapse
|
9
|
Genetic Architecture of Grain Yield-Related Traits in Sorghum and Maize. Int J Mol Sci 2022; 23:ijms23052405. [PMID: 35269548 PMCID: PMC8909957 DOI: 10.3390/ijms23052405] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/06/2022] [Accepted: 02/18/2022] [Indexed: 02/08/2023] Open
Abstract
Grain size, grain number per panicle, and grain weight are crucial determinants of yield-related traits in cereals. Understanding the genetic basis of grain yield-related traits has been the main research object and nodal in crop science. Sorghum and maize, as very close C4 crops with high photosynthetic rates, stress tolerance and large biomass characteristics, are extensively used to produce food, feed, and biofuels worldwide. In this review, we comprehensively summarize a large number of quantitative trait loci (QTLs) associated with grain yield in sorghum and maize. We placed great emphasis on discussing 22 fine-mapped QTLs and 30 functionally characterized genes, which greatly hinders our deep understanding at the molecular mechanism level. This review provides a general overview of the comprehensive findings on grain yield QTLs and discusses the emerging trend in molecular marker-assisted breeding with these QTLs.
Collapse
|
10
|
Qiu T, Zhao X, Feng H, Qi L, Yang J, Peng Y, Zhao W. OsNBL3, a mitochondrion-localized pentatricopeptide repeat protein, is involved in splicing nad5 intron 4 and its disruption causes lesion mimic phenotype with enhanced resistance to biotic and abiotic stresses. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:2277-2290. [PMID: 34197672 PMCID: PMC8541779 DOI: 10.1111/pbi.13659] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 06/08/2021] [Accepted: 06/27/2021] [Indexed: 05/06/2023]
Abstract
Lesion mimic mutants are used to elucidate mechanisms controlling plant responses to pathogen attacks and environmental stresses. Although dozens of genes had been functionally demonstrated to be involved in lesion mimic phenotype in several plant species, the molecular mechanisms underlying the hypersensitive response are largely unknown. Here, a rice (Oryza sativa) lesion mimic mutant natural blight leaf 3 (nbl3) was identified from T-DNA insertion lines. The causative gene, OsNBL3, encodes a mitochondrion-localized pentatricopeptide repeat (PPR) protein. The nbl3 mutant exhibited spontaneous cell death response and H2 O2 accumulation, and displayed enhanced resistance to the fungal and bacterial pathogens Magnaporthe oryzae and Xanthomonas oryzae pv. oryzae. This resistance was consistent with the up-regulation of several defence-related genes; thus, defence responses were induced in nbl3. RNA interference lines of OsNBL3 exhibited enhanced disease resistance similar to that of nbl3, while the disease resistance in overexpression lines did not differ from that of the wild type. In addition, nbl3 displayed improved tolerance to salt, accompanied by up-regulation of several salt-associated marker genes. OsNBL3 was found to mainly participate in the splicing of mitochondrial gene nad5 intron 4. Disruption of OsNBL3 leads to the reduction in complex I activity, the elevation of alternative respiratory pathways and the destruction of mitochondrial morphology. Overall, the results demonstrated that the PPR protein-coding gene OsNBL3 is essential for mitochondrial development and functions, and its disruption causes the lesion mimic phenotype and enhances disease resistance and tolerance to salt in rice.
Collapse
Affiliation(s)
- Tiancheng Qiu
- State Key Laboratory of Agrobiotechnology, MOA Key Lab of Pest Monitoring and Green ManagementDepartment of Plant PathologyChina Agricultural UniversityBeijingChina
| | - Xiaosheng Zhao
- State Key Laboratory of Agrobiotechnology, MOA Key Lab of Pest Monitoring and Green ManagementDepartment of Plant PathologyChina Agricultural UniversityBeijingChina
| | - Huijing Feng
- State Key Laboratory of Agrobiotechnology, MOA Key Lab of Pest Monitoring and Green ManagementDepartment of Plant PathologyChina Agricultural UniversityBeijingChina
| | - Linlu Qi
- State Key Laboratory of Agrobiotechnology, MOA Key Lab of Pest Monitoring and Green ManagementDepartment of Plant PathologyChina Agricultural UniversityBeijingChina
| | - Jun Yang
- State Key Laboratory of Agrobiotechnology, MOA Key Lab of Pest Monitoring and Green ManagementDepartment of Plant PathologyChina Agricultural UniversityBeijingChina
| | - You‐Liang Peng
- State Key Laboratory of Agrobiotechnology, MOA Key Lab of Pest Monitoring and Green ManagementDepartment of Plant PathologyChina Agricultural UniversityBeijingChina
| | - Wensheng Zhao
- State Key Laboratory of Agrobiotechnology, MOA Key Lab of Pest Monitoring and Green ManagementDepartment of Plant PathologyChina Agricultural UniversityBeijingChina
| |
Collapse
|
11
|
Fan K, Ren Z, Zhang X, Liu Y, Fu J, Qi C, Tatar W, Rasmusson AG, Wang G, Liu Y. The pentatricopeptide repeat protein EMP603 is required for the splicing of mitochondrial Nad1 intron 2 and seed development in maize. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:6933-6948. [PMID: 34279607 DOI: 10.1093/jxb/erab339] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 07/16/2021] [Indexed: 06/13/2023]
Abstract
Intron splicing is an essential event in post-transcriptional RNA processing in plant mitochondria, which requires the participation of diverse nuclear-encoded splicing factors. However, it is presently unclear how these proteins cooperatively take part in the splicing of specific introns. In this study, we characterized a nuclear-encoded mitochondrial P-type pentatricopeptide repeat (PPR) protein named EMP603. This protein is essential for splicing of intron 2 in the Nad1 gene and interacts with the mitochondria-localized DEAD-box RNA helicase PMH2-5140, the RAD52-like proteins ODB1-0814 and ODB1-5061, and the CRM domain-containing protein Zm-mCSF1. Further study revealed that the N-terminal region of EMP603 interacts with the DEAD-box of PMH2-5140, the CRM domain of Zm-mCSF1, and OBD1-5061, but not with OBD1-0814, whereas the PPR domain of EMP603 can interact with ODB1-0814, ODB1-5061, and PMH2-5140, but not with Zm-mCSF1. Defects in EMP603 severely disrupt the assembly and activity of mitochondrial complex I, leading to impaired mitochondrial function, and delayed seed development. The interactions revealed between EMP603 and PMH2-5140, ODB1-0814, ODB1-5061, and Zm-mCSF1 indicate a possible involvement of a dynamic 'spliceosome-like' complex in intron splicing, and may accelerate the elucidation of the intron splicing mechanism in plant mitochondria.
Collapse
Affiliation(s)
- Kaijian Fan
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhenjing Ren
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaofeng Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yan Liu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Junjie Fu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chunlai Qi
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wurinile Tatar
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | | | - Guoying Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yunjun Liu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
12
|
Li X, Sun M, Liu S, Teng Q, Li S, Jiang Y. Functions of PPR Proteins in Plant Growth and Development. Int J Mol Sci 2021; 22:11274. [PMID: 34681932 PMCID: PMC8537650 DOI: 10.3390/ijms222011274] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/14/2021] [Accepted: 10/16/2021] [Indexed: 01/04/2023] Open
Abstract
Pentatricopeptide repeat (PPR) proteins form a large protein family in land plants, with hundreds of different members in angiosperms. In the last decade, a number of studies have shown that PPR proteins are sequence-specific RNA-binding proteins involved in multiple aspects of plant organellar RNA processing, and perform numerous functions in plants throughout their life cycle. Recently, computational and structural studies have provided new insights into the working mechanisms of PPR proteins in RNA recognition and cytidine deamination. In this review, we summarized the research progress on the functions of PPR proteins in plant growth and development, with a particular focus on their effects on cytoplasmic male sterility, stress responses, and seed development. We also documented the molecular mechanisms of PPR proteins in mediating RNA processing in plant mitochondria and chloroplasts.
Collapse
Affiliation(s)
- Xiulan Li
- School of Life Sciences, Qufu Normal University, Qufu 273165, China; (M.S.); (S.L.); (Q.T.); (S.L.)
| | | | | | | | | | - Yueshui Jiang
- School of Life Sciences, Qufu Normal University, Qufu 273165, China; (M.S.); (S.L.); (Q.T.); (S.L.)
| |
Collapse
|
13
|
Zhang H, Lu Y, Ma Y, Fu J, Wang G. Genetic and molecular control of grain yield in maize. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2021; 41:18. [PMID: 37309425 PMCID: PMC10236077 DOI: 10.1007/s11032-021-01214-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 02/07/2021] [Indexed: 06/14/2023]
Abstract
Understanding the genetic and molecular basis of grain yield is important for maize improvement. Here, we identified 49 consensus quantitative trait loci (cQTL) controlling maize yield-related traits using QTL meta-analysis. Then, we collected yield-related traits associated SNPs detected by association mapping and identified 17 consensus significant loci. Comparing the physical positions of cQTL with those of significant SNPs revealed that 47 significant SNPs were located within 20 cQTL regions. Furthermore, intensive reviews of 31 genes regulating maize yield-related traits found that the functions of many genes were conservative in maize and other plant species. The functional conservation indicated that some of the 575 maize genes (orthologous to 247 genes controlling yield or seed traits in other plant species) might be functionally related to maize yield-related traits, especially the 49 maize orthologous genes in cQTL regions, and 41 orthologous genes close to the physical positions of significant SNPs. In the end, we prospected on the integration of the public sources for exploring the genetic and molecular mechanisms of maize yield-related traits, and on the utilization of genetic and molecular mechanisms for maize improvement. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-021-01214-3.
Collapse
Affiliation(s)
- Hongwei Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 The People’s Republic of China
| | - Yantian Lu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 The People’s Republic of China
| | - Yuting Ma
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 The People’s Republic of China
| | - Junjie Fu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 The People’s Republic of China
| | - Guoying Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 The People’s Republic of China
| |
Collapse
|
14
|
Dai D, Ma Z, Song R. Maize kernel development. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2021; 41:2. [PMID: 37309525 PMCID: PMC10231577 DOI: 10.1007/s11032-020-01195-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/03/2020] [Indexed: 06/14/2023]
Abstract
Maize (Zea mays) is a leading cereal crop in the world. The maize kernel is the storage organ and the harvest portion of this crop and is closely related to its yield and quality. The development of maize kernel is initiated by the double fertilization event, leading to the formation of a diploid embryo and a triploid endosperm. The embryo and endosperm are then undergone independent developmental programs, resulting in a mature maize kernel which is comprised of a persistent endosperm, a large embryo, and a maternal pericarp. Due to the well-characterized morphogenesis and powerful genetics, maize kernel has long been an excellent model for the study of cereal kernel development. In recent years, with the release of the maize reference genome and the development of new genomic technologies, there has been an explosive expansion of new knowledge for maize kernel development. In this review, we overviewed recent progress in the study of maize kernel development, with an emphasis on genetic mapping of kernel traits, transcriptome analysis during kernel development, functional gene cloning of kernel mutants, and genetic engineering of kernel traits.
Collapse
Affiliation(s)
- Dawei Dai
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Beijing Key Laboratory of Crop Genetic Improvement, Joint International Research Laboratory of Crop Molecular Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193 China
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai, 200444 China
| | - Zeyang Ma
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Beijing Key Laboratory of Crop Genetic Improvement, Joint International Research Laboratory of Crop Molecular Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193 China
| | - Rentao Song
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Beijing Key Laboratory of Crop Genetic Improvement, Joint International Research Laboratory of Crop Molecular Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193 China
| |
Collapse
|
15
|
Abstract
Production and expression of RNA requires the action of multiple RNA-binding proteins (RBPs). New RBPs are most often created by novel combinations of dedicated RNA-binding modules. However, recruiting existing genes to create new RBPs is also an important evolutionary strategy. In this report, we analyzed the eight-member uL18 ribosomal protein family in Arabidopsis uL18 proteins share a short structurally conserved domain that binds the 5S ribosomal RNA (rRNA) and allows its incorporation into ribosomes. Our results indicate that Arabidopsis uL18-Like proteins are targeted to either mitochondria or chloroplasts. While two members of the family are found in organelle ribosomes, we show here that two uL18-type proteins function as factors necessary for the splicing of certain mitochondrial and plastid group II introns. These two proteins do not cosediment with mitochondrial or plastid ribosomes but instead associate with the introns whose splicing they promote. Our study thus reveals that the RNA-binding capacity of uL18 ribosomal proteins has been repurposed to create factors that facilitate the splicing of organellar introns.
Collapse
|
16
|
Yang H, Xiu Z, Wang L, Cao SK, Li X, Sun F, Tan BC. Two Pentatricopeptide Repeat Proteins Are Required for the Splicing of nad5 Introns in Maize. FRONTIERS IN PLANT SCIENCE 2020; 11:732. [PMID: 32582256 PMCID: PMC7284535 DOI: 10.3389/fpls.2020.00732] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 05/07/2020] [Indexed: 05/06/2023]
Abstract
Mitochondrial genes in flowering plants contain predominantly group II introns that require precise splicing before translation into functional proteins. Splicing of these introns is facilitated by various nucleus-encoded splicing factors. Due to lethality of mutants, functions of many splicing factors have not been revealed. Here, we report the function of two P-type PPR proteins PPR101 and PPR231, and their role in maize seed development. PPR101 and PPR231 are targeted to mitochondria. Null mutation of PPR101 and PPR231 arrests embryo and endosperm development, generating empty pericarp and small kernel phenotype, respectively, in maize. Loss-of-function in PPR101 abolishes the splicing of nad5 intron 2, and reduces the splicing of nad5 intron 1. Loss-of-function in PPR231 reduces the splicing of nad5 introns 1, 2, 3 and nad2 intron 3. The absence of Nad5 protein eliminates assembly of complex I, and activates the expression of alternative oxidase AOX2. These results indicate that both PPR101 and PPR231 are required for mitochondrial nad5 introns 1 and 2 splicing, while PPR231 is also required for nad5 intron 3 and nad2 intron 3. Both genes are essential to complex I assembly, mitochondrial function, and maize seed development. This work reveals that the splicing of a single intron involves multiple PPRs.
Collapse
|