1
|
Xie L, Li X, Yao P, Cheng Z, Cai M, Liu C, Wang Z, Gao J. Alternative Splicing of PheNAC23 from Moso Bamboo Impacts Flowering Regulation and Drought Tolerance in Transgenic Arabidopsis. PLANTS (BASEL, SWITZERLAND) 2024; 13:3452. [PMID: 39683245 DOI: 10.3390/plants13233452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/06/2024] [Accepted: 12/07/2024] [Indexed: 12/18/2024]
Abstract
NAC (NAM, ATAF, and CUC) transcription factors are essential in regulating plant stress response and senescence, with their functions being modulated by alternative splicing. The molecular mechanisms of stress-induced premature flowering and drought tolerance in Phyllostachys edulis (moso bamboo) are not yet fully understood. In this study, a novel NAC variant derived from PheNAC23, named PheNAC23ES, was isolated. PheNAC23ES exhibited distinct expression patterns compared to PheNAC23 during leaf senescence and drought stress response. Overexpression of PheNAC23 promoted flowering and reduced its tolerance to drought stress in Arabidopsis thaliana (A. thaliana). However, overexpression of PheNAC23ES exhibited the opposite functions. PheNAC23 was localized in the nucleus and had transactivation activity, while PheNAC23ES had a similar localization to the control green fluorescent protein and no transactivation activity. Further functional analysis revealed that PheNAC23ES could interact with PheNAC23, suggesting that PheNAC23ES might serve as a small interfering peptide that affects the function of PheNAC23 by binding to it.
Collapse
Affiliation(s)
- Lihua Xie
- Henan Key Laboratory of Germplasm Innovation and Utilization of Eco-Economic Woody Plant, Pingdingshan University, Pingdingshan 467000, China
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, International Center for Bamboo and Rattan, Beijing 100102, China
| | - Xiangyu Li
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, International Center for Bamboo and Rattan, Beijing 100102, China
- State Key Laboratory of Subtropical Silviculture/Bamboo Industry Institute, Zhejiang A&F University, Hangzhou 310000, China
| | - Pengqiang Yao
- Henan Key Laboratory of Germplasm Innovation and Utilization of Eco-Economic Woody Plant, Pingdingshan University, Pingdingshan 467000, China
| | - Zhanchao Cheng
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, International Center for Bamboo and Rattan, Beijing 100102, China
| | - Miaomiao Cai
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, International Center for Bamboo and Rattan, Beijing 100102, China
| | - Chunyang Liu
- Henan Key Laboratory of Germplasm Innovation and Utilization of Eco-Economic Woody Plant, Pingdingshan University, Pingdingshan 467000, China
| | - Zhe Wang
- Henan Key Laboratory of Germplasm Innovation and Utilization of Eco-Economic Woody Plant, Pingdingshan University, Pingdingshan 467000, China
| | - Jian Gao
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, International Center for Bamboo and Rattan, Beijing 100102, China
| |
Collapse
|
2
|
Fan K, Wu Y, Mao Z, Yin K, He Y, Pan X, Zhu X, Liao C, Cui L, Jia Q, Li Z. A novel NAC transcription factor ZmNAC55 negatively regulates drought stress in Zea mays. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 214:108938. [PMID: 39067103 DOI: 10.1016/j.plaphy.2024.108938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/23/2024] [Accepted: 07/12/2024] [Indexed: 07/30/2024]
Abstract
Drought stress is a major limit on the maize growth and productivity, and understanding the drought response mechanism is one of the important ways to improve drought resistance in maize. However, more drought-related genes and their regulated mechanisms are still to be reported. Here, we identified a novel NAC transcription factor ZmNAC55 in Zea mays and comprehensively investigated the functions of ZmNAC55 under drought stress. ZmNAC55 belonged to the NAP subfamily. ZmNAC55 had a conserved NAC domain in the N-terminal region and a divergent TAR region in the C-terminal region. ZmNAC55 was a nuclear protein, and ZmNAC55 and its TAR region had the transcriptional activation activity. Furthermore, the expression level of ZmNAC55 in leaves could be highly induced by drought stress. ZmNAC55 overexpression in Arabidopsis conferred the drought-sensitive phenotype with higher water loss, lower survival rate, higher membrane ion leakage, and higher expression levels of some drought-related genes. Meanwhile, ZmNAC55 underexpression in maize enhanced drought tolerance with lower water loss, higher survival rate, lower membrane ion leakage and lower expression levels of some drought-related genes. In addition, ZmNAC55 appeared to be very key in regulating ROS production under drought stress. Moreover, ZmNAC55 could activate ZmHOP3 expression by binding to its promoter. A novel working model of ZmNAC55 under drought stress could be found in maize. Taken together, the NAC transcription factor ZmNAC55 could negatively regulate drought stress via increasing ZmHOP3 expression in maize. ZmNAC55 is a promising candidate for improving drought resistance in maize.
Collapse
Affiliation(s)
- Kai Fan
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Key Laboratory of Biological Breeding for Fujian and Taiwan Crops, Ministry of Agriculture and Rural Affairs, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yuchen Wu
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Key Laboratory of Biological Breeding for Fujian and Taiwan Crops, Ministry of Agriculture and Rural Affairs, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhijun Mao
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Key Laboratory of Biological Breeding for Fujian and Taiwan Crops, Ministry of Agriculture and Rural Affairs, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Kan Yin
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Key Laboratory of Biological Breeding for Fujian and Taiwan Crops, Ministry of Agriculture and Rural Affairs, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yuxi He
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Key Laboratory of Biological Breeding for Fujian and Taiwan Crops, Ministry of Agriculture and Rural Affairs, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xinfeng Pan
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Key Laboratory of Biological Breeding for Fujian and Taiwan Crops, Ministry of Agriculture and Rural Affairs, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiaxiao Zhu
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Key Laboratory of Biological Breeding for Fujian and Taiwan Crops, Ministry of Agriculture and Rural Affairs, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Changjian Liao
- Crop Research Institute, Fujian Academy of Agricultural Sciences/Technical Research Center of Dry Crop Variety Breeding in Fujian Province, Fuzhou, 350013, China
| | - Lili Cui
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350018, China.
| | - Qi Jia
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Key Laboratory of Biological Breeding for Fujian and Taiwan Crops, Ministry of Agriculture and Rural Affairs, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Zhaowei Li
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Key Laboratory of Biological Breeding for Fujian and Taiwan Crops, Ministry of Agriculture and Rural Affairs, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
3
|
Hazra A, Pal A, Kundu A. Alternative splicing shapes the transcriptome complexity in blackgram [Vigna mungo (L.) Hepper]. Funct Integr Genomics 2023; 23:144. [PMID: 37133618 DOI: 10.1007/s10142-023-01066-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/18/2023] [Accepted: 04/20/2023] [Indexed: 05/04/2023]
Abstract
Vigna mungo, a highly consumed crop in the pan-Asian countries, is vulnerable to several biotic and abiotic stresses. Understanding the post-transcriptional gene regulatory cascades, especially alternative splicing (AS), may underpin large-scale genetic improvements to develop stress-resilient varieties. Herein, a transcriptome based approach was undertaken to decipher the genome-wide AS landscape and splicing dynamics in order to establish the intricacies of their functional interactions in various tissues and stresses. RNA sequencing followed by high-throughput computational analyses identified 54,526 AS events involving 15,506 AS genes that generated 57,405 transcripts isoforms. Enrichment analysis revealed their involvement in diverse regulatory functions and demonstrated that transcription factors are splicing-intensive, splice variants of which are expressed differentially across tissues and environmental cues. Increased expression of a splicing regulator NHP2L1/SNU13 was found to co-occur with lower intron retention events. The host transcriptome is significantly impacted by differential isoform expression of 1172 and 765 AS genes that resulted in 1227 (46.8% up and 53.2% downregulated) and 831 (47.5% up and 52.5% downregulated) transcript isoforms under viral pathogenesis and Fe2+ stressed condition, respectively. However, genes experiencing AS operate differently from the differentially expressed genes, suggesting AS is a unique and independent mode of regulatory mechanism. Therefore, it can be inferred that AS mediates a crucial regulatory role across tissues and stressful situations and the results would provide an invaluable resource for future endeavours in V. mungo genomics.
Collapse
Affiliation(s)
- Anjan Hazra
- Agricultural and Ecological Research Unit, Indian Statistical Institute, 203, B. T. Road, Kolkata, 700108, India
- Department of Genetics, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, India
| | - Amita Pal
- Division of Plant Biology, Bose Institute, Kolkata, 700091, India.
| | - Anirban Kundu
- Plant Genomics and Bioinformatics Laboratory, P.G. Department of Botany, Ramakrishna Mission Vivekananda Centenary College (Autonomous), Rahara, Kolkata, 700118, India.
| |
Collapse
|
4
|
Liu X, Zong X, Wu X, Liu H, Han J, Yao Z, Ren Y, Ma L, Wang B, Zhang H. Ectopic expression of NAC transcription factor HaNAC3 from Haloxylon ammodendron increased abiotic stress resistance in tobacco. PLANTA 2022; 256:105. [PMID: 36315282 DOI: 10.1007/s00425-022-04021-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
HaNAC3 is a transcriptional activator located in the nucleus that may be involved in the response to high temperature, high salt and drought stresses as well as phytohormone IAA and ABA treatments. Our study demonstrated that HaNAC3 increased the tolerance of transgenic tobacco to abiotic stress and was involved in the regulation of a range of downstream genes and metabolic pathways. This also indicates the potential application of HaNAC3 as a plant tolerance gene. NAC transcription factors play a key role in plant growth and development and plant responses to biotic and abiotic stresses. However, the biological functions of NAC transcription factors in the desert plant Haloxylon ammodendron are still poorly understood. In this study, the NAC transcription factor HaNAC3 was isolated and cloned from a typical desert plant H. ammodendron, and its possible biological functions were investigated. Bioinformatics analysis showed that HaNAC3 has the unique N-terminal NAC structural domain of NAC transcription factor. Quantitative real-time fluorescence analysis showed that HaNAC3 was able to participate in the response to simulated drought, high temperature, high salt, and phytohormone IAA and ABA treatments, and was very sensitive to simulated high temperature and phytohormone ABA treatments. Subcellular localization analysis showed that the GFP-HaNAC3 fusion protein was localized in the nucleus of tobacco epidermal cells. The transcriptional self-activation assay showed that HaNAC3 had transcriptional self-activation activity, and the truncation assay confirmed that the transcriptional activation activity was located at the C-terminus. HaNAC3 gene was expressed exogenously in wild-type Nicotiana benthamiana, and the physiological function of HaNAC3 was verified by simulating drought and other abiotic stresses. The results indicated that transgenic tobacco had better resistance to abiotic stresses than wild-type B. fuminata. Further transcriptome analysis showed that HaNAC3 was involved in the regulation of a range of downstream resistance genes, wax biosynthesis and other metabolic pathways. These results suggest that HaNAC3 may have a stress resistance role in H. ammodendron and has potential applications in plant molecular breeding.
Collapse
Affiliation(s)
- Xiashun Liu
- College of Life Science, Xinjiang Agricultural University, Ürümqi, China
| | - Xingfeng Zong
- College of Life Science, Xinjiang Agricultural University, Ürümqi, China
| | - Xia Wu
- College of Life Science, Xinjiang Agricultural University, Ürümqi, China
| | - Hao Liu
- College of Life Science, Xinjiang Agricultural University, Ürümqi, China
| | - Jvdong Han
- College of Life Science, Xinjiang Agricultural University, Ürümqi, China
| | - Zhengpei Yao
- College of Life Science, Xinjiang Agricultural University, Ürümqi, China
| | - Yanping Ren
- College of Life Science, Xinjiang Agricultural University, Ürümqi, China
| | - Li Ma
- College of Life Science, Xinjiang Agricultural University, Ürümqi, China
| | - Bo Wang
- College of Life Science, Xinjiang Agricultural University, Ürümqi, China
| | - Hua Zhang
- College of Life Science, Xinjiang Agricultural University, Ürümqi, China.
- Arid Desert Research Institute, Ürümqi, China.
| |
Collapse
|
5
|
Yang S, Zhu H, Huang L, Zhang G, Wang L, Jiang X, Zhong Q. Transcriptome-wide and expression analysis of the NAC gene family in pepino ( Solanum muricatum) during drought stress. PeerJ 2021; 9:e10966. [PMID: 33850643 PMCID: PMC8015785 DOI: 10.7717/peerj.10966] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 01/28/2021] [Indexed: 11/20/2022] Open
Abstract
Solanum muricatum (Pepino) is an increasingly popular solanaceous crop and is tolerant of drought conditions. In this study, 71 NAC transcription factor family genes of S. muricatum were selected to provide a theoretical basis for subsequent in-depth study of their regulatory roles in the response to biological and abiotic stresses, and were subjected to whole-genome analysis. The NAC sequences obtained by transcriptome sequencing were subjected to bioinformatics prediction and analysis. Three concentration gradient drought stresses were applied to the plants, and the target gene sequences were analyzed by qPCR to determine their expression under drought stress. The results showed that the S. muricatum NAC family contains 71 genes, 47 of which have conserved domains. The protein sequence length, molecular weight, hydrophilicity, aliphatic index and isoelectric point of these transcription factors were predicted and analyzed. Phylogenetic analysis showed that the S. muricatum NAC gene family is divided into seven subfamilies. Some NAC genes of S. muricatum are closely related to the NAC genes of Solanaceae crops such as tomato, pepper and potato. The seedlings of S. muricatum were grown under different gradients of drought stress conditions and qPCR was used to analyze the NAC expression in roots, stems, leaves and flowers. The results showed that 13 genes did not respond to drought stress while 58 NAC genes of S. muricatum that responded to drought stress had obvious tissue expression specificity. The overall expression levels in the root were found to be high. The number of genes at extremely significant expression levels was very large, with significant polarization. Seven NAC genes with significant responses were selected to analyze their expression trend in the different drought stress gradients. It was found that genes with the same expression trend also had the same or part of the same conserved domain. Seven SmNACs that may play an important role in drought stress were selected for NAC amino acid sequence alignment of Solanaceae crops. Four had strong similarity to other Solanaceae NAC amino acid sequences, and SmNAC has high homology with the Solanum pennellii. The NAC transcription factor family genes of S. muricatum showed strong structural conservation. Under drought stress, the expression of NAC transcription factor family genes of S. muricatum changed significantly, which actively responded to and participated in the regulation process of drought stress, thereby laying foundations for subsequent in-depth research of the specific functions of NAC transcription factor family genes of S. muricatum.
Collapse
Affiliation(s)
- Shipeng Yang
- Qinghai Key Laboratory of Vegetable Genetics and Physiology, Agriculture and Forestry Sciences Institute of Qinghai University, Qinghai University, Xining, P.R. China
| | | | - Liping Huang
- Qinghai Key Laboratory of Vegetable Genetics and Physiology, Agriculture and Forestry Sciences Institute of Qinghai University, Qinghai University, Xining, P.R. China
| | - Guangnan Zhang
- Qinghai Key Laboratory of Vegetable Genetics and Physiology, Agriculture and Forestry Sciences Institute of Qinghai University, Qinghai University, Xining, P.R. China
| | - Lihui Wang
- Qinghai Key Laboratory of Vegetable Genetics and Physiology, Agriculture and Forestry Sciences Institute of Qinghai University, Qinghai University, Xining, P.R. China
| | - Xiaoting Jiang
- Qinghai Higher Vocational & Technical Institute, Ledu, P.R. China, Xining, China
| | - Qiwen Zhong
- Qinghai Key Laboratory of Vegetable Genetics and Physiology, Agriculture and Forestry Sciences Institute of Qinghai University, Qinghai University, Xining, P.R. China
| |
Collapse
|