1
|
Panchal P, Bhatia C, Chen Y, Sharma M, Bhadouria J, Verma L, Maurya K, Miller AJ, Giri J. A citrate efflux transporter important for manganese distribution and phosphorus uptake in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:1748-1765. [PMID: 37715733 DOI: 10.1111/tpj.16463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 08/26/2023] [Accepted: 09/01/2023] [Indexed: 09/18/2023]
Abstract
The plant citrate transporters, functional in mineral nutrient uptake and homeostasis, usually belong to the multidrug and toxic compound extrusion transporter family. We identified and functionally characterized a rice (Oryza sativa) citrate transporter, OsCT1, which differs from known plant citrate transporters and is structurally close to rice silicon transporters. Domain analysis depicted that OsCT1 carries a bacterial citrate-metal transporter domain, CitMHS. OsCT1 showed citrate efflux activity when expressed in Xenopus laevis oocytes and is localized to the cell plasma membrane. It is highly expressed in the shoot and reproductive tissues of rice, and its promoter activity was visible in cells surrounding the vasculature. The OsCT1 knockout (KO) lines showed a reduced citrate content in the shoots and the root exudates, whereas overexpression (OE) line showed higher citrate exudation from their roots. Further, the KO and OE lines showed variations in the manganese (Mn) distribution leading to changes in their agronomical traits. Under deficient conditions (Mn-sufficient conditions followed by 8 days of 0 μm MnCl2 · 4H2 O treatment), the supply of manganese towards the newer leaf was found to be obstructed in the KO line. There were no significant differences in phosphorus (P) distribution; however, P uptake was reduced in the KO and increased in OE lines at the vegetative stage. Further, experiments in Xenopus oocytes revealed that OsCT1 could efflux citrate with Mn. In this way, we provide insights into a mechanism of citrate-metal transport in plants and its role in mineral homeostasis, which remains conserved with their bacterial counterparts.
Collapse
Affiliation(s)
- Poonam Panchal
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Chitra Bhatia
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Yi Chen
- Biochemistry and Metabolism Department, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Meenakshi Sharma
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Jyoti Bhadouria
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Lokesh Verma
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Kanika Maurya
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Anthony J Miller
- Biochemistry and Metabolism Department, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Jitender Giri
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| |
Collapse
|
2
|
Vineeth T, Krishna G, Pandesha P, Sathee L, Thomas S, James D, Ravikiran K, Taria S, John C, Vinaykumar N, Lokeshkumar B, Jat H, Bose J, Camus D, Rathor S, Krishnamurthy S, Sharma P. Photosynthetic machinery under salinity stress: Trepidations and adaptive mechanisms. PHOTOSYNTHETICA 2023; 61:73-93. [PMID: 39650121 PMCID: PMC11515832 DOI: 10.32615/ps.2023.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 01/06/2023] [Indexed: 12/11/2024]
Abstract
Chloroplasts and photosynthesis are the physiologically fateful arenas of salinity stress. Morphological and anatomical alterations in the leaf tissue, ultrastructural changes in the chloroplast, compromise in the integrity of the three-layered chloroplast membrane system, and defects in the light and dark reactions during the osmotic, ionic, and oxidative phases of salt stress are conversed in detail to bring the salinity-mediated physiological alterations in the chloroplast on to a single platform. Chloroplasts of salt-tolerant plants have evolved highly regulated salt-responsive pathways. Thylakoid membrane remodeling, ion homeostasis, osmoprotection, upregulation of chloroplast membrane and stromal proteins, chloroplast ROS scavenging, efficient retrograde signalling, and differential gene and metabolite abundance are the key attributes of optimal photosynthesis in tolerant species. This review throws light into the comparative mechanism of chloroplast and photosynthetic response to salinity in sensitive and tolerant plant species.
Collapse
Affiliation(s)
- T.V. Vineeth
- Indian Council of Agricultural Research-Central Soil Salinity Research Institute (ICAR-CSSRI), Regional Research Station (RRS), 392 012 Bharuch, Gujarat, India
- Indian Council of Agricultural Research-Central Soil Salinity Research Institute (ICAR-CSSRI), 132 001 Karnal, Haryana, India
- Department of Plant Physiology, Kerala Agricultural University-College of Agriculture, 680 656 Thrissur, Kerala, India
| | - G.K. Krishna
- Department of Plant Physiology, Kerala Agricultural University-College of Agriculture, 680 656 Thrissur, Kerala, India
| | - P.H. Pandesha
- Division of Plant Physiology, Indian Council of Agricultural Research-Indian Agricultural Research Institute (ICAR-IARI), 110 012 New Delhi, India
| | - L. Sathee
- Division of Plant Physiology, Indian Council of Agricultural Research-Indian Agricultural Research Institute (ICAR-IARI), 110 012 New Delhi, India
| | - S. Thomas
- Department of Plant Physiology, Kerala Agricultural University-Regional Agricultural Research Station, 686 563 Kumarakom, Kerala, India
| | - D. James
- Forest Genetics and Biotechnology Division, KSCSTE-Kerala Forest Research Institute, Peechi, 680 653 Thrissur, Kerala, India
| | - K.T. Ravikiran
- Indian Council of Agricultural Research-Central Soil Salinity Research Institute (ICAR-CSSRI), 132 001 Karnal, Haryana, India
- Indian Council of Agricultural Research-Central Soil Salinity Research Institute (ICAR-CSSRI), Regional Research Station (RRS), 226 002 Lucknow, Uttar Pradesh, India
| | - S. Taria
- Division of Plant Physiology, Indian Council of Agricultural Research-Indian Agricultural Research Institute (ICAR-IARI), 110 012 New Delhi, India
- Indian Council of Agricultural Research-Central Agroforestry Research Institute (ICAR-CAFRI), 284 003 Jhansi, Uttar Pradesh, India
| | - C. John
- School of Natural Resource Management, Central Agricultural University-College of Post Graduate Studies in Agricultural Sciences (CAU), 793 103 Umiam, Meghalaya, India
| | - N.M. Vinaykumar
- Department of Biotechnology, Kuvempu University, Shankaraghatta, 577 451 Shivamogga, Karnataka, India
| | - B.M. Lokeshkumar
- Indian Council of Agricultural Research-Central Soil Salinity Research Institute (ICAR-CSSRI), 132 001 Karnal, Haryana, India
| | - H.S. Jat
- Indian Council of Agricultural Research-Central Soil Salinity Research Institute (ICAR-CSSRI), 132 001 Karnal, Haryana, India
| | - J. Bose
- School of Science, Western Sydney University, Penrith NSW, 275 1, Australia
| | - D. Camus
- Indian Council of Agricultural Research-Central Soil Salinity Research Institute (ICAR-CSSRI), Regional Research Station (RRS), 392 012 Bharuch, Gujarat, India
- Indian Council of Agricultural Research-Central Soil Salinity Research Institute (ICAR-CSSRI), 132 001 Karnal, Haryana, India
| | - S. Rathor
- Indian Council of Agricultural Research-Central Soil Salinity Research Institute (ICAR-CSSRI), 132 001 Karnal, Haryana, India
| | - S.L. Krishnamurthy
- Indian Council of Agricultural Research-Central Soil Salinity Research Institute (ICAR-CSSRI), 132 001 Karnal, Haryana, India
| | - P.C. Sharma
- Indian Council of Agricultural Research-Central Soil Salinity Research Institute (ICAR-CSSRI), 132 001 Karnal, Haryana, India
| |
Collapse
|
3
|
Zhu L, Yang J, Zhang Y, Hu H, Cui J, Xue J, Xu J. Overexpression of CfICE1 from Cryptomeria fortunei Enhances Cold, Drought and Salt Stress in Poplar. Int J Mol Sci 2022; 23:ijms232315214. [PMID: 36499538 PMCID: PMC9736380 DOI: 10.3390/ijms232315214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/21/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
ICE1, a regulator of the cold-inducible transcriptome and freezing tolerance, is currently widely believed to be involved in plant resistance to cold stress. In this study, CfICE1 from Cryptomeria fortunei was transformed into poplar. Physiological indicators of transgenic, empty vector and wild-type poplar after abiotic stress (cold, drought and salt) were determined. Transgenic lines had a higher chlorophyll content, antioxidant enzyme activity and soluble protein content, as well as a lower malondialdehyde and hydrogen peroxide content. The ultrastructure of the plant was observed by transmission electron microscopy, and after stress, the cell structure of the transgenic line was more complete than that of the wild type. CfICE1 was upregulated in transgenic poplar trees after abiotic stress (cold, drought and salt). The CfICE1 transgenic plants improved plant resistance by regulating the CBF gene of poplar under cold and salt stress. In terms of plant responses to abiotic stress, this study showed that overexpression of CfICE1 improved the cold, drought and salt tolerance of poplars.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jin Xu
- Correspondence: ; Tel.: +86-138-1383-1609
| |
Collapse
|
4
|
Zahra N, Al Hinai MS, Hafeez MB, Rehman A, Wahid A, Siddique KHM, Farooq M. Regulation of photosynthesis under salt stress and associated tolerance mechanisms. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 178:55-69. [PMID: 35276596 DOI: 10.1016/j.plaphy.2022.03.003] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/12/2022] [Accepted: 03/03/2022] [Indexed: 05/24/2023]
Abstract
Photosynthesis is crucial for the survival of all living biota, playing a key role in plant productivity by generating the carbon skeleton that is the primary component of all biomolecules. Salinity stress is a major threat to agricultural productivity and sustainability as it can cause irreversible damage to photosynthetic apparatus at any developmental stage. However, the capacity of plants to become photosynthetically active under adverse saline conditions remains largely untapped. This study addresses this discrepancy by exploring the current knowledge on the impact of salinity on chloroplast operation, metabolism, chloroplast ultrastructure, and leaf anatomy, and highlights the dire consequences for photosynthetic machinery and stomatal conductance. We also discuss enhancing photosynthetic capacity by modifying and redistributing electron transport between photosystems and improving photosystem stability using genetic approaches, beneficial microbial inoculations, and root architecture changes to improve salt stress tolerance under field conditions. Understanding chloroplast operations and molecular engineering of photosynthetic genes under salinity stress will pave the way for developing salt-tolerant germplasm to ensure future sustainability by rehabilitating saline areas.
Collapse
Affiliation(s)
- Noreen Zahra
- Department of Botany, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Marwa Sulaiman Al Hinai
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khoud 123, Oman
| | | | - Abdul Rehman
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, 63100, Bahawalpur, Pakistan
| | - Abdul Wahid
- Department of Botany, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Kadambot H M Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, 6001, Australia
| | - Muhammad Farooq
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khoud 123, Oman; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, 6001, Australia.
| |
Collapse
|
5
|
Jiang W, Pan R, Buitrago S, Wu C, Abou-Elwafa SF, Xu Y, Zhang W. Conservation and divergence of the TaSOS1 gene family in salt stress response in wheat ( Triticum aestivum L.). PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:1245-1260. [PMID: 34177146 PMCID: PMC8212347 DOI: 10.1007/s12298-021-01009-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 05/09/2021] [Accepted: 05/18/2021] [Indexed: 05/09/2023]
Abstract
UNLABELLED Salinity is one of the most important problems that adversely affect crops growth, productivity and quality worldwide. Salt Overly Sensitive 1 (SOS1) gene family plays vital roles in plant response to salt stress. Herein, we report the identification of the SOS family in wheat and the exploration of the expression profiles of SOSs under salt stress. Complete genome sequences of T. aestivum were downloaded from Ensembl plant database. Conservation and divergence of TaSOS1 family were conducted by using phylogenetic tree, gene structure and synteny distribution analysis. Expression profiles of TaSOS1s were obtained based on transcriptome and qRT-PCR analysis. Totally, 119 TaSOS1 proteins in wheat were identified at the genome-wide level and classified into three groups. Six motifs were conserved in TaSOS1 gene family. Moreover, 25 TaSOS1 genes had three copies distributing in three sub-genomes (A, B and D). A total of 32, 28 and 29 TaSOS1 genes were located on the sub-genomes A, B and D, respectively. Moreover, there were 19, 12, 6, 7, 28, 5 and 12 genes located on the three homologous of chromosomes 1, 2, 3, 4, 5, 6 and 7, respectively. Two genes were mapped to unattributed scaffolds. The duplication events analysis indicated that tandem repeats contributed to the expansion of the SOS1 family in wheat. Collinearity analysis demonstrated that segmental duplications play an important role in the expansion of SOS1 members. Chromosome 7, 5, 3, and 2 showed collinear relationship. Tissue specific expression pattern analysis revealed that 41 TaSOS1 genes expressed in various tissues, such as root, shoot, leaf, spike and grain. Transcriptomic analysis revealed that 28 and 26 genes were up- and down-regulated under salinity stress, respectively, of which 18 genes were further confirmed by RT-qPCR. The plants with high expression level of these genes displayed higher tolerance to salinity stress, stronger root system, higher Fv/Fm value and water potential. The results could be helpful for further elucidating the molecular mechanism of TaSOS1 related to salt tolerance in wheat and provide a toolkit for improving the salinity tolerance of wheat. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-021-01009-y.
Collapse
Affiliation(s)
- Wei Jiang
- Hubei Collaborative Innovation Center for Grain Industry/Engineering Research Centre of Ecology and Agricultural Use of Wetland, Ministry of Education, Yangtze University, Jingzhou, 434025 China
| | - Rui Pan
- Hubei Collaborative Innovation Center for Grain Industry/Engineering Research Centre of Ecology and Agricultural Use of Wetland, Ministry of Education, Yangtze University, Jingzhou, 434025 China
| | - Sebastian Buitrago
- Hubei Collaborative Innovation Center for Grain Industry/Engineering Research Centre of Ecology and Agricultural Use of Wetland, Ministry of Education, Yangtze University, Jingzhou, 434025 China
| | - Chu Wu
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025 China
| | | | - Yanhao Xu
- Hubei Collaborative Innovation Center for Grain Industry/Engineering Research Centre of Ecology and Agricultural Use of Wetland, Ministry of Education, Yangtze University, Jingzhou, 434025 China
| | - Wenying Zhang
- Hubei Collaborative Innovation Center for Grain Industry/Engineering Research Centre of Ecology and Agricultural Use of Wetland, Ministry of Education, Yangtze University, Jingzhou, 434025 China
| |
Collapse
|