1
|
Ao Y, Wu Q, Zheng J, Zhang C, Zhao Y, Xu R, Xue K, Dai C, Yang M. Building the physiological barrier: Suberin plasticity in response to environmental stimuli. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 350:112300. [PMID: 39442632 DOI: 10.1016/j.plantsci.2024.112300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 10/07/2024] [Accepted: 10/20/2024] [Indexed: 10/25/2024]
Abstract
In response to environmental changes, plant roots undergo two major differentiations: the formation of the Casparian strip and the suberin lamella, both of them are widely recognized as an apoplastic diffusion barrier for nutrient and water exchange between the soil and the root vascular bundle. Suberin is a complex biopolyester composed of glycerol esters and phenolic compounds deposited in the cell walls of specific tissues such as endodermis, exodermis, periderm, seed coat and other marginal tissues. Recently, significant progress has been made due to the development of biochemical and genetic techniques. In this review, we not only summarize the aspect of suberin biosynthesis, transport and polymerization, but also elucidate the molecular mechanisms regarding its regulatory network, as well as its adaptive role in abiotic or biotic stress. This will provide important theoretical references for improving crop growth by modifying their adaptive root suberin structure when exposed to environmental changes.
Collapse
Affiliation(s)
- Yan Ao
- Suzhou Chien-Shiung Institute of Technology, Suzhou 215411, China
| | - Qi Wu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Jiqing Zheng
- Suzhou Chien-Shiung Institute of Technology, Suzhou 215411, China
| | - Chi Zhang
- Shanghai Lixin University of Accounting and Finance, Shanghai 200032, China
| | - Yu Zhao
- Suzhou Chien-Shiung Institute of Technology, Suzhou 215411, China
| | - Rugen Xu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Kaili Xue
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Changbo Dai
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Miaoyan Yang
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
2
|
Han Y, Yang R, Xu J, Wang Q, Yin Y, Long H, Xue S, Prusky D, Bi Y. Sodium silicate accelerates suberin accumulation at wounds of potato tuber by inducing phenylpropanoid pathway and fatty acid metabolism during healing. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 216:109093. [PMID: 39241629 DOI: 10.1016/j.plaphy.2024.109093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/13/2024] [Accepted: 09/02/2024] [Indexed: 09/09/2024]
Abstract
Although soluble silicate was reported to accelerate wound healing in muskmelon fruit through encouraging the deposition of lignin or free fatty acids, whether sodium silicate affects the biosynthesis, cross-linking and transport of suberin monomers during potato wound healing remains unknown. In this study, sodium silicate upregulated the expression and activity of 4-coumarate: coenzyme A ligase (4CL), phenylalanine ammonia lyase (PAL), and promoted the synthesis of phenolic acids (caffeic acid, p-coumaric acid, cinnamic acid, sinapic acid, and ferulic acid) in tuber wounds. Meanwhile, sodium silicate upregulated the expression of glycerol-3-phosphate acyltransferase (StGPAT), fatty acyl reductase (StFAR), long-chain acyl-CoA synthetase (StLACS), β-ketoacyl-CoA synthase (StKCS), and cytochrome P450 (StCYP86A33), and thus increased the levels of α, ω-diacids, ω-hydroxy acids, and primary alcohols in wounds. Sodium silicate also induced the expression of ω-hydroxy acid/fatty alcohol hydroxycinnamoyl transferase (StFHT), ABC transporter (StABCG), and promoted the deposition of suberin in wound surface, hence reducing tuber disease index and weight loss during healing. Taken together, sodium silicate may accelerate suberin accumulation at potato tubers wound through inducing the phenylpropanoid pathway and fatty acid metabolism.
Collapse
Affiliation(s)
- Ye Han
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, 730070, China
| | - Ruirui Yang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, 730070, China
| | - Juanni Xu
- Department of Vegetable Research, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lasa, 850000, China
| | - Qihui Wang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, 730070, China
| | - Yan Yin
- Lanzhou Agricultural Science and Technology Research Extension Centre, Lanzhou, 730070, China
| | - Haitao Long
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, 730070, China
| | - Sulin Xue
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, 730070, China
| | - Dov Prusky
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, Rishon LeZion, 7505101, Israel
| | - Yang Bi
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, 730070, China.
| |
Collapse
|
3
|
Nawaz M, Sun J, Shabbir S, Bo Y, He F, Nazir MM, Azeem F, Rizwan M, Pan L, Ren G, Du D. Exposure to toxic cadmium concentration induce physiological and molecular mechanisms alleviating herbivory infestation in Wedelia. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 215:109072. [PMID: 39186851 DOI: 10.1016/j.plaphy.2024.109072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/12/2024] [Accepted: 08/22/2024] [Indexed: 08/28/2024]
Abstract
Cadmium (Cd) toxicity induces significant disruptions in growth and development, plants have developed strategies to alleviate metal toxicity promoting establishment even during herbivores infestation. The study demonstrates that W. trilobata maintains growth and development under the combined stress of Cd exposure and herbivore invasion by Spodoptera litura, in contrast to W. chinensis. Cd toxicity markedly reduce shoot elongation and total fresh biomass, and a significant decrease in the dry weight of the shoot biomass and leaf count by 19%, 18%, 16%, and 19% in W. trilobata compared to controls. An even more pronounced decrease of 35%, 43%, 45% and 43% was found in W. chinensis. Compared to W. chinensis, W. trilobata showed a higher increase in phytohormone production including abscisic acid (ABA), gibberellic acid (GA3), indole-3-acetic acid (IAA) and methyl jasmonic acid (JA-me) under both Cd and herbivory stress as compared with respective controls. In addition, leaf ultra-structure also showed the highest damage to cell membranous structures by Cd-toxicity in W. chinensis. Furthermore, RNA-seq analysis revealed numerous genes viz., EMSY, MCCA, TIRI, BED-type, ABA, JAZ, CAB-6, CPSI, LHCII, CAX, HNM, ABC-Cd-trans and GBLP being differentially expressed between Cd-stress and herbivory groups in both W. trilobata and W. chinensis, with a particular emphasis on genes associated with metal transport and carbohydrate metabolism. Analyses employing the Gene Ontology (GO) system, the Clusters of Orthologous Groups (COG) categorization, and the Kyoto Encyclopedia of Genes and Genomes (KEGG) database, highlight the functional and evolutionary relationships among the genes of the Phenylpropanoid and Flavonoid biosynthesis pathways and brassinosterod metabolism, associated with plant growth and development under Cd-toxicity and herbivory. W. trilobata opposite of W. chinensis, significantly improve plant growth and mitigates Cd toxicity through modulation of metabolic processes, and regulation of responsible genes, to sustain its growth under Cd and herbivory stress, which can be used in stress improvement in plants for sustainable ecosystem biodiversity and food security.
Collapse
Affiliation(s)
- Mohsin Nawaz
- Institute of Environment and Ecology, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Jianfan Sun
- Institute of Environment and Ecology, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou, 215009, China.
| | - Samina Shabbir
- Department of Chemistry, The Women University, Multan, Pakistan
| | - Yanwen Bo
- Institute of Environment and Ecology, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Feng He
- Institute of Environment and Ecology, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Muhammad Mudassir Nazir
- Institute of Environment and Ecology, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Farrukh Azeem
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Muhammad Rizwan
- Department of Environmental Sciences, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Linxuan Pan
- Institute of Environment and Ecology, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Guangqian Ren
- Institute of Environment and Ecology, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Daolin Du
- Jingjiang College, Institute of Environment and Ecology, School of Emergency Management, School of Environment and Safety Engineering, School of Agricultural Engineering, Jiangsu University, Zhenjiang, 212013, China
| |
Collapse
|
4
|
Han Y, Yang R, Zhang X, Wang Q, Wang Y, Li Y, Prusky D, Bi Y. MYB24, MYB144, and MYB168 positively regulate suberin biosynthesis at potato tuber wounds during healing. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:1239-1257. [PMID: 38776519 DOI: 10.1111/tpj.16845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 04/25/2024] [Accepted: 05/11/2024] [Indexed: 05/25/2024]
Abstract
The essence of wound healing is the accumulation of suberin at wounds, which is formed by suberin polyphenolic (SPP) and suberin polyaliphatic (SPA). The biosynthesis of SPP and SPA monomers is catalyzed by several enzyme classes related to phenylpropanoid metabolism and fatty acid metabolism, respectively. However, how suberin biosynthesis is regulated at the transcriptional level during potato (Solanum tuberosum) tuber wound healing remains largely unknown. Here, 6 target genes and 15 transcription factors related to suberin biosynthesis in tuber wound healing were identified by RNA-seq technology and qRT-PCR. Dual luciferase and yeast one-hybrid assays showed that StMYB168 activated the target genes StPAL, StOMT, and St4CL in phenylpropanoid metabolism. Meanwhile, StMYB24 and StMYB144 activated the target genes StLTP, StLACS, and StCYP in fatty acid metabolism, and StFHT involved in the assembly of SPP and SPA domains in both native and wound periderms. More importantly, virus-induced gene silencing in S. tuberosum and transient overexpression in Nicotiana benthamiana assays confirmed that StMYB168 regulates the biosynthesis of free phenolic acids, such as ferulic acid. Furthermore, StMYB24/144 regulated the accumulation of suberin monomers, such as ferulates, α, ω-diacids, and ω-hydroxy acids. In conclusion, StMYB24, StMYB144, and StMYB168 have an elaborate division of labor in regulating the synthesis of suberin during tuber wound healing.
Collapse
Affiliation(s)
- Ye Han
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, 730070, China
| | - Ruirui Yang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, 730070, China
| | - Xuejiao Zhang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, 730070, China
| | - Qihui Wang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, 730070, China
| | - Yi Wang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, 730070, China
| | - Yongcai Li
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, 730070, China
| | - Dov Prusky
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, Rishon LeZion, 7505101, Israel
| | - Yang Bi
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, 730070, China
| |
Collapse
|
5
|
Composition, metabolism and postharvest function and regulation of fruit cuticle: A review. Food Chem 2023; 411:135449. [PMID: 36669336 DOI: 10.1016/j.foodchem.2023.135449] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/19/2022] [Accepted: 01/07/2023] [Indexed: 01/15/2023]
Abstract
The cuticle of plants, a hydrophobic membrane that covers their aerial organs, is crucial to their ability to withstand biotic and abiotic stressors. Fruit is the reproductive organ of plants, and an important dietary source that can offer a variety of nutrients for the human body, and fruit cuticle performs a crucial protective role in fruit development and postharvest quality. This review discusses the universality and diversity of the fruit cuticle composition, and systematically summarizes the metabolic process of fruit cuticle, including the biosynthesis, transport and regulatory factors (including transcription factors, phytohormones and environmental elements) of fruit cuticle. Additionally, we emphasize the postharvest functions and postharvest regulatory technologies of fruit cuticle, and propose future research directions for fruit cuticle.
Collapse
|
6
|
Wang YZ, Dai MS, Cai DY, Shi ZB. Solving the regulation puzzle of periderm development using advances in fruit skin. FRONTIERS IN PLANT SCIENCE 2022; 13:1006153. [PMID: 36247566 PMCID: PMC9558172 DOI: 10.3389/fpls.2022.1006153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
Periderm protects enlarged organs of most dicots and gymnosperms as a barrier to water loss and disease invasion during their secondary growth. Its development undergoes a complex process with genetically controlled and environmental stress-induced characters. Different development of periderm makes the full and partial russet of fruit skin, which diverges in inheritance with qualitative and quantitative characters, respectively, in pear pome. In addition to its specific genetics, fruit periderm has similar development and structure as that of stem and other organs, making it an appropriate material for periderm research. Recently, progress in histochemical as well as transcriptome and proteome analyses, and quantitative trait locus (QTL) mapping have revealed the regulatory molecular mechanism in the periderm based on the identification of switch genes. In this review, we concentrate on the periderm development, propose the conservation of periderm regulation between fruit and other plant organs based on their morphological and molecular characteristics, and summarize a regulatory network with the elicitors and repressors for the tissue development. Spontaneous programmed-cell death (PCD) or environmental stress produces the original signal that triggers the development of periderm. Spatio-temporal specific PCD produced by PyPPCD1 gene and its homologs can play a key role in the coordinated regulation of cell death related tissue development.
Collapse
Affiliation(s)
| | | | | | - Ze-bin Shi
- *Correspondence: Yue-zhi Wang, ; Ze-bin Shi,
| |
Collapse
|
7
|
Leal AR, Sapeta H, Beeckman T, Barros PM, Oliveira MM. Spatiotemporal development of suberized barriers in cork oak taproots. TREE PHYSIOLOGY 2022; 42:1269-1285. [PMID: 34970982 DOI: 10.1093/treephys/tpab176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 12/19/2021] [Indexed: 06/14/2023]
Abstract
The longevity and high activity of the cork cambium (or phellogen) from Quercus suber L. (cork oak) are the cornerstones for the sustainable exploitation of a unique raw material. Cork oak is a symbolic model to study cork development and cell wall suberization, yet most genetic and molecular studies on these topics have targeted other model plants. In this study, we explored the potential of taproots as a model system to study phellem development and suberization in cork oak, thereby avoiding the time constraints imposed when studying whole plants. In roots, suberin deposition is found in mature endodermis cells during primary development and in phellem cells during secondary development. By investigating the spatiotemporal characteristics of both endodermis and phellem suberization in young seedling taproots, we demonstrated that secondary growth and phellogen activity are initiated very early in cork oak taproots (approx. 8 days after sowing). We further compared the transcriptomic profile of root segments undergoing primary (PD) and secondary development (SD) and identified multiple candidate genes with predicted roles in cell wall modifications, mainly lignification and suberization, in addition to several regulatory genes, particularly transcription factor- and hormone-related genes. Our results indicate that the molecular regulation of suberization and secondary development in cork oak roots is relatively conserved with other species. The provided morphological characterization creates new opportunities to allow a faster assessment of phellogen activity (as compared with studies using stem tissues) and to tackle fundamental questions regarding its regulation.
Collapse
Affiliation(s)
- Ana Rita Leal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), GPlantS Unit, Av. da República, Oeiras 2780-157, Portugal
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent B-9052, Belgium
- VIB-UGent Center for Plant Systems Biology, Technologiepark 71, Ghent B-9052, Belgium
| | - Helena Sapeta
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), GPlantS Unit, Av. da República, Oeiras 2780-157, Portugal
| | - Tom Beeckman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent B-9052, Belgium
- VIB-UGent Center for Plant Systems Biology, Technologiepark 71, Ghent B-9052, Belgium
| | - Pedro M Barros
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), GPlantS Unit, Av. da República, Oeiras 2780-157, Portugal
| | - M Margarida Oliveira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), GPlantS Unit, Av. da República, Oeiras 2780-157, Portugal
| |
Collapse
|
8
|
Serra O, Mähönen AP, Hetherington AJ, Ragni L. The Making of Plant Armor: The Periderm. ANNUAL REVIEW OF PLANT BIOLOGY 2022; 73:405-432. [PMID: 34985930 DOI: 10.1146/annurev-arplant-102720-031405] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The periderm acts as armor protecting the plant's inner tissues from biotic and abiotic stress. It forms during the radial thickening of plant organs such as stems and roots and replaces the function of primary protective tissues such as the epidermis and the endodermis. A wound periderm also forms to heal and protect injured tissues. The periderm comprises a meristematic tissue called the phellogen, or cork cambium, and its derivatives: the lignosuberized phellem and the phelloderm. Research on the periderm has mainly focused on the chemical composition of the phellem due to its relevance as a raw material for industrial processes. Today, there is increasing interest in the regulatory network underlying periderm development as a novel breeding trait to improve plant resilience and to sequester CO2. Here, we discuss our current understanding of periderm formation, focusing on aspects of periderm evolution, mechanisms of periderm ontogenesis, regulatory networks underlying phellogen initiation and cork differentiation, and future challenges of periderm research.
Collapse
Affiliation(s)
- Olga Serra
- University of Girona, Department of Biology, Girona, Spain;
| | - Ari Pekka Mähönen
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland;
- Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences, and Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | | | - Laura Ragni
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany;
| |
Collapse
|
9
|
Leal AR, Barros PM, Parizot B, Sapeta H, Vangheluwe N, Andersen TG, Beeckman T, Oliveira MM. Translational profile of developing phellem cells in Arabidopsis thaliana roots. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:899-915. [PMID: 35106861 DOI: 10.1111/tpj.15691] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 12/20/2021] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
The phellem is a specialized boundary tissue providing the first line of defense against abiotic and biotic stresses in organs undergoing secondary growth. Phellem cells undergo several differentiation steps, which include cell wall suberization, cell expansion, and programmed cell death. Yet, the molecular players acting particularly in phellem cell differentiation remain poorly described, particularly in the widely used model plant Arabidopsis thaliana. Using specific marker lines we followed the onset and progression of phellem differentiation in A. thaliana roots and further targeted the translatome of newly developed phellem cells using translating ribosome affinity purification followed by mRNA sequencing (TRAP-SEQ). We showed that phellem suberization is initiated early after phellogen (cork cambium) division. The specific translational landscape was organized in three main domains related to energy production, synthesis and transport of cell wall components, and response to stimulus. Novel players in phellem differentiation related to suberin monomer transport and assembly as well as novel transcription regulators were identified. This strategy provided an unprecedented resolution of the translatome of developing phellem cells, giving a detailed and specific view on the molecular mechanisms acting on cell differentiation in periderm tissues of the model plant Arabidopsis.
Collapse
Affiliation(s)
- Ana Rita Leal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), GPlantS, Av. da República, 2780-157, Oeiras, Portugal
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052, Ghent, Belgium
| | - Pedro Miguel Barros
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), GPlantS, Av. da República, 2780-157, Oeiras, Portugal
| | - Boris Parizot
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052, Ghent, Belgium
| | - Helena Sapeta
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), GPlantS, Av. da República, 2780-157, Oeiras, Portugal
| | - Nick Vangheluwe
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052, Ghent, Belgium
| | - Tonni Grube Andersen
- Department of Plant Molecular Biology, Biophore, University of Lausanne, CH-1015, Lausanne, Switzerland
| | - Tom Beeckman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052, Ghent, Belgium
| | - M Margarida Oliveira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), GPlantS, Av. da República, 2780-157, Oeiras, Portugal
| |
Collapse
|
10
|
Chemical and Molecular Characterization of Wound-Induced Suberization in Poplar (Populus alba × P. tremula) Stem Bark. PLANTS 2022; 11:plants11091143. [PMID: 35567144 PMCID: PMC9102228 DOI: 10.3390/plants11091143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/15/2022] [Accepted: 04/19/2022] [Indexed: 11/17/2022]
Abstract
Upon mechanical damage, plants produce wound responses to protect internal tissues from infections and desiccation. Suberin, a heteropolymer found on the inner face of primary cell walls, is deposited in specific tissues under normal development, enhanced under abiotic stress conditions and synthesized by any tissue upon mechanical damage. Wound-healing suberization of tree bark has been investigated at the anatomical level but very little is known about the molecular mechanisms underlying this important stress response. Here, we investigated a time course of wound-induced suberization in poplar bark. Microscopic changes showed that polyphenolics accumulate 3 days post wounding, with aliphatic suberin deposition observed 5 days post wounding. A wound periderm was formed 9 days post wounding. Chemical analyses of the suberin polyester accumulated during the wound-healing response indicated that suberin monomers increased from 0.25 to 7.98 mg/g DW for days 0 to 28, respectively. Monomer proportions varied across the wound-healing process, with an overall ratio of 2:1 (monomers:glycerol) found across the first 14 days post wounding, with this ratio increasing to 7:2 by day 28. The expression of selected candidate genes of poplar suberin metabolism was investigated using qRT-PCR. Genes queried belonging to lipid polyester and phenylpropanoid metabolism appeared to have redundant functions in native and wound-induced suberization. Our data show that, anatomically, the wounding response in poplar bark is similar to that described in periderms of other species. It also provides novel insight into this process at the chemical and molecular levels, which have not been previously studied in trees.
Collapse
|
11
|
Jiang H, Li X, Ma L, Ren Y, Bi Y, Prusky D. Transcriptome sequencing and differential expression analysis of natural and BTH-treated wound healing in potato tubers (Solanum tuberosum L.). BMC Genomics 2022; 23:263. [PMID: 35382736 PMCID: PMC8981635 DOI: 10.1186/s12864-022-08480-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 03/14/2022] [Indexed: 02/05/2023] Open
Abstract
Background Wound healing is a representative phenomenon of potato tubers subjected to mechanical injuries. Our previous results found that benzo-(1,2,3)-thiadiazole-7-carbothioic acid S-methyl ester (BTH) promoted the wound healing of potato tubers. However, the molecular mechanism related to inducible wound healing remains unknown. Results Transcriptomic evaluation of healing tissues from potato tubers at three stages, namely, 0 d (nonhealing), 5 d (wounded tubers healed for 5 d) and 5 d (BTH-treated tubers healed for 5 d) using RNA-Seq and differentially expressed genes (DEGs) analysis showed that more than 515 million high-quality reads were generated and a total of 7665 DEGs were enriched, and 16 of these DEGs were selected by qRT-PCR analysis to further confirm the RNA sequencing data. Gene ontology (GO) enrichment analysis indicated that the most highly DEGs were involved in metabolic and cellular processes, and KEGG enrichment analysis indicated that a large number of DEGs were associated with plant hormones, starch and sugar metabolism, fatty acid metabolism, phenylpropanoid biosynthesis and terpenoid skeleton biosynthesis. Furthermore, a few candidate transcription factors, including MYB, NAC and WRKY, and genes related to Ca2+-mediated signal transduction were also found to be differentially expressed during wound healing. Most of these enriched DEGs were upregulated after BTH treatment. Conclusion This comparative expression profile provided useful resources for studies of the molecular mechanism via these promising candidates involved in natural or elicitor-induced wound healing in potato tubers. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08480-1.
Collapse
Affiliation(s)
- Hong Jiang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Xue Li
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Li Ma
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Yingyue Ren
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Yang Bi
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China.
| | - Dov Prusky
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China.,Department of Postharvest Science, Agricultural Research Organization, 7505101, Rishon LeZion, Israel
| |
Collapse
|
12
|
Dastmalchi K, Chira O, Rodriguez MP, Yoo B, Serra O, Figueras M, Stark RE. A chemical window into the impact of RNAi silencing of the StNAC103 gene in potato tuber periderms: Soluble metabolites, suberized cell walls, and antibacterial defense. PHYTOCHEMISTRY 2021; 190:112885. [PMID: 34339979 PMCID: PMC8434825 DOI: 10.1016/j.phytochem.2021.112885] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 07/11/2021] [Accepted: 07/14/2021] [Indexed: 06/13/2023]
Abstract
The growth and survival of terrestrial plants require control of their interactions with the environment, e.g., to defend against desiccation and microbial invasion. For major food crops, the protection conferred by the outer skins (periderm in potato) is essential to cultivation, storage, and marketing of the edible tubers and fruits. Potatoes are particularly vulnerable to bacterial infections due to their high content of water and susceptibility to mechanical wounding. Recently, both specific and conserved gene silencing (StNAC103-RNAi and StNAC103-RNAi-c, respectively) were found to increase the load of wax and aliphatic suberin depolymerization products in tuber periderm, implicating this NAC gene as a repressor of the wax and suberin biosynthetic pathways. However, an important gap in our understanding of StNAC103 silencing concerns the metabolites produced in periderm cells as antimicrobial defense agents and potential building blocks of the deposited suberin biopolymer. In the current work, we have expanded prior studies on StNAC103 silenced lines by conducting comprehensive parallel analyses to profile changes in chemical constituents and antibacterial activity. Compositional analysis of the intact suberized cell walls using solid-state 13C NMR (ssNMR) showed that NAC silencing produced an increase in the long-chain aliphatic groups deposited within the periderm cell walls. LC-MS of polar extracts revealed up-regulation of glycoalkaloids in both StNAC103-RNAi and StNAC103-RNAi-c native periderms but down-regulation of a phenolic amine in StNAC103-RNAi-c and a phenolic acid in StNAC103-RNAi native periderms. The nonpolar soluble metabolites identified using GC-MS included notably abundant long-chain alkane metabolites in both silenced samples. By coordinating the differentially accumulated soluble metabolites and the suberin depolymerization products with the ssNMR-based profiles for the periderm polymers, it was possible to obtain a holistic view of the chemical changes that result from StNAC103 gene silencing. Correspondingly, the chemical composition trends served as a backdrop to interpret trends in the chemical barrier defense function of native tuber periderms, which was found to be more robust for the nonpolar extracts.
Collapse
Affiliation(s)
- Keyvan Dastmalchi
- Department of Chemistry and Biochemistry, The City College of New York, City University of New York (CUNY) and CUNY Institute for Macromolecular Assemblies, New York, NY, 10031, USA
| | - Oseloka Chira
- Department of Chemical Engineering, The City College of New York, CUNY, NY, 10031, USA
| | - Mathiu Perez Rodriguez
- Department of Chemistry and Biochemistry, The City College of New York, City University of New York (CUNY) and CUNY Institute for Macromolecular Assemblies, New York, NY, 10031, USA
| | - Barney Yoo
- Department of Chemistry, Hunter College of CUNY, New York, NY, 10065, USA
| | - Olga Serra
- Laboratori Del Suro, Departament de Biologia, Universitat de Girona, Campus Montilivi, Girona, E-17071, Spain
| | - Mercè Figueras
- Laboratori Del Suro, Departament de Biologia, Universitat de Girona, Campus Montilivi, Girona, E-17071, Spain
| | - Ruth E Stark
- Department of Chemistry and Biochemistry, The City College of New York, City University of New York (CUNY) and CUNY Institute for Macromolecular Assemblies, New York, NY, 10031, USA; Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, NY, 10016, USA; Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York, NY, 10016, USA.
| |
Collapse
|
13
|
Boher P, Soler M, Fernández-Piñán S, Torrent X, Müller SY, Kelly KA, Serra O, Figueras M. Silencing of StRIK in potato suggests a role in periderm related to RNA processing and stress. BMC PLANT BIOLOGY 2021; 21:409. [PMID: 34493224 PMCID: PMC8424952 DOI: 10.1186/s12870-021-03141-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 07/06/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND The periderm is a protective barrier crucial for land plant survival, but little is known about genetic factors involved in its development and regulation. Using a transcriptomic approach in the cork oak (Q. suber) periderm, we previously identified an RS2-INTERACTING KH PROTEIN (RIK) homologue of unknown function containing a K homology (KH)-domain RNA-binding protein, as a regulatory candidate gene in the periderm. RESULTS To gain insight into the function of RIK in the periderm, potato (S. tuberosum) tuber periderm was used as a model: the full-length coding sequence of RIK, hereafter referred to as StRIK, was isolated, the transcript profile analyzed and gene silencing in potato performed to analyze the silencing effects on periderm anatomy and transcriptome. The StRIK transcript accumulated in all vegetative tissues studied, including periderm and other suberized tissues such as root and also in wounded tissues. Downregulation of StRIK in potato by RNA interference (StRIK-RNAi) did not show any obvious effects on tuber periderm anatomy but, unlike Wild type, transgenic plants flowered. Global transcript profiling of the StRIK-RNAi periderm did show altered expression of genes associated with RNA metabolism, stress and signaling, mirroring the biological processes found enriched within the in silico co-expression network of the Arabidopsis orthologue. CONCLUSIONS The ubiquitous expression of StRIK transcript, the flower associated phenotype and the differential expression of StRIK-RNAi periderm point out to a general regulatory role of StRIK in diverse plant developmental processes. The transcriptome analysis suggests that StRIK might play roles in RNA maturation and stress response in the periderm.
Collapse
Affiliation(s)
- Pau Boher
- Laboratori del Suro, Biology Department, Universitat de Girona, Campus Montilivi, E-17071 Girona, Catalonia Spain
| | - Marçal Soler
- Laboratori del Suro, Biology Department, Universitat de Girona, Campus Montilivi, E-17071 Girona, Catalonia Spain
| | - Sandra Fernández-Piñán
- Laboratori del Suro, Biology Department, Universitat de Girona, Campus Montilivi, E-17071 Girona, Catalonia Spain
| | - Xènia Torrent
- Laboratori del Suro, Biology Department, Universitat de Girona, Campus Montilivi, E-17071 Girona, Catalonia Spain
| | - Sebastian Y. Müller
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA UK
| | - Krystyna A. Kelly
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA UK
| | - Olga Serra
- Laboratori del Suro, Biology Department, Universitat de Girona, Campus Montilivi, E-17071 Girona, Catalonia Spain
| | - Mercè Figueras
- Laboratori del Suro, Biology Department, Universitat de Girona, Campus Montilivi, E-17071 Girona, Catalonia Spain
| |
Collapse
|
14
|
Zhang J, Zhang YF, Zhang PF, Bian YH, Liu ZY, Zhang C, Liu X, Wang CL. An integrated metabolic and transcriptomic analysis reveals the mechanism through which fruit bagging alleviates exocarp semi-russeting in pear fruit. TREE PHYSIOLOGY 2021; 41:1306-1318. [PMID: 33367887 DOI: 10.1093/treephys/tpaa172] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 12/15/2020] [Indexed: 06/12/2023]
Abstract
Fruit semi-russeting is an undesirable quality trait that occurs in fruit production. It is reported that preharvest fruit bagging could effectively alleviate fruit exocarp semi-russeting, but the physiological and molecular mechanisms remain unclear. In the present study, we performed an in-depth investigation into pear fruit semi-russeting from morphologic, metabolic and transcriptomic perspectives by comparing control (semi-russeted) and bagged (non-russeted) 'Cuiguan' pear fruits. The results showed that significant changes in cutin and suberin resulted in pear fruit semi-russeting. Compared with the skin of bagged fruits, the skin of the control fruits presented reduced cutin contents accompanied by an accumulation of suberin, which resulted in fruit semi-russeting; α, ω-dicarboxylic acids accounted for the largest proportion of typical suberin monomers. Moreover, combined transcriptomic and metabolic analysis revealed a series of genes involved in cutin and suberin biosynthesis, transport and polymerization differentially expressed between the two groups. Furthermore, the expression levels of genes involved in the stress response and in hormone biosynthesis and signaling were significantly altered in fruits with contrasting phenotypes. Finally, a number of transcription factors, including those of the MYB, NAC, bHLH and bZIP families, were differentially expressed. Taken together, the results suggest that the multilayered mechanism through which bagging alleviates pear fruit semi-russeting is complex, and the large number of candidate genes identified provides a good foundation for future functional studies.
Collapse
Affiliation(s)
- Jing Zhang
- School of Horticulture and Plant Protection, International Research Laboratory of Agriculture and Agri-Product Safety, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, 48 Wenhui East Road, Yangzhou 225009, People's Republic of China
| | - Yi-Fan Zhang
- School of Horticulture and Plant Protection, International Research Laboratory of Agriculture and Agri-Product Safety, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, 48 Wenhui East Road, Yangzhou 225009, People's Republic of China
| | - Peng-Fei Zhang
- School of Horticulture and Plant Protection, International Research Laboratory of Agriculture and Agri-Product Safety, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, 48 Wenhui East Road, Yangzhou 225009, People's Republic of China
| | - Yue-Hong Bian
- School of Horticulture and Plant Protection, International Research Laboratory of Agriculture and Agri-Product Safety, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, 48 Wenhui East Road, Yangzhou 225009, People's Republic of China
| | - Zi-Yu Liu
- School of Horticulture and Plant Protection, International Research Laboratory of Agriculture and Agri-Product Safety, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, 48 Wenhui East Road, Yangzhou 225009, People's Republic of China
| | - Chen Zhang
- School of Horticulture and Plant Protection, International Research Laboratory of Agriculture and Agri-Product Safety, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, 48 Wenhui East Road, Yangzhou 225009, People's Republic of China
| | - Xiao Liu
- School of Horticulture and Plant Protection, International Research Laboratory of Agriculture and Agri-Product Safety, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, 48 Wenhui East Road, Yangzhou 225009, People's Republic of China
| | - Chun-Lei Wang
- School of Horticulture and Plant Protection, International Research Laboratory of Agriculture and Agri-Product Safety, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, 48 Wenhui East Road, Yangzhou 225009, People's Republic of China
| |
Collapse
|
15
|
Wahrenburg Z, Benesch E, Lowe C, Jimenez J, Vulavala VKR, Lü S, Hammerschmidt R, Douches D, Yim WC, Santos P, Kosma DK. Transcriptional regulation of wound suberin deposition in potato cultivars with differential wound healing capacity. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:77-99. [PMID: 33860574 DOI: 10.1111/tpj.15275] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/29/2021] [Accepted: 04/07/2021] [Indexed: 05/20/2023]
Abstract
Wounding during mechanical harvesting and post-harvest handling results in tuber desiccation and provides an entry point for pathogens resulting in substantial post-harvest crop losses. Poor wound healing is a major culprit of these losses. Wound tissue in potato (Solanum tuberosum) tubers, and all higher plants, is composed of a large proportion of suberin that is deposited in a specialized tissue called the wound periderm. However, the genetic regulatory pathway controlling wound-induced suberization remains unknown. Here, we implicate two potato transcription factors, StMYB102 (PGSC0003DMG400011250) and StMYB74 (PGSC0003DMG400022399), as regulators of wound suberin biosynthesis and deposition. Using targeted metabolomics and transcript profiling from the wound healing tissues of two commercial potato cultivars, as well as heterologous expression, we provide evidence for the molecular-genetic basis of the differential wound suberization capacities of different potato cultivars. Our results suggest that (i) the export of suberin from the cytosol to the apoplast and ligno-suberin deposition may be limiting factors for wound suberization, (ii) StMYB74 and StMYB102 are important regulators of the wound suberization process in tubers, and (iii) polymorphisms in StMYB102 may influence cultivar-specific wound suberization capacity. These results represent an important step in understanding the regulated biosynthesis and deposition of wound suberin and provide a practical foundation for targeted breeding approaches aimed at improving potato tuber storage life.
Collapse
Affiliation(s)
- Zachary Wahrenburg
- Department of Biochemistry and Molecular Biology, The University of Nevada, Reno, NV, 89557, USA
| | - Elizabeth Benesch
- Department of Biochemistry and Molecular Biology, The University of Nevada, Reno, NV, 89557, USA
| | - Catherine Lowe
- Department of Biochemistry and Molecular Biology, The University of Nevada, Reno, NV, 89557, USA
| | - Jazmin Jimenez
- Department of Biochemistry and Molecular Biology, The University of Nevada, Reno, NV, 89557, USA
| | - Vijaya K R Vulavala
- Department of Biochemistry and Molecular Biology, The University of Nevada, Reno, NV, 89557, USA
| | - Shiyou Lü
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Ray Hammerschmidt
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, 48824, USA
| | - David Douches
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, 48824, USA
| | - Won C Yim
- Department of Biochemistry and Molecular Biology, The University of Nevada, Reno, NV, 89557, USA
| | - Patricia Santos
- Department of Biochemistry and Molecular Biology, The University of Nevada, Reno, NV, 89557, USA
| | - Dylan K Kosma
- Department of Biochemistry and Molecular Biology, The University of Nevada, Reno, NV, 89557, USA
| |
Collapse
|
16
|
The recombination landscape and multiple QTL mapping in a Solanum tuberosum cv. 'Atlantic'-derived F 1 population. Heredity (Edinb) 2021; 126:817-830. [PMID: 33753876 PMCID: PMC8102480 DOI: 10.1038/s41437-021-00416-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 02/02/2021] [Accepted: 02/04/2021] [Indexed: 02/01/2023] Open
Abstract
There are many challenges involved with the genetic analyses of autopolyploid species, such as the tetraploid potato, Solanum tuberosum (2n = 4x = 48). The development of new analytical methods has made it valuable to re-analyze an F1 population (n = 156) derived from a cross involving 'Atlantic', a widely grown chipping variety in the USA. A fully integrated genetic map with 4285 single nucleotide polymorphisms, spanning 1630 cM, was constructed with MAPpoly software. We observed that bivalent configurations were the most abundant ones (51.0~72.4% depending on parent and linkage group), though multivalent configurations were also observed (2.2~39.2%). Seven traits were evaluated over four years (2006-8 and 2014) and quantitative trait loci (QTL) mapping was carried out using QTLpoly software. Based on a multiple-QTL model approach, we detected 21 QTL for 15 out of 27 trait-year combination phenotypes. A hotspot on linkage group 5 was identified with co-located QTL for maturity, plant yield, specific gravity, and internal heat necrosis resistance evaluated over different years. Additional QTL for specific gravity and dry matter were detected with maturity-corrected phenotypes. Among the genes around QTL peaks, we found those on chromosome 5 that have been previously implicated in maturity (StCDF1) and tuber formation (POTH1). These analyses have the potential to provide insights into the biology and breeding of tetraploid potato and other autopolyploid species.
Collapse
|
17
|
Yang S, Zhu H, Huang L, Zhang G, Wang L, Jiang X, Zhong Q. Transcriptome-wide and expression analysis of the NAC gene family in pepino ( Solanum muricatum) during drought stress. PeerJ 2021; 9:e10966. [PMID: 33850643 PMCID: PMC8015785 DOI: 10.7717/peerj.10966] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 01/28/2021] [Indexed: 11/20/2022] Open
Abstract
Solanum muricatum (Pepino) is an increasingly popular solanaceous crop and is tolerant of drought conditions. In this study, 71 NAC transcription factor family genes of S. muricatum were selected to provide a theoretical basis for subsequent in-depth study of their regulatory roles in the response to biological and abiotic stresses, and were subjected to whole-genome analysis. The NAC sequences obtained by transcriptome sequencing were subjected to bioinformatics prediction and analysis. Three concentration gradient drought stresses were applied to the plants, and the target gene sequences were analyzed by qPCR to determine their expression under drought stress. The results showed that the S. muricatum NAC family contains 71 genes, 47 of which have conserved domains. The protein sequence length, molecular weight, hydrophilicity, aliphatic index and isoelectric point of these transcription factors were predicted and analyzed. Phylogenetic analysis showed that the S. muricatum NAC gene family is divided into seven subfamilies. Some NAC genes of S. muricatum are closely related to the NAC genes of Solanaceae crops such as tomato, pepper and potato. The seedlings of S. muricatum were grown under different gradients of drought stress conditions and qPCR was used to analyze the NAC expression in roots, stems, leaves and flowers. The results showed that 13 genes did not respond to drought stress while 58 NAC genes of S. muricatum that responded to drought stress had obvious tissue expression specificity. The overall expression levels in the root were found to be high. The number of genes at extremely significant expression levels was very large, with significant polarization. Seven NAC genes with significant responses were selected to analyze their expression trend in the different drought stress gradients. It was found that genes with the same expression trend also had the same or part of the same conserved domain. Seven SmNACs that may play an important role in drought stress were selected for NAC amino acid sequence alignment of Solanaceae crops. Four had strong similarity to other Solanaceae NAC amino acid sequences, and SmNAC has high homology with the Solanum pennellii. The NAC transcription factor family genes of S. muricatum showed strong structural conservation. Under drought stress, the expression of NAC transcription factor family genes of S. muricatum changed significantly, which actively responded to and participated in the regulation process of drought stress, thereby laying foundations for subsequent in-depth research of the specific functions of NAC transcription factor family genes of S. muricatum.
Collapse
Affiliation(s)
- Shipeng Yang
- Qinghai Key Laboratory of Vegetable Genetics and Physiology, Agriculture and Forestry Sciences Institute of Qinghai University, Qinghai University, Xining, P.R. China
| | | | - Liping Huang
- Qinghai Key Laboratory of Vegetable Genetics and Physiology, Agriculture and Forestry Sciences Institute of Qinghai University, Qinghai University, Xining, P.R. China
| | - Guangnan Zhang
- Qinghai Key Laboratory of Vegetable Genetics and Physiology, Agriculture and Forestry Sciences Institute of Qinghai University, Qinghai University, Xining, P.R. China
| | - Lihui Wang
- Qinghai Key Laboratory of Vegetable Genetics and Physiology, Agriculture and Forestry Sciences Institute of Qinghai University, Qinghai University, Xining, P.R. China
| | - Xiaoting Jiang
- Qinghai Higher Vocational & Technical Institute, Ledu, P.R. China, Xining, China
| | - Qiwen Zhong
- Qinghai Key Laboratory of Vegetable Genetics and Physiology, Agriculture and Forestry Sciences Institute of Qinghai University, Qinghai University, Xining, P.R. China
| |
Collapse
|
18
|
Zhang L, Merlin I, Pascal S, Bert P, Domergue F, Gambetta GA. Drought activates MYB41 orthologs and induces suberization of grapevine fine roots. PLANT DIRECT 2020; 4:e00278. [PMID: 33251473 PMCID: PMC7680640 DOI: 10.1002/pld3.278] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/26/2020] [Accepted: 09/28/2020] [Indexed: 05/07/2023]
Abstract
The permeability of roots to water and nutrients is controlled through a variety of mechanisms and one of the most conspicuous is the presence of the Casparian strips and suberin lamellae. Roots actively regulate the creation of these structures developmentally, along the length of the root, and in response to the environment, including drought. In the current study, we characterized the suberin composition along the length of grapevine fine roots during development and in response to water deficit, and in the same root systems we quantified changes in expression of suberin biosynthesis- and deposition-related gene families (via RNAseq) allowing the identification of drought-responsive suberin-related genes. Grapevine suberin composition did not differ between primary and lateral roots, and was similar to that of other species. Under water deficit there was a global upregulation of suberin biosynthesis which resulted in an increase of suberin specific monomers, but without changes in their relative abundances, and this upregulation took place across all the developmental stages of fine roots. These changes corresponded to the upregulation of numerous suberin biosynthesis- and export-related genes which included orthologs of the previously characterized AtMYB41 transcriptional factor. Functional validation of two grapevine MYB41 orthologs, VriMYB41 and VriMYB41-like, confirmed their ability to globally upregulate suberin biosynthesis, export, and deposition. This study provides a detailed characterization of the developmental and water deficit induced suberization of grapevine fine roots and identifies important orthologs responsible for suberin biosynthesis, export, and its regulation in grape.
Collapse
Affiliation(s)
- Li Zhang
- EGFVBordeaux‐Sciences AgroINRAUniv. BordeauxISVVVillenave d'OrnonFrance
| | - Isabelle Merlin
- EGFVBordeaux‐Sciences AgroINRAUniv. BordeauxISVVVillenave d'OrnonFrance
| | - Stéphanie Pascal
- Laboratoire de Biogenèse MembranaireCNRS – Univ. Bordeaux ‐ UMR 5200Bâtiment A3 ‐ INRA Bordeaux AquitaineVillenave d'OrnonFrance
| | | | - Frédéric Domergue
- Laboratoire de Biogenèse MembranaireCNRS – Univ. Bordeaux ‐ UMR 5200Bâtiment A3 ‐ INRA Bordeaux AquitaineVillenave d'OrnonFrance
| | | |
Collapse
|