1
|
Wang H, Li X, Meng B, Fan Y, Khan SU, Qian M, Zhang M, Yang H, Lu K. Exploring silique number in Brassica napus L.: Genetic and molecular advances for improving yield. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:1897-1912. [PMID: 38386569 PMCID: PMC11182599 DOI: 10.1111/pbi.14309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 02/24/2024]
Abstract
Silique number is a crucial yield-related trait for the genetic enhancement of rapeseed (Brassica napus L.). The intricate molecular process governing the regulation of silique number involves various factors. Despite advancements in understanding the mechanisms regulating silique number in Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa), the molecular processes involved in controlling silique number in rapeseed remain largely unexplored. In this review, we identify candidate genes and review the roles of genes and environmental factors in regulating rapeseed silique number. We use genetic regulatory networks for silique number in Arabidopsis and grain number in rice to uncover possible regulatory pathways and molecular mechanisms involved in regulating genes associated with rapeseed silique number. A better understanding of the genetic network regulating silique number in rapeseed will provide a theoretical basis for the genetic improvement of this trait and genetic resources for the molecular breeding of high-yielding rapeseed.
Collapse
Affiliation(s)
- Hui Wang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and BiotechnologySouthwest UniversityBeibeiChongqingP.R. China
| | - Xiaodong Li
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and BiotechnologySouthwest UniversityBeibeiChongqingP.R. China
| | - Boyu Meng
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and BiotechnologySouthwest UniversityBeibeiChongqingP.R. China
| | - Yonghai Fan
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and BiotechnologySouthwest UniversityBeibeiChongqingP.R. China
| | - Shahid Ullah Khan
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and BiotechnologySouthwest UniversityBeibeiChongqingP.R. China
| | - Mingchao Qian
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and BiotechnologySouthwest UniversityBeibeiChongqingP.R. China
| | - Minghao Zhang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and BiotechnologySouthwest UniversityBeibeiChongqingP.R. China
| | - Haikun Yang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and BiotechnologySouthwest UniversityBeibeiChongqingP.R. China
| | - Kun Lu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and BiotechnologySouthwest UniversityBeibeiChongqingP.R. China
- Engineering Research Center of South Upland Agriculture, Ministry of EducationChongqingP.R. China
- Academy of Agricultural SciencesSouthwest UniversityBeibeiChongqingP.R. China
| |
Collapse
|
2
|
Qiao Y, Liao Q, Zhang M, Han B, Peng C, Huang Z, Wang S, Zhou G, Xu S. Point clouds segmentation of rapeseed siliques based on sparse-dense point clouds mapping. FRONTIERS IN PLANT SCIENCE 2023; 14:1188286. [PMID: 37521934 PMCID: PMC10375295 DOI: 10.3389/fpls.2023.1188286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 06/30/2023] [Indexed: 08/01/2023]
Abstract
In this study, we propose a high-throughput and low-cost automatic detection method based on deep learning to replace the inefficient manual counting of rapeseed siliques. First, a video is captured with a smartphone around the rapeseed plants in the silique stage. Feature point detection and matching based on SIFT operators are applied to the extracted video frames, and sparse point clouds are recovered using epipolar geometry and triangulation principles. The depth map is obtained by calculating the disparity of the matched images, and the dense point cloud is fused. The plant model of the whole rapeseed plant in the silique stage is reconstructed based on the structure-from-motion (SfM) algorithm, and the background is removed by using the passthrough filter. The downsampled 3D point cloud data is processed by the DGCNN network, and the point cloud is divided into two categories: sparse rapeseed canopy siliques and rapeseed stems. The sparse canopy siliques are then segmented from the original whole rapeseed siliques point cloud using the sparse-dense point cloud mapping method, which can effectively save running time and improve efficiency. Finally, Euclidean clustering segmentation is performed on the rapeseed canopy siliques, and the RANSAC algorithm is used to perform line segmentation on the connected siliques after clustering, obtaining the three-dimensional spatial position of each silique and counting the number of siliques. The proposed method was applied to identify 1457 siliques from 12 rapeseed plants, and the experimental results showed a recognition accuracy greater than 97.80%. The proposed method achieved good results in rapeseed silique recognition and provided a useful example for the application of deep learning networks in dense 3D point cloud segmentation.
Collapse
Affiliation(s)
- Yuhui Qiao
- College of Engineering, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Agricultural Equipment for the Middle and Lower Reaches of the Yangtze River, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Qingxi Liao
- College of Engineering, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Agricultural Equipment for the Middle and Lower Reaches of the Yangtze River, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Moran Zhang
- College of Engineering, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Agricultural Equipment for the Middle and Lower Reaches of the Yangtze River, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Binbin Han
- School of Mathematics and Computer Science, Wuhan Polytechnic University, Wuhan, China
| | - Chengli Peng
- School of Geosciences and Info-Physics, Central South University, Changsha, China
| | - Zhenhao Huang
- College of Engineering, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Agricultural Equipment for the Middle and Lower Reaches of the Yangtze River, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Shaodong Wang
- College of Engineering, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Agricultural Equipment for the Middle and Lower Reaches of the Yangtze River, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Guangsheng Zhou
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, China
| | - Shengyong Xu
- College of Engineering, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Agricultural Equipment for the Middle and Lower Reaches of the Yangtze River, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
3
|
Wang Q, Xue N, Sun C, Tao J, Mi C, Yuan Y, Pan X, Gui M, Long R, Ding R, Li S, Lin L. Transcriptomic Profiling of Shoot Apical Meristem Aberrations in the Multi-Main-Stem Mutant ( ms) of Brassica napus L. Genes (Basel) 2023; 14:1396. [PMID: 37510301 PMCID: PMC10378962 DOI: 10.3390/genes14071396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/16/2023] [Accepted: 06/30/2023] [Indexed: 07/30/2023] Open
Abstract
Rapeseed (Brassica napus L.) is a globally important oilseed crop with various uses, including the consumption of its succulent stems as a seasonal vegetable, but its uniaxial branching habit limits the stem yield. Therefore, developing a multi-stem rapeseed variety has become increasingly crucial. In this study, a natural mutant of the wild type (ZY511, Zhongyou511) with stable inheritance of the multi-stem trait (ms) was obtained, and it showed abnormal shoot apical meristem (SAM) development and an increased main stem number compared to the WT. Histological and scanning electron microscopy analyses revealed multiple SAMs in the ms mutant, whereas only a single SAM was found in the WT. Transcriptome analyses showed significant alterations in the expression of genes involved in cytokinin (CK) biosynthesis and metabolism pathways in the ms mutant. These findings provide insight into the mechanism of multi-main-stem formation in Brassica napus L. and lay a theoretical foundation for breeding multi-main-stem rapeseed vegetable varieties.
Collapse
Affiliation(s)
- Qian Wang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China
- Horticultural Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650200, China
- Engineering Research Center of Vegetable Germplasm Innovation and Support Production Technology, Horticultural Research Institute, Yunnan Academy of Agricultural Sciences, 2238 Beijing Road, Kunming 650205, China
| | - Na Xue
- Horticultural Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650200, China
- Engineering Research Center of Vegetable Germplasm Innovation and Support Production Technology, Horticultural Research Institute, Yunnan Academy of Agricultural Sciences, 2238 Beijing Road, Kunming 650205, China
| | - Chao Sun
- Tea Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650221, China
| | - Jing Tao
- Horticultural Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650200, China
- Engineering Research Center of Vegetable Germplasm Innovation and Support Production Technology, Horticultural Research Institute, Yunnan Academy of Agricultural Sciences, 2238 Beijing Road, Kunming 650205, China
| | - Chao Mi
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China
| | - Yi Yuan
- Horticultural Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650200, China
- Engineering Research Center of Vegetable Germplasm Innovation and Support Production Technology, Horticultural Research Institute, Yunnan Academy of Agricultural Sciences, 2238 Beijing Road, Kunming 650205, China
| | - Xiangwei Pan
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China
- Horticultural Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650200, China
| | - Min Gui
- Horticultural Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650200, China
- Engineering Research Center of Vegetable Germplasm Innovation and Support Production Technology, Horticultural Research Institute, Yunnan Academy of Agricultural Sciences, 2238 Beijing Road, Kunming 650205, China
| | - Ronghua Long
- Horticultural Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650200, China
- Engineering Research Center of Vegetable Germplasm Innovation and Support Production Technology, Horticultural Research Institute, Yunnan Academy of Agricultural Sciences, 2238 Beijing Road, Kunming 650205, China
| | - Renzhan Ding
- Horticultural Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650200, China
| | - Shikai Li
- Horticultural Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650200, China
- Engineering Research Center of Vegetable Germplasm Innovation and Support Production Technology, Horticultural Research Institute, Yunnan Academy of Agricultural Sciences, 2238 Beijing Road, Kunming 650205, China
| | - Liangbin Lin
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China
| |
Collapse
|
4
|
Ma X, Wang J, Gu Y, Fang P, Nie W, Luo R, Liu J, Qian W, Mei J. Genetic analysis and QTL mapping for silique density in rapeseed (Brassica napus L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:128. [PMID: 37191718 DOI: 10.1007/s00122-023-04375-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 05/02/2023] [Indexed: 05/17/2023]
Abstract
KEY MESSAGE Genetic models, QTLs and candidate gene for silique density on main inflorescence of rapeseed were identified. Silique density is one of the critical factors to determine seed yield and plant architecture in rapeseed (Brassica napus L.); however, the genetic control of this trait is largely unknown. In this study, the genetic model for silique density on main inflorescence (SDMI) of rapeseed was estimated according to the phenotypic data of P1 (an inbreed line with high SDMI), P2 (an inbreed line with low SDMI), F1, F2, BC1P1 and BC1P2 populations, revealing that SDMI is probably controlled by multi-minor genes with or without major gene. The QTLs for SDMI and its component characters including silique number on main inflorescence (SNMI) and main inflorescence length (MIL) were consequently mapped from a DH population derived from P1 and P2 by using a genetic linkage map constructed by restriction site-associated DNA sequencing (RAD seq) technology. A total of eight, 14 and three QTLs were identified for SDMI, SNMI and MIL under three environments, respectively, with an overlap among SDMI and SNMI in 55.7-75.4 cm on linkage group C06 which corresponding to 11.6-27.3 Mb on chromosome C06. Genomic resequencing was further conducted between a high- and a low-SDMI pool constructed from the DH population, and QTL-seq analysis identified a 0.15 Mb interval (25.98-26.13 Mb) from the C06-QTL region aforementioned. Transcriptome sequencing and qRT-PCR identified one possible candidate gene (BnARGOS) from the 0.15 Mb interval. This study will provide novel insights into the genetic basis of SD in rapeseed.
Collapse
Affiliation(s)
- Xingrong Ma
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, 400716, China
| | - Jinhua Wang
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China
- Guizhou Oil Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang, 550006, China
| | - Yongfen Gu
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, 400716, China
| | - Pengpeng Fang
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China
- Long Ping Branch, Graduate School of Hunan University, Changsha, 410125, Hunan, China
- Hunan Hybrid Rice Research Center and State Key Laboratory of Hybrid Rice, Changsha, 410125, Hunan, China
| | - Wenjing Nie
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, 400716, China
| | - Ruirui Luo
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, 400716, China
| | - Jin Liu
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China
- Organization Department of Qingbaijiang District, Chengdu, 610000, China
| | - Wei Qian
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China.
- Academy of Agricultural Sciences, Southwest University, Chongqing, 400716, China.
| | - Jiaqin Mei
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China.
- Academy of Agricultural Sciences, Southwest University, Chongqing, 400716, China.
| |
Collapse
|
5
|
Siles L, Hassall KL, Sanchis Gritsch C, Eastmond PJ, Kurup S. Uncovering Trait Associations Resulting in Maximal Seed Yield in Winter and Spring Oilseed Rape. FRONTIERS IN PLANT SCIENCE 2021; 12:697576. [PMID: 34552604 PMCID: PMC8450599 DOI: 10.3389/fpls.2021.697576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 08/11/2021] [Indexed: 06/13/2023]
Abstract
Seed yield is a complex trait for many crop species including oilseed rape (OSR) (Brassica napus), the second most important oilseed crop worldwide. Studies have focused on the contribution of distinct factors in seed yield such as environmental cues, agronomical practices, growth conditions, or specific phenotypic traits at the whole plant level, such as number of pods in a plant. However, how female reproductive traits contribute to whole plant level traits, and hence to seed yield, has been largely ignored. Here, we describe the combined contribution of 33 phenotypic traits within a B. napus diversity set population and their trade-offs at the whole plant and organ level, along with their interaction with plant level traits. Our results revealed that both Winter OSR (WOSR) and Spring OSR (SOSR); the two more economically important OSR groups in terms of oil production; share a common dominant reproductive strategy for seed yield. In this strategy, the main inflorescence is the principal source of seed yield, producing a good number of ovules, a large number of long pods with a concomitantly high number of seeds per pod. Moreover, we observed that WOSR opted for additional reproductive strategies than SOSR, presenting more plasticity to maximise seed yield. Overall, we conclude that OSR adopts a key strategy to ensure maximal seed yield and propose an ideal ideotype highlighting crucial phenotypic traits that could be potential targets for breeding.
Collapse
Affiliation(s)
- Laura Siles
- Department of Plant Sciences, Rothamsted Research, Harpenden, United Kingdom
| | - Kirsty L. Hassall
- Department of Computational and Analytical Sciences, Rothamsted Research, Harpenden, United Kingdom
| | | | - Peter J. Eastmond
- Department of Plant Sciences, Rothamsted Research, Harpenden, United Kingdom
| | - Smita Kurup
- Department of Plant Sciences, Rothamsted Research, Harpenden, United Kingdom
| |
Collapse
|