1
|
Tushabe D, Altmann F, Koehler E, Woods S, Kahl S, Rosbakh S. Adaptation and Acclimation of Gametophytic Traits to Heat Stress in a Widely Distributed Wild Plant Along a Steep Climatic Gradient. Ecol Evol 2025; 15:e71199. [PMID: 40170828 PMCID: PMC11955256 DOI: 10.1002/ece3.71199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Accepted: 03/17/2025] [Indexed: 04/03/2025] Open
Abstract
Climate change-induced heat waves often reduce seed yields and quality via high-temperature effects in the gametophytic phase. Yet, in contrast to model and crop species, the ability of pollen and ovules to adapt or acclimate to heat stress in wild plants remains poorly understood. To address this gap, we examined the adaptation and acclimation potential of six gametophytic traits in 11 wild Silene vulgaris populations across a temperature gradient in Europe. First, we cultivated plants in a common garden to reveal differences in gametophytic traits indicative of adaptation. Next, we assessed their acclimation potential by subjecting flowering plants to two chronic heat stress (CHS) treatments: moderate (35°C/30°C) and severe (40°C/35°C) for 18 days. Also, we estimated the CHS effects on seed quantity and quality. The common garden experiment showed no intraspecific variation in gametophytic traits across the temperature gradient, suggesting these traits may not influence reproductive adaptation to local habitats. During CHS, the female gametophyte was less temperature-sensitive than the male. Moderate CHS led to larger ovaries with more large-sized ovules, while severe CHS reduced ovule numbers but increased their size. Both CHS treatments decreased pollen grain numbers, size, and anther length, with severe CHS causing greater reductions. These reductions in gametophytic traits led to lower seed yield and quality. Under both CHS treatments, acclimation potential did not vary along the temperature gradient, except for pollen size under severe CHS, which was larger in warmer climates. Our findings revealed the lack of adaptation and acclimation mechanisms in the gametophytic traits (except for pollen size) of wild Silene vulgaris populations along the temperature gradient. These findings suggest that Silene plants may rely on alternative strategies, such as shifts in gametophyte physiology and biochemistry or flowering phenology, to respond to thermal stress associated with heat waves.
Collapse
Affiliation(s)
- Donam Tushabe
- Ecology and Conservation Biology, Institute of Plant SciencesUniversity of RegensburgRegensburgGermany
| | - Franziska Altmann
- Ecology and Conservation Biology, Institute of Plant SciencesUniversity of RegensburgRegensburgGermany
| | - Erik Koehler
- Ecology and Conservation Biology, Institute of Plant SciencesUniversity of RegensburgRegensburgGermany
| | - Sebastian Woods
- Ecology and Conservation Biology, Institute of Plant SciencesUniversity of RegensburgRegensburgGermany
| | - Sandra Kahl
- Biodiversity Research/Systematic Botany, Institute of Biochemistry Und BiologyUniversity of PotsdamPotsdamGermany
| | - Sergey Rosbakh
- Ecology and Conservation Biology, Institute of Plant SciencesUniversity of RegensburgRegensburgGermany
- Department of Plant and Environmental Sciences, Faculty of ScienceUniversity of CopenhagenFrederiksbergDenmark
| |
Collapse
|
2
|
Balzano A, Amitrano C, Arena C, Pannico A, Caputo R, Merela M, Cirillo C, De Micco V. Does Pre-Acclimation Enhance the Tolerance of Quercus ilex and Arbutus unedo Seedlings to Drought? PLANTS (BASEL, SWITZERLAND) 2025; 14:388. [PMID: 39942951 PMCID: PMC11820989 DOI: 10.3390/plants14030388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/17/2025] [Accepted: 01/23/2025] [Indexed: 02/16/2025]
Abstract
Mediterranean forests are severely threatened by increasing seedling mortality due to harsh environmental conditions, especially drought. In this study, we investigate whether seedlings of Quercus ilex and Arbutus unedo, previously exposed to water deficit, acquired tolerance to summer drought. Seedlings of the two species were grown from April to September in a plastic tunnel greenhouse and exposed to two irrigation regimes (control, 100% water holding capacity; water-stressed, 50% of control). In mid-August, the irrigation of all plants was suspended for three weeks. The response of the species was analyzed to evaluate survival, growth, ecological, and anatomical traits of wood produced under stressful conditions and marked through the pinning technique. The results suggest that both species show pre-acclimation to drought, with Q. ilex demonstrating a marked increase in survival percentage. This is likely due to a reduction in vessel size in response to previous water stress. In contrast, in A. unedo, the higher frequency of narrower vessels allowed safer water transport compared to Q. ilex, thus explaining the slight increase in survival. Overall results indicated that the two species adopt different strategies to overcome drought, providing valuable insights for managing seedlings in natural ecosystems and urban green spaces.
Collapse
Affiliation(s)
- Angela Balzano
- Department of Wood Science and Technology, Biotechnical Faculty, University of Ljubljana, Rožna Dolina, Cesta VIII/34, 1000 Ljubljana, Slovenia; (A.B.); (M.M.)
| | - Chiara Amitrano
- Department of Agricultural Sciences, University of Naples Federico II, Piazza Carlo di Borbone 1, 80055 Portici, Italy; (C.A.); (A.P.); (R.C.)
| | - Carmen Arena
- Department of Biology, University of Naples Federico II, Via Cinthia 21-26, 80126 Napoli, Italy;
| | - Antonio Pannico
- Department of Agricultural Sciences, University of Naples Federico II, Piazza Carlo di Borbone 1, 80055 Portici, Italy; (C.A.); (A.P.); (R.C.)
| | - Rosanna Caputo
- Department of Agricultural Sciences, University of Naples Federico II, Piazza Carlo di Borbone 1, 80055 Portici, Italy; (C.A.); (A.P.); (R.C.)
| | - Maks Merela
- Department of Wood Science and Technology, Biotechnical Faculty, University of Ljubljana, Rožna Dolina, Cesta VIII/34, 1000 Ljubljana, Slovenia; (A.B.); (M.M.)
| | - Chiara Cirillo
- Department of Agricultural Sciences, University of Naples Federico II, Piazza Carlo di Borbone 1, 80055 Portici, Italy; (C.A.); (A.P.); (R.C.)
| | - Veronica De Micco
- Department of Agricultural Sciences, University of Naples Federico II, Piazza Carlo di Borbone 1, 80055 Portici, Italy; (C.A.); (A.P.); (R.C.)
| |
Collapse
|
3
|
Hudeček M, Nožková V, Plíhalová L, Plíhal O. Plant hormone cytokinin at the crossroads of stress priming and control of photosynthesis. FRONTIERS IN PLANT SCIENCE 2023; 13:1103088. [PMID: 36743569 PMCID: PMC9889983 DOI: 10.3389/fpls.2022.1103088] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 12/29/2022] [Indexed: 06/18/2023]
Abstract
To cope with biotic and abiotic stress conditions, land plants have evolved several levels of protection, including delicate defense mechanisms to respond to changes in the environment. The benefits of inducible defense responses can be further augmented by defense priming, which allows plants to respond to a mild stimulus faster and more robustly than plants in the naïve (non-primed) state. Priming provides a low-cost protection of agriculturally important plants in a relatively safe and effective manner. Many different organic and inorganic compounds have been successfully tested to induce resistance in plants. Among the plethora of commonly used physicochemical techniques, priming by plant growth regulators (phytohormones and their derivatives) appears to be a viable approach with a wide range of applications. While several classes of plant hormones have been exploited in agriculture with promising results, much less attention has been paid to cytokinin, a major plant hormone involved in many biological processes including the regulation of photosynthesis. Cytokinins have been long known to be involved in the regulation of chlorophyll metabolism, among other functions, and are responsible for delaying the onset of senescence. A comprehensive overview of the possible mechanisms of the cytokinin-primed defense or stress-related responses, especially those related to photosynthesis, should provide better insight into some of the less understood aspects of this important group of plant growth regulators.
Collapse
Affiliation(s)
- Martin Hudeček
- Laboratory of Growth Regulators, Faculty of Science of Palacký University and Institute of Experimental Botany of the Czech Academy of Sciences, Olomouc, Czechia
| | - Vladimíra Nožková
- Department of Chemical Biology, Faculty of Science, Palacký University, Olomouc, Czechia
| | - Lucie Plíhalová
- Department of Chemical Biology, Faculty of Science, Palacký University, Olomouc, Czechia
| | - Ondřej Plíhal
- Laboratory of Growth Regulators, Faculty of Science of Palacký University and Institute of Experimental Botany of the Czech Academy of Sciences, Olomouc, Czechia
| |
Collapse
|
4
|
Peršić V, Ament A, Antunović Dunić J, Drezner G, Cesar V. PEG-induced physiological drought for screening winter wheat genotypes sensitivity - integrated biochemical and chlorophyll a fluorescence analysis. FRONTIERS IN PLANT SCIENCE 2022; 13:987702. [PMID: 36311092 PMCID: PMC9597320 DOI: 10.3389/fpls.2022.987702] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
This study aimed to screen different winter wheat genotypes at the onset of metabolic changes induced by water deficit to comprehend possible adaptive features of photosynthetic apparatus function and structure to physiological drought. The drought treatment was the most influential variable affecting plant growth and relative water content, and genotype variability determined with what intensity varieties of winter wheat seedlings responded to water deficit. PEG-induced drought, as expected, changed phenomenological energy fluxes and the efficiency with which an electron is transferred to final PSI acceptors. Based on the effect size, fluorescence parameters were grouped to represent photochemical parameters, that is, the donor and acceptor side of PSII (PC1); the thermal phase of the photosynthetic process, or the electron flow around PSI, and the chain of electrons between PSII and PSI (PC2); and phenomenological energy fluxes per cross-section (PC3). Furthermore, four distinct clusters of genotypes were discerned based on their response to imposed physiological drought, and integrated analysis enabled an explanation of their reactions' specificity. The most reliable JIP-test parameters for detecting and comparing the drought impact among tested genotypes were the variable fluorescence at K, L, I step, and PITOT. To conclude, developing and improving screening methods for identifying and evaluating functional relationships of relevant characteristics that are useful for acclimation, acclimatization, and adaptation to different types of drought stress can contribute to the progress in breeding research of winter wheat drought-tolerant lines.
Collapse
Affiliation(s)
- Vesna Peršić
- Department of Biology, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Anita Ament
- Department of Biology, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | | | - Georg Drezner
- Department of Small Cereal Crops, Agricultural Institute Osijek, Osijek, Croatia
| | - Vera Cesar
- Department of Biology, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| |
Collapse
|
5
|
Zarattini M, Choaibi A, Magri S, Hermans C, Cannella D. The oxidized cellooligosaccharides confer thermotolerance in Arabidopsis by priming ethylene via heat shock factor A2. PHYSIOLOGIA PLANTARUM 2022; 174:e13737. [PMID: 35717612 DOI: 10.1111/ppl.13737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/08/2022] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
Global climate change, especially heatwaves and aridity, is a major threat to agricultural production and food security. This requires common efforts from the scientific community to find effective solutions to better understand and protect the plant's vulnerabilities to high temperatures. The current study demonstrates the potential of cellooligosaccharides (COS), which are native and oxidized signaling molecules released by lytic polysaccharide monooxygenases (LPMO) enzymes during cell wall degradation by microbial pathogens. The extracellular perception of COS leads to the activation of damage-triggered immunity, often protecting the plant against biotic stress. However, how these signaling molecules affect abiotic stress tolerance is poorly understood. Here, we show that native COS and oxidized COS (oxiCOS) perception increase the transcript levels of several HEAT SHOCK FACTORS (HSFs) and HEAT SHOCK PROTEINS (HSPs) genes in Arabidopsis plants. However, only oxiCOS treatment triggers ethylene priming and increases thermotolerance. Furthermore, the function of the transcription factor HSFA2 is required for these processes. Altogether, our results indicate that the perception of Damage-Associated Molecular Patterns (DAMPs) may improve tolerance to adverse abiotic conditions, like exposure to high temperatures.
Collapse
Affiliation(s)
- Marco Zarattini
- PhotoBiocatalysis Unit-Crop Production and Biostimulation Laboratory, Université libre de Bruxelles, Brussels, Belgium
| | - Ali Choaibi
- PhotoBiocatalysis Unit-Crop Production and Biostimulation Laboratory, Université libre de Bruxelles, Brussels, Belgium
| | - Silvia Magri
- PhotoBiocatalysis Unit-Crop Production and Biostimulation Laboratory, Université libre de Bruxelles, Brussels, Belgium
| | - Christian Hermans
- PhotoBiocatalysis Unit-Crop Production and Biostimulation Laboratory, Université libre de Bruxelles, Brussels, Belgium
| | - David Cannella
- PhotoBiocatalysis Unit-Crop Production and Biostimulation Laboratory, Université libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
6
|
Qureshi MK, Gawroński P, Munir S, Jindal S, Kerchev P. Hydrogen peroxide-induced stress acclimation in plants. Cell Mol Life Sci 2022; 79:129. [PMID: 35141765 PMCID: PMC11073338 DOI: 10.1007/s00018-022-04156-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 02/06/2023]
Abstract
Among all reactive oxygen species (ROS), hydrogen peroxide (H2O2) takes a central role in regulating plant development and responses to the environment. The diverse role of H2O2 is achieved through its compartmentalized synthesis, temporal control exerted by the antioxidant machinery, and ability to oxidize specific residues of target proteins. Here, we examine the role of H2O2 in stress acclimation beyond the well-studied transcriptional reprogramming, modulation of plant hormonal networks and long-distance signalling waves by highlighting its global impact on the transcriptional regulation and translational machinery.
Collapse
Affiliation(s)
- Muhammad Kamran Qureshi
- Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Bosan road, Multan, 60800, Pakistan
| | - Piotr Gawroński
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw, University of Life Sciences, Nowoursynowska 159, 02-776, Warsaw, Poland
| | - Sana Munir
- Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Bosan road, Multan, 60800, Pakistan
| | - Sunita Jindal
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 3, 613 00, Brno, Czech Republic
| | - Pavel Kerchev
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 3, 613 00, Brno, Czech Republic.
| |
Collapse
|
7
|
Mahmoud LM, Huyck PJ, Vincent CI, Gmitter FG, Grosser JW, Dutt M. Physiological Responses and Gene Expression Patterns in Open-Pollinated Seedlings of a Pummelo-Mandarin Hybrid Rootstock Exposed to Salt Stress and Huanglongbing. PLANTS 2021; 10:plants10071439. [PMID: 34371641 PMCID: PMC8309399 DOI: 10.3390/plants10071439] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 07/08/2021] [Accepted: 07/09/2021] [Indexed: 02/04/2023]
Abstract
Huanglongbing (HLB), caused by the phloem-limited bacterium Candidatus Liberibacter asiaticus (CaLas), is the primary biotic stress causing significant economic damage to the global citrus industry. Among the abiotic stresses, salinity affects citrus production worldwide, especially in arid and coastal regions. In this study, we evaluated open-pollinated seedlings of the S10 (a diploid rootstock produced from a cross between two siblings of the Hirado Buntan Pink pummelo (Citrus maxima (Burm.) Merr.) with the Shekwasha mandarin (Citrus reticulata Blanco)) for their ability to tolerate HLB and salinity stresses. In a greenhouse study, ‘Valencia’ sweet orange (either HLB-positive or negative) was grafted onto six clonally propagated lines generated from the screened seedlings in the greenhouse and the trees were irrigated with 150 mM NaCl after eight months of successful grafting and detection of CaLas in the leaf petioles. Cleopatra mandarin was used as a salt-tolerant and HLB-sensitive rootstock control. CaLas infection was monitored using a quantitative polymerase chain reaction before and after NaCl treatments. Following three months of NaCl treatment, ‘Valencia’ leaves on the S10 rootstock seedlings recorded lower levels of chlorophyll content compared to Cleopatra under similar conditions. Malondialdehyde content was higher in HLB-infected ‘Valencia’ grafted onto Cleopatra than in the S10 lines. Several plant defense-related genes were significantly upregulated in the S10 lines. Antioxidant and Na+ co-transporter genes were differentially regulated in these lines. Based on our results, selected S10 lines have potential as salt-tolerant rootstocks of ‘Valencia’ sweet orange under endemic HLB conditions. However, it is necessary to propagate selected lines through tissue culture or cuttings because of the high percentage of zygotic seedlings derived from S10.
Collapse
Affiliation(s)
- Lamiaa M. Mahmoud
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850, USA; (L.M.M.); (P.J.H.); (C.I.V.); (F.G.G.J.); (J.W.G.)
- Pomology Department, Faculty of Agriculture, Mansoura University, Mansoura 35516, Egypt
| | - Patrick J. Huyck
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850, USA; (L.M.M.); (P.J.H.); (C.I.V.); (F.G.G.J.); (J.W.G.)
| | - Christopher I. Vincent
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850, USA; (L.M.M.); (P.J.H.); (C.I.V.); (F.G.G.J.); (J.W.G.)
| | - Frederick G. Gmitter
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850, USA; (L.M.M.); (P.J.H.); (C.I.V.); (F.G.G.J.); (J.W.G.)
| | - Jude W. Grosser
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850, USA; (L.M.M.); (P.J.H.); (C.I.V.); (F.G.G.J.); (J.W.G.)
| | - Manjul Dutt
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850, USA; (L.M.M.); (P.J.H.); (C.I.V.); (F.G.G.J.); (J.W.G.)
- Correspondence:
| |
Collapse
|
8
|
Priming Strategies for Benefiting Plant Performance under Toxic Trace Metal Exposure. PLANTS 2021; 10:plants10040623. [PMID: 33805922 PMCID: PMC8064369 DOI: 10.3390/plants10040623] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 11/25/2022]
Abstract
Combating environmental stress related to the presence of toxic elements is one of the most important challenges in plant production. The majority of plant species suffer from developmental abnormalities caused by an exposure to toxic concentrations of metals and metalloids, mainly Al, As, Cd, Cu, Hg, Ni, Pb, and Zn. However, defense mechanisms are activated with diverse intensity and efficiency. Enhancement of defense potential can be achieved though exogenously applied treatments, resulting in a higher capability of surviving and developing under stress and become, at least temporarily, tolerant to stress factors. In this review, I present several already recognized as well as novel methods of the priming process called priming, resulting in the so-called “primed state” of the plant organism. Primed plants have a higher capability of surviving and developing under stress, and become, at least temporarily, tolerant to stress factors. In this review, several already recognized as well as novel methods of priming plants towards tolerance to metallic stress are discussed, with attention paid to similarities in priming mechanisms activated by the most versatile priming agents. This knowledge could contribute to the development of priming mixtures to counteract negative effects of multi-metallic and multi-abiotic stresses. Presentation of mechanisms is complemented with information on the genes regulated by priming towards metallic stress tolerance. Novel compounds and techniques that can be exploited in priming experiments are also summarized.
Collapse
|
9
|
Salinity-Induced Physiological Responses of Three Putative Salt Tolerant Citrus Rootstocks. HORTICULTURAE 2020. [DOI: 10.3390/horticulturae6040090] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Our study aimed to evaluate the physiological responses following salinity treatment of three putatively salt-tolerant Citrus rootstocks recently developed by the University of Florida’s Citrus breeding program. Four-month-old seedlings from each of the three rootstocks (HS1, HS17, and HC15) were irrigated with 0, 60, 80, and 100 mm NaCl solution. The seedlings were evaluated together with the salt-tolerant Cleopatra mandarin as a positive control, Volkamer lemon as a moderately salt-tolerant rootstock, and the salt-sensitive Carrizo rootstock as a negative control. Our results demonstrated that chlorophyll content, net CO2 assimilation rate (A), transpiration rate (E), and stomatal conductance (gsw) significantly decreased in response to salinity. Na+ and Cl− levels were higher in leaf tissues than in the roots. Relatively little damage to the cellular membrane was recorded in HC15 and Cleopatra rootstocks under the 100 mm NaCl treatment, along with high accumulation of total phenolic content (TPC), while HS17 had the highest proline levels. Our results indicate that HC15 and HS17 rootstocks exhibited salt tolerance capacity via different strategies under salt stress and could be suitable replacements to the commercially available, salt-tolerant Cleopatra rootstock.
Collapse
|
10
|
Sade N, Peleg Z. Future challenges for global food security under climate change. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 295:110467. [PMID: 32534610 DOI: 10.1016/j.plantsci.2020.110467] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Affiliation(s)
- Nir Sade
- School of Plant Sciences and Food Security, Tel Aviv University, Israel.
| | - Zvi Peleg
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Israel.
| |
Collapse
|