1
|
Zaheer U, Munir F, Salum YM, He W. Function and regulation of plant ARGONAUTE proteins in response to environmental challenges: a review. PeerJ 2024; 12:e17115. [PMID: 38560454 PMCID: PMC10979746 DOI: 10.7717/peerj.17115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 02/26/2024] [Indexed: 04/04/2024] Open
Abstract
Environmental stresses diversely affect multiple processes related to the growth, development, and yield of many crops worldwide. In response, plants have developed numerous sophisticated defense mechanisms at the cellular and subcellular levels to react and adapt to biotic and abiotic stressors. RNA silencing, which is an innate immune mechanism, mediates sequence-specific gene expression regulation in higher eukaryotes. ARGONAUTE (AGO) proteins are essential components of the RNA-induced silencing complex (RISC). They bind to small noncoding RNAs (sRNAs) and target complementary RNAs, causing translational repression or triggering endonucleolytic cleavage pathways. In this review, we aim to illustrate the recently published molecular functions, regulatory mechanisms, and biological roles of AGO family proteins in model plants and cash crops, especially in the defense against diverse biotic and abiotic stresses, which could be helpful in crop improvement and stress tolerance in various plants.
Collapse
Affiliation(s)
- Uroosa Zaheer
- Plant Protection, State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Plant Protection, International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Plant Protection, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Faisal Munir
- Plant Protection, State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Plant Protection, International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Plant Protection, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Yussuf Mohamed Salum
- Plant Protection, State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Plant Protection, International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Plant Protection, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Weiyi He
- Plant Protection, State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Plant Protection, International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Plant Protection, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| |
Collapse
|
2
|
Wu Z, Zhang T, Li J, Chen S, Grin IR, Zharkov DO, Yu B, Li H. Genome-wide analysis of WD40 protein family and functional characterization of BvWD40-82 in sugar beet. FRONTIERS IN PLANT SCIENCE 2023; 14:1185440. [PMID: 37332716 PMCID: PMC10272600 DOI: 10.3389/fpls.2023.1185440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/10/2023] [Indexed: 06/20/2023]
Abstract
Sugar beet is one of the most important sugar crops in the world. It contributes greatly to the global sugar production, but salt stress negatively affects the crop yield. WD40 proteins play important roles in plant growth and response to abiotic stresses through their involvement in a variety of biological processes, such as signal transduction, histone modification, ubiquitination, and RNA processing. The WD40 protein family has been well-studied in Arabidopsis thaliana, rice and other plants, but the systematic analysis of the sugar beet WD40 proteins has not been reported. In this study, a total of 177 BvWD40 proteins were identified from the sugar beet genome, and their evolutionary characteristics, protein structure, gene structure, protein interaction network and gene ontology were systematically analyzed to understand their evolution and function. Meanwhile, the expression patterns of BvWD40s under salt stress were characterized, and a BvWD40-82 gene was hypothesized as a salt-tolerant candidate gene. Its function was further characterized using molecular and genetic methods. The result showed that BvWD40-82 enhanced salt stress tolerance in transgenic Arabidopsis seedlings by increasing the contents of osmolytes and antioxidant enzyme activities, maintaining intracellular ion homeostasis and increasing the expression of genes related to SOS and ABA pathways. The result has laid a foundation for further mechanistic study of the BvWD40 genes in sugar beet tolerance to salt stress, and it may inform biotechnological applications in improving crop stress resilience.
Collapse
Affiliation(s)
- Zhirui Wu
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Molecular Biology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin, China
| | - Tingyue Zhang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Molecular Biology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin, China
| | - Jinna Li
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Molecular Biology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin, China
| | - Sixue Chen
- Department of Biology, University of Mississippi, Oxford, MS, United States
| | - Inga R. Grin
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Dmitry O. Zharkov
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Bing Yu
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Molecular Biology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin, China
| | - Haiying Li
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Molecular Biology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin, China
| |
Collapse
|
3
|
Fu M, Chen Y, Li H, Wang L, Liu R, Liu Z. Genome-Wide Identification and Expression Analyses of the Cotton AGO Genes and Their Potential Roles in Fiber Development and Stress Response. Genes (Basel) 2022; 13:genes13081492. [PMID: 36011401 PMCID: PMC9408788 DOI: 10.3390/genes13081492] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/09/2022] [Accepted: 08/19/2022] [Indexed: 11/19/2022] Open
Abstract
Argonaute proteins (AGOs) are indispensable components of RNA silencing. However, systematic characterization of the AGO genes have not been completed in cotton until now. In this study, cotton AGO genes were identified and analyzed with respect to their evolution and expression profile during biotic and abiotic stresses. We identified 14 GaAGO, 14 GrAGO, and 28 GhAGO genes in the genomes of Gossypium arboreum, Gossypium raimondii, and Gossypium hirsutum. Cotton AGO proteins were classified into four subgroups. Structural and functional conservation were observed in the same subgroups based on the analysis of the gene structure and conserved domains. Twenty-four duplicated gene pairs were identified in GhAGO genes, and all of them exhibited strong purifying selection during evolution. Moreover, RNA-seq analysis showed that most of the GhAGO genes exhibit high expression levels in the fiber initiation and elongation processes. Furthermore, the expression profiles of GhAGO genes tested by quantitative real-time polymerase chain reaction (qPCR) demonstrated that they were sensitive to Verticillium wilt infection and salt and drought stresses. Overall, our results will pave the way for further functional investigation of the cotton AGO gene family, which may be involved in fiber development and stress response.
Collapse
Affiliation(s)
| | | | | | | | | | - Zhanji Liu
- Correspondence: ; Tel.: +86-531-6665-9992
| |
Collapse
|
4
|
Yang Z, Dong T, Dai X, Wei Y, Fang Y, Zhang L, Zhu M, Nawaz G, Cao Q, Xu T. Comparative Analysis of Salt Responsive MicroRNAs in Two Sweetpotato [ Ipomoea batatas (L.) Lam.] Cultivars With Different Salt Stress Resistance. FRONTIERS IN PLANT SCIENCE 2022; 13:879819. [PMID: 35874022 PMCID: PMC9302446 DOI: 10.3389/fpls.2022.879819] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
Sweetpotato [Ipomoea batatas (L.) Lam.] is an important food, vegetable and economic crop, but its productivity is remarkably affected by soil salinity. MiRNAs are a class of endogenous non-coding small RNAs that play an important role in plant resistance to salt stress. However, the function of miRNAs still remains largely unknown in sweetpotato under salt stress. Previously, we identified salt-responsive miRNAs in one salt-sensitive sweetpotato cultivar "Xushu 32." In this study, we identified miRNAs in another salt-tolerant cultivar "Xushu 22" by high-throughput deep sequencing and compared the salt-responsive miRNAs between these two cultivars with different salt sensitivity. We identified 687 miRNAs in "Xushu 22," including 514 known miRNAs and 173 novel miRNAs. Among the 759 miRNAs from the two cultivars, 72 and 109 miRNAs were specifically expressed in "Xushu 32" and "Xushu 22," respectively, and 578 miRNAs were co-expressed. The comparison of "Xushu 32" and "Xushu 22" genotypes showed a total of 235 miRNAs with obvious differential expression and 177 salt-responsive miRNAs that were obviously differently expressed between "Xushu 32" and "Xushu 22" under salt stress. The target genes of the miRNAs were predicted and identified using the Target Finder tool and degradome sequencing. The results showed that most of the targets were transcription factors and proteins related to metabolism and stress response. Gene Ontology analysis revealed that these target genes are involved in key pathways related to salt stress response and secondary redox metabolism. The comparative analysis of salt-responsive miRNAs in sweetpotato cultivars with different salt sensitivity is helpful for understanding the regulatory pattern of miRNA in different sweetpotato genotypes and improving the agronomic traits of sweetpotato by miRNA manipulation in the future.
Collapse
Affiliation(s)
- Zhengmei Yang
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics School of Life Sciences, Jiangsu Normal University, Xuzhou, China
- Department of Applied Biology, Chonnam National University, Gwangju, South Korea
| | - Tingting Dong
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Xibin Dai
- Jiangsu Xuzhou Sweetpotato Research Center, Xuzhou, China
| | - Yiliang Wei
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Yujie Fang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, China
| | - Lei Zhang
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Mingku Zhu
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Ghazala Nawaz
- Department of Botanical and Environmental Sciences, Kohat University of Science and Technology, Kohat, Pakistan
| | - Qinghe Cao
- Jiangsu Xuzhou Sweetpotato Research Center, Xuzhou, China
| | - Tao Xu
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| |
Collapse
|
5
|
Genome-Wide Identification and Evolutionary Analysis of Argonaute Genes in Hexaploid Bread Wheat. BIOMED RESEARCH INTERNATIONAL 2021; 2021:9983858. [PMID: 34239939 PMCID: PMC8233069 DOI: 10.1155/2021/9983858] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 05/16/2021] [Accepted: 06/08/2021] [Indexed: 01/02/2023]
Abstract
Argonaute (AGO) proteins play a pivotal role in plant growth and development as the core components of RNA-induced silencing complex (RISC). However, no systematic characterization of AGO genes in wheat has been reported to date. In this study, a total number of 69 TaAGO genes in the hexaploid bread wheat (Triticum aestivum cv. Chinese Spring) genome, divided into 10 subfamilies, were identified. Compared to all wheat genes, TaAGOs showed a significantly lower evolutionary rate, which is consistent with their high conservation in eukaryotes. However, the homoeolog retention was remarkably higher than the average, implying the nonredundant biological importance of TaAGO genes in bread wheat. Further homoeologous gene expression bias analyses revealed that TaAGOs may have undergone neofunctionalization after polyploidization and duplication through the divergent expression of homoeologous gene copies, to provide new opportunities for the generation of adaptive traits. Moreover, quantitative real-time polymerase chain reaction (qRT-PCR) analyses indicated that TaAGO gene expression was involved in response to heat, drought, and salt stresses. Our results would provide a theoretical basis for future studies on the biological functions of TaAGO genes in wheat and other gramineous species.
Collapse
|
6
|
Xiong H, Li Y, Guo H, Xie Y, Zhao L, Gu J, Zhao S, Ding Y, Liu L. Genetic Mapping by Integration of 55K SNP Array and KASP Markers Reveals Candidate Genes for Important Agronomic Traits in Hexaploid Wheat. FRONTIERS IN PLANT SCIENCE 2021; 12:628478. [PMID: 33708233 PMCID: PMC7942297 DOI: 10.3389/fpls.2021.628478] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 01/29/2021] [Indexed: 06/12/2023]
Abstract
Agronomic traits such as heading date (HD), plant height (PH), thousand grain weight (TGW), and spike length (SL) are important factors affecting wheat yield. In this study, we constructed a high-density genetic linkage map using the Wheat55K SNP Array to map quantitative trait loci (QTLs) for these traits in 207 recombinant inbred lines (RILs). A total of 37 QTLs were identified, including 9 QTLs for HD, 7 QTLs for PH, 12 QTLs for TGW, and 9 QTLs for SL, which explained 3.0-48.8% of the phenotypic variation. Kompetitive Allele Specific PCR (KASP) markers were developed based on sequencing data and used for validation of the stably detected QTLs on chromosomes 3A, 4B and 6A using 400 RILs. A QTL cluster on chromosome 4B for PH and TGW was delimited to a 0.8 Mb physical interval explaining 12.2-22.8% of the phenotypic variation. Gene annotations and analyses of SNP effects suggested that a gene encoding protein Photosynthesis Affected Mutant 68, which is essential for photosystem II assembly, is a candidate gene affecting PH and TGW. In addition, the QTL for HD on chromosome 3A was narrowed down to a 2.5 Mb interval, and a gene encoding an R3H domain-containing protein was speculated to be the causal gene influencing HD. The linked KASP markers developed in this study will be useful for marker-assisted selection in wheat breeding, and the candidate genes provide new insight into genetic study for those traits in wheat.
Collapse
|
7
|
Brosseau C, Bolaji A, Roussin-Léveillée C, Zhao Z, Biga S, Moffett P. Natural variation in the Arabidopsis AGO2 gene is associated with susceptibility to potato virus X. THE NEW PHYTOLOGIST 2020; 226:866-878. [PMID: 31880814 DOI: 10.1111/nph.16397] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 12/12/2019] [Indexed: 06/10/2023]
Abstract
RNA silencing functions as an anti-viral defence in plants through the action of DICER-like (DCL) and ARGONAUTE (AGO) proteins. Despite the importance of this mechanism, little is known about the functional consequences of variation in genes encoding RNA silencing components. The AGO2 protein has been shown to be important for defense against multiple viruses, and we investigated how naturally occurring differences in AGO2 between and within species affects its antiviral activities. We find that the AGO2 protein from Arabidopsis thaliana, but not Nicotiana benthamiana, effectively limits potato virus X (PVX). Consistent with this, we find that the A. thaliana AGO2 gene shows a high incidence of polymorphisms between accessions, with evidence of selective pressure. Using functional analyses, we identify polymorphisms that specifically affect AGO2 antiviral activity, without interfering with other AGO2-associated functions such as anti-bacterial resistance or DNA methylation. Our results suggest that viruses adapt to overcome RNA silencing in their hosts. Furthermore, they indicate that plant-virus interactions have influenced natural variation in RNA-silencing components and that the latter may be a source of genetically encoded virus resistance.
Collapse
Affiliation(s)
- Chantal Brosseau
- Département de Biologie, Centre SÈVE, Université de Sherbrooke, Sherbrooke, QC, J1K 2R1, Canada
| | - Ayooluwa Bolaji
- Département de Biologie, Centre SÈVE, Université de Sherbrooke, Sherbrooke, QC, J1K 2R1, Canada
| | | | - Zhenxing Zhao
- Département de Biologie, Centre SÈVE, Université de Sherbrooke, Sherbrooke, QC, J1K 2R1, Canada
| | - Sébastien Biga
- Département de Biologie, Centre SÈVE, Université de Sherbrooke, Sherbrooke, QC, J1K 2R1, Canada
| | - Peter Moffett
- Département de Biologie, Centre SÈVE, Université de Sherbrooke, Sherbrooke, QC, J1K 2R1, Canada
| |
Collapse
|