1
|
Long Y, Zeng J, Yang M, Zhou X, Zeng M, Liu C, Tong Q, Zhou R, Liu X. Comparative transcriptome analysis to reveal key ethylene genes involved in a Lonicera macranthoides mutant. Genes Genomics 2023; 45:437-450. [PMID: 36694039 DOI: 10.1007/s13258-022-01354-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 12/15/2022] [Indexed: 01/26/2023]
Abstract
BACKGROUND Lonicera macranthoides Hand.-Mazz. is an important medicinal plant. Xianglei-type (XL) L. macranthoides was formed after many years of cultivation by researchers on the basis of the natural mutant. The corolla of L. macranthoides XL remains unexpanded and its flowering period is nearly three times longer than that of wild-type (WT) plants. However, the molecular mechanism behind this desirable trait remains a mystery. OBJECTIVE To understand the floral phenotype differences between L. macranthoides and L. macranthoides XL at the molecular level. METHODS Transcriptome analysis was performed on L. macranthoides XL and WT. One DEG was cloned by RT-PCR amplification and selected for qRT-PCR analysis. RESULTS Transcriptome analysis showed that there were 5603 differentially expressed genes (DEGs) in XL vs. WT. Enrichment analysis of DEGs showed that pathways related to plant hormone signal transduction were significantly enriched. We identified 23 key genes in ethylene biosynthesis and signal transduction pathways. The most abundant were the ethylene biosynthesis DEGs. In addition, the open reading frames (ORFs) of WT and XL ETR2 were successfully cloned and named LM-ETR2 (GenBank: MW334978) and LM-XL-ETR2 (GenBank: MW334978), respectively. qRT-PCR at different flowering stages suggesting that ETR2 acts in the whole stage of flower development of WT and XL. CONCLUSIONS This study provides new insight into the molecular mechanism that regulates the development of special traits in the flowers of L. macranthoides XL. The plant hormone ethylene plays an important role in flower development and flowering duration prolongation in L. macranthoides. The ethylene synthesis gene could be more responsible for the flower phenotype of XL. The genes identified here can be used for breeding and improvement of other flowering plants after functional verification.
Collapse
Affiliation(s)
- YuQing Long
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
- Key Laboratory of Germplasm Resources and Standardized Planting of Hunan Large-Scale Genuine Medicinal Materials, Changsha, 410208, China
| | - Juan Zeng
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
- Key Laboratory of Germplasm Resources and Standardized Planting of Hunan Large-Scale Genuine Medicinal Materials, Changsha, 410208, China
| | - Min Yang
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
- Key Laboratory of Germplasm Resources and Standardized Planting of Hunan Large-Scale Genuine Medicinal Materials, Changsha, 410208, China
| | - XinRu Zhou
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
- Key Laboratory of Germplasm Resources and Standardized Planting of Hunan Large-Scale Genuine Medicinal Materials, Changsha, 410208, China
| | - Mei Zeng
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
- Key Laboratory of Germplasm Resources and Standardized Planting of Hunan Large-Scale Genuine Medicinal Materials, Changsha, 410208, China
| | - ChangYu Liu
- Hunan Chemical Vocational Technology College, Zhuzhou, 412000, China
| | - QiaoZhen Tong
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
- Key Laboratory of Germplasm Resources and Standardized Planting of Hunan Large-Scale Genuine Medicinal Materials, Changsha, 410208, China
- Key Laboratory of Modern Research of TCM, Education Department of Hunan Province, Changsha, 410208, China
| | - RiBao Zhou
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China.
- Key Laboratory of Germplasm Resources and Standardized Planting of Hunan Large-Scale Genuine Medicinal Materials, Changsha, 410208, China.
- Key Laboratory of Modern Research of TCM, Education Department of Hunan Province, Changsha, 410208, China.
| | - XiangDan Liu
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China.
- Key Laboratory of Germplasm Resources and Standardized Planting of Hunan Large-Scale Genuine Medicinal Materials, Changsha, 410208, China.
- Key Laboratory of Modern Research of TCM, Education Department of Hunan Province, Changsha, 410208, China.
| |
Collapse
|
2
|
Song M, Wang H, Fan Z, Huang H, Ma H. Advances in sequencing and key character analysis of mango ( Mangifera indica L.). HORTICULTURE RESEARCH 2023; 10:uhac259. [PMID: 37601702 PMCID: PMC10433700 DOI: 10.1093/hr/uhac259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 11/19/2022] [Indexed: 08/22/2023]
Abstract
Mango (Mangifera indica L.) is an important fruit crop in tropical and subtropical countries associated with many agronomic and horticultural problems, such as susceptibility to pathogens, including powdery mildew and anthracnose, poor yield and quality, and short shelf life. Conventional breeding techniques exhibit significant limitations in improving mango quality due to the characteristics of long ripening, self-incompatibility, and high genetic heterozygosity. In recent years, much emphasis has been placed on identification of key genes controlling a certain trait through genomic association analysis and directly breeding new varieties through transgene or genotype selection of offspring. This paper reviews the latest research progress on the genome and transcriptome sequencing of mango fruit. The rapid development of genome sequencing and bioinformatics provides effective strategies for identifying, labeling, cloning, and manipulating many genes related to economically important traits. Preliminary verification of the functions of mango genes has been conducted, including genes related to flowering regulation, fruit development, and polyphenol biosynthesis. Importantly, modern biotechnology can refine existing mango varieties to meet the market demand with high economic benefits.
Collapse
Affiliation(s)
- Miaoyu Song
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Haomiao Wang
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Zhiyi Fan
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Hantang Huang
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Huiqin Ma
- College of Horticulture, China Agricultural University, Beijing 100193, China
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100083, China
| |
Collapse
|