1
|
Babaei L, Sharifani MM, Darvishzadeh R, Abbaspour N, Henareh M. Biochemical and gene expression profiling of five pear species under drought stress conditions. BMC PLANT BIOLOGY 2025; 25:397. [PMID: 40148771 PMCID: PMC11951842 DOI: 10.1186/s12870-025-06408-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Accepted: 03/17/2025] [Indexed: 03/29/2025]
Abstract
Drought is one of the crucial abiotic stresses which affects growth, development, and performance of pear trees. This research was performed to investigate responses of five pear species including Pyrus communis L., Pyrus boissieriana Bushe., Pyrus glabra Boiss., Pyrus syriaca Boiss., and Pyrus salicifolia Pall. to different levels of drought stress. The potted trees were irrigated with water volume of 100%, 60%, or 30% of field capacity (FC) during 90 days. Based on the visual observation, the plant growth was restricted by severe drought in all species. Malondialdehyde (MDA) and glycine betaine (GB) contents, as well as the ascorbate peroxidase (APX), guaiacol peroxidase (GPX) and catalase (CAT) activities were indicated an uprising behavior under drought stress. Principal component analysis (PCA) analysis revealed P. glabra as tolerant and P. communis as sensitive to drought stress. The expression rates of stress-responsive transcription factors (TFs); WRKY29 and DREB6 and their responding genes, including LEA29 and Dehydrin1, were analyzed in the two differentially drought-responding pear species i.e., P. glabra and P. communis. The expression of the studied TFs was induced when both species were exposed to higher drought levels. The species P. glabra exhibited better osmoregulation, antioxidant response, and higher up-regulation of WRKY29, DREB6, LEA29 and Dehydrin1. In conclusion, among the studied pear species, P. glabra could best tolerate drought stress by boosting protective mechanisms.
Collapse
Affiliation(s)
- Lavin Babaei
- Department of Horticulture, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - M Mehdi Sharifani
- Department of Horticulture, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
| | - Reza Darvishzadeh
- Department of Plant Production and Genetics, Faculty of Agriculture, Urmia University, Urmia, Iran
| | - Naser Abbaspour
- Department of Biology, Faculty of Sciences, Urmia University, Urmia, Iran
| | - Mashhid Henareh
- Seed and Plant Improvement Research Department, West Azarbaijan Agricultural and Natural Resources Research and Education Center, AREEO, Urmia, Iran
| |
Collapse
|
2
|
Hao L, Shi X, Wen S, Yang C, Chen Y, Yue S, Chen J, Luo K, Liu B, Sun Y, Zhang Y. Single nucleotide polymorphism-based visual identification of Rhodiola crenulata using the loop-mediated isothermal amplification technique. FRONTIERS IN PLANT SCIENCE 2025; 15:1492083. [PMID: 39886689 PMCID: PMC11779703 DOI: 10.3389/fpls.2024.1492083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 12/23/2024] [Indexed: 02/01/2025]
Abstract
Introduction Rhodiola crenulata (Hook.f. & Thomson) H.Ohba, a member of the Crassulaceae family, is a traditional Chinese medicine recognized as the original source of Rhodiolae Crenulatae Radix et Rhizoma in the 2020 edition of the China Pharmacopoeia. It has been widely used in both Asia and Europe to enhance stress resistance and reduce fatigue. However, the classification of Rhodiola species can lead to confusion, raising safety concerns in the herbal medicine market. Methods The cleaved amplified polymorphic sequence (CAPS) RT-PCR was used to identify the single nucleotide polymorphism (SNP) sites, based on which the loop-mediated isothermal amplification (LAMP) was employed to develop the method in Rh. crenulata identification. The specific loop backward primers, reaction temperature, reaction time, and color indicators were screened and optimized. Results Single nucleotide polymorphism (SNP) sites were identified between Rh. crenulata and two closely related species. Based on the identified SNP sites, the optimal real-time fluorescence LAMP system to identify Rh. crenulata was constructed with the most efficient specific loop backward primers, reaction temperature. The final detection system exhibited a sensitivity of up to 1,000 copies of the target DNA, maintaining a constant reaction temperature of 62°C within 35 minutes. To facilitate visualization, we incorporated two color indicators, hydroxy naphthol blue (HNB) and neutral red (N-red), into the reaction system. Discussion Collectively, we developed a simple, rapid, specific, sensitive, and visible method to distinguish Rh. crenulata from other two Rhodiola species and Rh. crenulata hybrids. This approach has significant potential for applications in pharmaceutical industry.
Collapse
Affiliation(s)
- Li Hao
- College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Xin Shi
- College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Shiyu Wen
- College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Caiye Yang
- College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Yaqi Chen
- College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Samo Yue
- College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Jiaqiang Chen
- College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Kexin Luo
- College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Bingliang Liu
- College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Yanxia Sun
- College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Yi Zhang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| |
Collapse
|
3
|
Han Q, Yang L, Xia L, Zhang H, Zhang S. Interspecific grafting promotes poplar growth and drought resistance via regulating phytohormone signaling and secondary metabolic pathways. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 210:108594. [PMID: 38581808 DOI: 10.1016/j.plaphy.2024.108594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/22/2023] [Accepted: 04/01/2024] [Indexed: 04/08/2024]
Abstract
Populus cathayana (C) grafted onto P. deltoides (D) (C/D) can promote growth better than self-grafting (C/C and D/D). However, the mechanisms underlying growth and resistance to drought stress are not clear. In this study, we performed physiological and RNA-seq analysis on the different grafted combinations. It was found that C/D plants exhibited higher growth, net photosynthetic rate, IAA content and intrinsic water use efficiency (WUEi) than C/C and D/D plants under both well-watered and drought-stressed conditions. However, most growth, photosynthetic indices, and IAA content were decreased less in C/D, whereas ABA content, WUEi and root characteristics (e.g., root length, volume, surface area and vitality) were increased more in C/D than in other grafting combinations under drought-stressed conditions. Transcriptomic analysis revealed that the number of differentially expressed genes (DEGs) in leaves of C/D vs C/C (control, 181; drought, 121) was much lower than that in the roots of C/D vs D/D (control, 1639; drought, 1706), indicating that the rootstocks were more responsive to drought resistance. KEGG and GO functional enrichment analysis showed that the enhanced growth and drought resistance of C/D were mainly related to DEGs involved in the pathways of ABA and IAA signaling, and secondary metabolite biosynthesis, especially the pathways for lignin and dopamine synthesis and metabolism. Therefore, our results further demonstrated the dominant role of rootstock in drought resistance, and enriched our knowledge on the mechanism of how interspecific grafting enhanced the growth and drought resistance in poplar.
Collapse
Affiliation(s)
- Qingquan Han
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, 264025, China; Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Le Yang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Linchao Xia
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Hongxia Zhang
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, 264025, China.
| | - Sheng Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
4
|
Jia M, Ni Y, Zhao H, Liu X, Yan W, Zhao X, Wang J, He B, Liu H. Full-length transcriptome and RNA-Seq analyses reveal the resistance mechanism of sesame in response to Corynespora cassiicola. BMC PLANT BIOLOGY 2024; 24:64. [PMID: 38262910 PMCID: PMC10804834 DOI: 10.1186/s12870-024-04728-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 01/03/2024] [Indexed: 01/25/2024]
Abstract
BACKGROUND Corynespora leaf spot is a common leaf disease occurring in sesame, and the disease causes leaf yellowing and even shedding, which affects the growth quality of sesame. At present, the mechanism of sesame resistance to this disease is still unclear. Understanding the resistance mechanism of sesame to Corynespora leaf spot is highly important for the control of infection. In this study, the leaves of the sesame resistant variety (R) and the sesame susceptible variety (S) were collected at 0-48 hpi for transcriptome sequencing, and used a combined third-generation long-read and next-generation short-read technology approach to identify some key genes and main pathways related to resistance. RESULTS The gene expression levels of the two sesame varieties were significantly different at 0, 6, 12, 24, 36 and 48 hpi, indicating that the up-regulation of differentially expressed genes in the R might enhanced the resistance. Moreover, combined with the phenotypic observations of sesame leaves inoculated at different time points, we found that 12 hpi was the key time point leading to the resistance difference between the two sesame varieties at the molecular level. The WGCNA identified two modules significantly associated with disease resistance, and screened out 10 key genes that were highly expressed in R but low expressed in S, which belonged to transcription factors (WRKY, AP2/ERF-ERF, and NAC types) and protein kinases (RLK-Pelle_DLSV, RLK-Pelle_SD-2b, and RLK-Pelle_WAK types). These genes could be the key response factors in the response of sesame to infection by Corynespora cassiicola. GO and KEGG enrichment analysis showed that specific modules could be enriched, which manifested as enrichment in biologically important pathways, such as plant signalling hormone transduction, plant-pathogen interaction, carbon metabolism, phenylpropanoid biosynthesis, glutathione metabolism, MAPK and other stress-related pathways. CONCLUSIONS This study provides an important resource of genes contributing to disease resistance and will deepen our understanding of the regulation of disease resistance, paving the way for further molecular breeding of sesame.
Collapse
Affiliation(s)
- Min Jia
- Key Laboratory of IPM of Pests on Crop (Southern North China), Ministry of Agriculture, Key Laboratory of Crop Pest Control of Henan, Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, 450002, China
- Key Laboratory of Specific Oilseed Crops Genomics of Henan Province, Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, 450002, China
| | - Yunxia Ni
- Key Laboratory of IPM of Pests on Crop (Southern North China), Ministry of Agriculture, Key Laboratory of Crop Pest Control of Henan, Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, 450002, China.
- Key Laboratory of Specific Oilseed Crops Genomics of Henan Province, Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, 450002, China.
| | - Hui Zhao
- Key Laboratory of IPM of Pests on Crop (Southern North China), Ministry of Agriculture, Key Laboratory of Crop Pest Control of Henan, Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, 450002, China
- Key Laboratory of Specific Oilseed Crops Genomics of Henan Province, Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, 450002, China
| | - Xintao Liu
- Key Laboratory of IPM of Pests on Crop (Southern North China), Ministry of Agriculture, Key Laboratory of Crop Pest Control of Henan, Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, 450002, China
| | - Wenqing Yan
- Key Laboratory of IPM of Pests on Crop (Southern North China), Ministry of Agriculture, Key Laboratory of Crop Pest Control of Henan, Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, 450002, China
| | - Xinbei Zhao
- Key Laboratory of IPM of Pests on Crop (Southern North China), Ministry of Agriculture, Key Laboratory of Crop Pest Control of Henan, Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, 450002, China
| | - Jing Wang
- Key Laboratory of IPM of Pests on Crop (Southern North China), Ministry of Agriculture, Key Laboratory of Crop Pest Control of Henan, Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, 450002, China
| | - Bipo He
- Key Laboratory of IPM of Pests on Crop (Southern North China), Ministry of Agriculture, Key Laboratory of Crop Pest Control of Henan, Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, 450002, China
| | - Hongyan Liu
- Key Laboratory of IPM of Pests on Crop (Southern North China), Ministry of Agriculture, Key Laboratory of Crop Pest Control of Henan, Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, 450002, China.
- Key Laboratory of Specific Oilseed Crops Genomics of Henan Province, Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, 450002, China.
| |
Collapse
|
5
|
Kondhare KR, Patil NS, Siddappa S, Banerjee AK, Hannapel DJ. Tandem Expression of a Mobile RNA and Its RNA-Binding Protein(s) Enhances Tuber Productivity in Potato. Int J Mol Sci 2023; 24:15754. [PMID: 37958738 PMCID: PMC10647900 DOI: 10.3390/ijms242115754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/07/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
A significant number of discoveries in past two decades have established the importance of long-distance signaling in controlling plant growth, development, and biotic and abiotic stress responses. Numerous mobile signals, such as mRNAs, proteins, including RNA-binding proteins, small RNAs, sugars, and phytohormones, are shown to regulate various agronomic traits such as flowering, fruit, seed development, and tuberization. Potato is a classic model tuber crop, and several mobile signals are known to govern tuber development. However, it is unknown if these mobile signals have any synergistic effects on potato crop improvement. Here, we employed a simple innovative strategy to test the cumulative effects of a key mobile RNA, StBEL5, and its RNA-binding proteins, StPTB1, and -6 on tuber productivity of two potato cultivars, Solanum tuberosum cv. Désirée and subspecies andigena, using a multi-gene stacking approach. In this approach, the coding sequences of StBEL5 and StPTB1/6 are driven by their respective native promoters to efficiently achieve targeted expression in phloem for monitoring tuber productivity. We demonstrate that this strategy resulted in earliness for tuberization and enhanced tuber productivity by 2-4 folds under growth chamber, greenhouse, and field conditions. This multi-gene stacking approach could be adopted to other crops, whose agronomic traits are governed by mobile macromolecules, expanding the possibilities to develop crops with improved traits and enhanced yields.
Collapse
Affiliation(s)
- Kirtikumar R. Kondhare
- Biology Division, Indian Institute of Science Education and Research (IISER), Homi Bhabha Road, Pune 411008, Maharashtra, India; (K.R.K.); (N.S.P.)
| | - Nikita S. Patil
- Biology Division, Indian Institute of Science Education and Research (IISER), Homi Bhabha Road, Pune 411008, Maharashtra, India; (K.R.K.); (N.S.P.)
| | - Sundaresha Siddappa
- Crop Improvement Division, Central Potato Research Institute (CPRI), Shimla 171001, Himachal Pradesh, India
| | - Anjan K. Banerjee
- Biology Division, Indian Institute of Science Education and Research (IISER), Homi Bhabha Road, Pune 411008, Maharashtra, India; (K.R.K.); (N.S.P.)
| | - David J. Hannapel
- Plant Biology Major, 253 Horticulture Hall, Iowa State University (ISU), Ames, IA 50011, USA
| |
Collapse
|
6
|
Olukayode T, Chen J, Zhao Y, Quan C, Kochian LV, Ham BK. Phloem-Mobile MYB44 Negatively Regulates Expression of PHOSPHATE TRANSPORTER 1 in Arabidopsis Roots. PLANTS (BASEL, SWITZERLAND) 2023; 12:3617. [PMID: 37896080 PMCID: PMC10610484 DOI: 10.3390/plants12203617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 10/03/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023]
Abstract
Phosphorus (P) is an essential plant macronutrient; however, its availability is often limited in soils. Plants have evolved complex mechanisms for efficient phosphate (Pi) absorption, which are responsive to changes in external and internal Pi concentration, and orchestrated through local and systemic responses. To explore these systemic Pi responses, here we identified AtMYB44 as a phloem-mobile mRNA, an Arabidopsis homolog of Cucumis sativus MYB44, that is responsive to the Pi-starvation stress. qRT-PCR assays revealed that AtMYB44 was up-regulated and expressed in both shoot and root in response to Pi-starvation stress. The atmyb44 mutant displayed higher shoot and root biomass compared to wild-type plants, under Pi-starvation conditions. Interestingly, the expression of PHOSPHATE TRANSPORTER1;2 (PHT1;2) and PHT1;4 was enhanced in atmyb44 in response to a Pi-starvation treatment. A split-root assay showed that AtMYB44 expression was systemically regulated under Pi-starvation conditions, and in atmyb44, systemic controls on PHT1;2 and PHT1;4 expression were moderately disrupted. Heterografting assays confirmed graft transmission of AtMYB44 transcripts, and PHT1;2 and PHT1;4 expression was decreased in heterografted atmyb44 rootstocks. Taken together, our findings support the hypothesis that mobile AtMYB44 mRNA serves as a long-distance Pi response signal, which negatively regulates Pi transport and utilization in Arabidopsis.
Collapse
Affiliation(s)
- Toluwase Olukayode
- Global Institute for Food Security (GIFS), University of Saskatchewan, 421 Downey Rd, Saskatoon, SK S7N 4L8, Canada; (T.O.); (J.C.); (Y.Z.); (C.Q.); (L.V.K.)
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK S7N 5E2, Canada
| | - Jieyu Chen
- Global Institute for Food Security (GIFS), University of Saskatchewan, 421 Downey Rd, Saskatoon, SK S7N 4L8, Canada; (T.O.); (J.C.); (Y.Z.); (C.Q.); (L.V.K.)
| | - Yang Zhao
- Global Institute for Food Security (GIFS), University of Saskatchewan, 421 Downey Rd, Saskatoon, SK S7N 4L8, Canada; (T.O.); (J.C.); (Y.Z.); (C.Q.); (L.V.K.)
| | - Chuanhezi Quan
- Global Institute for Food Security (GIFS), University of Saskatchewan, 421 Downey Rd, Saskatoon, SK S7N 4L8, Canada; (T.O.); (J.C.); (Y.Z.); (C.Q.); (L.V.K.)
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK S7N 5E2, Canada
| | - Leon V. Kochian
- Global Institute for Food Security (GIFS), University of Saskatchewan, 421 Downey Rd, Saskatoon, SK S7N 4L8, Canada; (T.O.); (J.C.); (Y.Z.); (C.Q.); (L.V.K.)
- Department of Plant Science, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8, Canada
| | - Byung-Kook Ham
- Global Institute for Food Security (GIFS), University of Saskatchewan, 421 Downey Rd, Saskatoon, SK S7N 4L8, Canada; (T.O.); (J.C.); (Y.Z.); (C.Q.); (L.V.K.)
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK S7N 5E2, Canada
| |
Collapse
|
7
|
Hao L, Wang S, Zhang Y, Xu C, Yu Y, Xiang L, Huang W, Tian B, Li T, Wang S. Long-distance transport of the pear HMGR1 mRNA via the phloem is associated with enhanced salt tolerance. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 332:111705. [PMID: 37059127 DOI: 10.1016/j.plantsci.2023.111705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/03/2023] [Accepted: 04/08/2023] [Indexed: 05/27/2023]
Abstract
Grafting is the main asexual propagation method for horticultural crops and can enhance their resistance to biotic or abiotic stress. Many mRNAs can be transported over long distances through the graft union, however, the function of mobile mRNAs remains poorly understood. Here, we exploited lists of candidate mobile mRNAs harboring potential 5-methylcytosine (m5C) modification in pear (Pyrus betulaefolia). dCAPS RT-PCR and RT-PCR were employed to demonstrate the mobility of the 3-hydroxy-3-methylglutaryl-coenzyme A reductase1 (PbHMGR1) mRNA in grafted plants of both pear and tobacco (Nicotiana tabacum). Overexpressing PbHMGR1 in tobacco plants enhanced salt tolerance during seed germination. In addition, both histochemical staining and GUS expression analysis showed that PbHMGR1 could directly respond to salt stress. Furthermore, it was found that the relative abundance of PbHMGR1 increased in heterografted scion, which avoided serious damage under salt stress. Collectively, these findings established that PbHMGR1 mRNA could act as a salt-responsive signal and move through the graft union to enhance salt tolerance of scion, which might be used as a new plant breeding technique to improve resistance of scion through a stress-tolerant rootstock.
Collapse
Affiliation(s)
- Li Hao
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China; College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Shengyuan Wang
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Yi Zhang
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Chaoran Xu
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Yunfei Yu
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Ling Xiang
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Wenting Huang
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China; College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Baihui Tian
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Tianzhong Li
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China.
| | - Shengnan Wang
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
8
|
Wang S, Duan X, Wang S, Hao L, Zhang Y, Xu C, Yu Y, Xiang L, Jiang F, Heinlein M, Li T, Zhang W. A chaperonin containing T-complex polypeptide-1 facilitates the formation of the PbWoxT1-PbPTB3 ribonucleoprotein complex for long-distance RNA trafficking in Pyrus betulaefolia. THE NEW PHYTOLOGIST 2023; 238:1115-1128. [PMID: 36751904 DOI: 10.1111/nph.18789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/29/2023] [Indexed: 06/18/2023]
Abstract
Numerous plant endogenous mRNAs move via phloem and thus affect the growth and development of long-distant organs. mRNAs are transported with RNA-binding proteins forming a ribonucleoprotein complex. However, it remains elusive how such RNP complex assembles and facilitates mRNA trafficking. Protease digestion and RNA immunoprecipitation were used to investigate the RNP assembly function of the complete Chaperonin Containing T-complex Polypeptide-1. In situ hybridization, hairy root transformation, microprojectile bombardment, and grafting experiments demonstrate the role of CCT complex in the transport of a PbWoxT1-PbPTB3 RNP complex in Pyrus betulaefolia. PbCCT5 silenced caused defective movement of GFP-PbPTB3 and GFP-PbWoxT1 from hairy roots to new leaves via the phloem. PbCCT5 is shown to interact with PbPTB3. PbCCT complex enhanced PbPTB3 stabilization and permitted assembly of PbWoxT1 and PbPTB3 into an RNP complex. Furthermore, silencing of individual CCT subunits inhibited the intercellular movement of GFP-PbPTB3 and long-distance trafficking of PbWoxT1 and PbPTB3 in grafted plants. Taken together, the CCT complex assembles PbPTB3 and PbWoxT1 into an RNP complex in the phloem in order to facilitate the long-distance trafficking of PbWoxT1 in P. betulaefolia. This study therefore provides important insights into the mechanism of RNP complex formation and transport.
Collapse
Affiliation(s)
- Shengnan Wang
- College of Horticulture, China Agricultural University, 100193, Beijing, China
| | - Xuwei Duan
- College of Horticulture, China Agricultural University, 100193, Beijing, China
| | - Shengyuan Wang
- College of Horticulture, China Agricultural University, 100193, Beijing, China
| | - Li Hao
- College of Horticulture, China Agricultural University, 100193, Beijing, China
| | - Yi Zhang
- College of Horticulture, China Agricultural University, 100193, Beijing, China
| | - Chaoran Xu
- College of Horticulture, China Agricultural University, 100193, Beijing, China
| | - Yunfei Yu
- College of Horticulture, China Agricultural University, 100193, Beijing, China
| | - Ling Xiang
- College of Horticulture, China Agricultural University, 100193, Beijing, China
| | - Feng Jiang
- College of Horticulture, China Agricultural University, 100193, Beijing, China
| | - Manfred Heinlein
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, 67084, Strasbourg, France
| | - Tianzhong Li
- College of Horticulture, China Agricultural University, 100193, Beijing, China
| | - Wenna Zhang
- College of Horticulture, China Agricultural University, 100193, Beijing, China
| |
Collapse
|
9
|
Yu Y, Wang S, Xu C, Xiang L, Huang W, Zhang X, Tian B, Mao C, Li T, Wang S. The β-1,3-Glucanase Degrades Callose at Plasmodesmata to Facilitate the Transport of the Ribonucleoprotein Complex in Pyrus betulaefolia. Int J Mol Sci 2023; 24:ijms24098051. [PMID: 37175758 PMCID: PMC10179145 DOI: 10.3390/ijms24098051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/13/2023] [Accepted: 04/18/2023] [Indexed: 05/15/2023] Open
Abstract
Grafting is widely used to improve the stress tolerance and the fruit yield of horticultural crops. Ribonucleoprotein complexes formed by mRNAs and proteins play critical roles in the communication between scions and stocks of grafted plants. In Pyrus betulaefolia, ankyrin was identified previously to promote the long-distance movement of the ribonucleoprotein complex(PbWoxT1-PbPTB3) by facilitating callose degradation at plasmodesmata. However, the mechanism of the ankyrin-mediated callose degradation remains elusive. In this study, we discovered a β-1,3-glucanase (EC 3.2.1.39, PbPDBG) using ankyrin as a bait from plasmodesmata by co-immunoprecipitation and mass spectrometry. Ankyrin was required for the plasmodesmata-localization of PbPDBG. The grafting and bombardment experiments indicated that overexpressing PbPDBG resulted in decreased callose content at plasmodesmata, and thereby promoting the long-distance transport of the ribonucleoprotein complex. Altogether, our findings revealed that PbPDBG was the key factor in ankyrin-mediated callose degradation at plasmodesmata.
Collapse
Affiliation(s)
- Yunfei Yu
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Shengyuan Wang
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Chaoran Xu
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Ling Xiang
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Wenting Huang
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Xiao Zhang
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Baihui Tian
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Chong Mao
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Tianzhong Li
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Shengnan Wang
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China
| |
Collapse
|
10
|
Gao J, Zhang L, Du H, Dong Y, Zhen S, Wang C, Wang Q, Yang J, Zhang P, Zheng X, Li Y. An ARF24-ZmArf2 module influences kernel size in different maize haplotypes. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023. [PMID: 36866706 DOI: 10.1111/jipb.13473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 02/28/2023] [Indexed: 06/19/2023]
Abstract
Members of the ADP-ribosylation factor family, which are GTP-binding proteins, are involved in metabolite transport, cell division, and expansion. Although there has been a significant amount of research on small GTP-binding proteins, their roles and functions in regulating maize kernel size remain elusive. Here, we identified ZmArf2 as a maize ADP-ribosylation factor-like family member that is highly conserved during evolution. Maize zmarf2 mutants showed a characteristic smaller kernel size. Conversely, ZmArf2 overexpression increased maize kernel size. Furthermore, heterologous expression of ZmArf2 dramatically elevated Arabidopsis and yeast growth by promoting cell division. Using expression quantitative trait loci (eQTL) analysis, we determined that ZmArf2 expression levels in various lines were mainly associated with variation at the gene locus. The promoters of ZmArf2 genes could be divided into two types, pS and pL, that were significantly associated with both ZmArf2 expression levels and kernel size. In yeast-one-hybrid screening, maize Auxin Response Factor 24 (ARF24) is directly bound to the ZmArf2 promoter region and negatively regulated ZmArf2 expression. Notably, the pS and pL promoter types each contained an ARF24 binding element: an auxin response element (AuxRE) in pS and an auxin response region (AuxRR) in pL, respectively. ARF24 binding affinity to AuxRR was much higher compared with AuxRE. Overall, our results establish that the small G-protein ZmArf2 positively regulates maize kernel size and reveals the mechanism of its expression regulation.
Collapse
Affiliation(s)
- Jie Gao
- State Key Laboratory of Wheat and Maize Crop Science, Henan Maize Engineering Technology Joint Center, College of Agronomy, and Center for Crop Genome Engineering, Longzi Lake Campus, Henan Agricultural University, Zhengzhou, 450046, China
| | - Long Zhang
- State Key Laboratory of Wheat and Maize Crop Science, Henan Maize Engineering Technology Joint Center, College of Agronomy, and Center for Crop Genome Engineering, Longzi Lake Campus, Henan Agricultural University, Zhengzhou, 450046, China
| | - Haonan Du
- State Key Laboratory of Wheat and Maize Crop Science, Henan Maize Engineering Technology Joint Center, College of Agronomy, and Center for Crop Genome Engineering, Longzi Lake Campus, Henan Agricultural University, Zhengzhou, 450046, China
| | - Yongbin Dong
- State Key Laboratory of Wheat and Maize Crop Science, Henan Maize Engineering Technology Joint Center, College of Agronomy, and Center for Crop Genome Engineering, Longzi Lake Campus, Henan Agricultural University, Zhengzhou, 450046, China
| | - Sihan Zhen
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Chen Wang
- State Key Laboratory of Wheat and Maize Crop Science, Henan Maize Engineering Technology Joint Center, College of Agronomy, and Center for Crop Genome Engineering, Longzi Lake Campus, Henan Agricultural University, Zhengzhou, 450046, China
| | - Qilei Wang
- State Key Laboratory of Wheat and Maize Crop Science, Henan Maize Engineering Technology Joint Center, College of Agronomy, and Center for Crop Genome Engineering, Longzi Lake Campus, Henan Agricultural University, Zhengzhou, 450046, China
| | - Jingyu Yang
- State Key Laboratory of Wheat and Maize Crop Science, Henan Maize Engineering Technology Joint Center, College of Agronomy, and Center for Crop Genome Engineering, Longzi Lake Campus, Henan Agricultural University, Zhengzhou, 450046, China
| | - Paifeng Zhang
- State Key Laboratory of Wheat and Maize Crop Science, Henan Maize Engineering Technology Joint Center, College of Agronomy, and Center for Crop Genome Engineering, Longzi Lake Campus, Henan Agricultural University, Zhengzhou, 450046, China
| | - Xu Zheng
- State Key Laboratory of Wheat and Maize Crop Science, Henan Maize Engineering Technology Joint Center, College of Agronomy, and Center for Crop Genome Engineering, Longzi Lake Campus, Henan Agricultural University, Zhengzhou, 450046, China
| | - Yuling Li
- State Key Laboratory of Wheat and Maize Crop Science, Henan Maize Engineering Technology Joint Center, College of Agronomy, and Center for Crop Genome Engineering, Longzi Lake Campus, Henan Agricultural University, Zhengzhou, 450046, China
| |
Collapse
|
11
|
Couée I. Interplay of Methodology and Conceptualization in Plant Abiotic Stress Signaling. Methods Mol Biol 2023; 2642:3-22. [PMID: 36944870 DOI: 10.1007/978-1-0716-3044-0_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Characterizing the mechanisms of plant sensitivity and reactivity to physicochemical cues related to abiotic stresses is of utmost importance for understanding plant-environment interactions, adaptations of the sessile lifestyle, and the evolutionary dynamics of plant species and populations. Moreover, plant communities are confronted with an environmental context of global change, involving climate changes, planetary pollutions of soils, waters and atmosphere, and additional anthropogenic changes. The mechanisms through which plants perceive abiotic stress stimuli and transduce stress perception into physiological responses constitute the primary line of interaction between the plant and the environment, and therefore between the plant and global changes. Understanding how plants perceive complex combinations of abiotic stress signals and transduce the resulting information into coordinated responses of abiotic stress tolerance is therefore essential for devising genetic, agricultural, and agroecological strategies that can ensure climate change resilience, global food security, and environmental protection. Discovery and characterization of sensing and signaling mechanisms of plant cells are usually carried out within the general framework of eukaryotic sensing and signal transduction. However, further progress depends on a close relationship between the conceptualization of sensing and signaling processes with adequate methodologies and techniques that encompass biochemical and biophysical approaches, cell biology, molecular biology, and genetics. The integration of subcellular and cellular analyses as well as the integration of in vitro and in vivo analyses are particularly important to evaluate the efficiency of sensing and signaling mechanisms in planta. Major progress has been made in the last 10-20 years with the caveat that cell-specific processes and in vivo processes still remain difficult to analyze and with the additional caveat that the range of plant models under study remains rather limited relatively to plant biodiversity and to the diversity of stress situations.
Collapse
Affiliation(s)
- Ivan Couée
- UMR 6553 ECOBIO (Ecosystems-Biodiversity-Evolution), Centre National de la Recherche Scientifique (CNRS), University of Rennes, Rennes, France.
| |
Collapse
|
12
|
Zhang Y, Wang S, Li W, Wang S, Hao L, Xu C, Yu Y, Xiang L, Li T, Jiang F. A long noncoding RNA HILinc1 enhances pear thermotolerance by stabilizing PbHILT1 transcripts through complementary base pairing. Commun Biol 2022; 5:1134. [PMID: 36289367 PMCID: PMC9606298 DOI: 10.1038/s42003-022-04010-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 09/20/2022] [Indexed: 12/04/2022] Open
Abstract
As global warming intensifies, heat stress has become a major environmental constraint threatening crop production and quality worldwide. Here, we characterize Heat-induced long intergenic noncoding RNA 1 (HILinc1), a cytoplasm-enriched lincRNA that plays a key role in thermotolerance regulation of pear (Pyrus spp.). HILinc1 Target 1 (PbHILT1) which is the target transcript of HILinc1, was stabilized via complementary base pairing to upregulate its expression. PbHILT1 could bind to Heat shock transcription factor A1b (PbHSFA1b) to enhance its transcriptional activity, leading to the upregulation of a major downstream transcriptional regulator, Multiprotein bridging factor 1c (PbMBF1c), during heat response. Transient overexpressing of either HILinc1 or PbHILT1 increases thermotolerance in pear, while transient silencing of HILinc1 or PbHILT1 makes pear plants more heat sensitive. These findings provide evidences for a new regulatory mechanism by which HILinc1 facilitates PbHSFA1b activity and enhances pear thermotolerance through stabilizing PbHILT1 transcripts. Heat stress in pear cultivar results in upregulation of long non-coding RNA HILinc1, which binds to and stabilizes PbHILT1 mRNA, which codes for a protein that interacts with heat shock factor A1b, improving thermotolerance.
Collapse
Affiliation(s)
- Yi Zhang
- grid.22935.3f0000 0004 0530 8290Collage of Horticulture, China Agricultural University, 100193 Beijing, China
| | - Shengnan Wang
- grid.22935.3f0000 0004 0530 8290Collage of Horticulture, China Agricultural University, 100193 Beijing, China
| | - Wei Li
- grid.22935.3f0000 0004 0530 8290Collage of Horticulture, China Agricultural University, 100193 Beijing, China
| | - Shengyuan Wang
- grid.22935.3f0000 0004 0530 8290Collage of Horticulture, China Agricultural University, 100193 Beijing, China
| | - Li Hao
- grid.22935.3f0000 0004 0530 8290Collage of Horticulture, China Agricultural University, 100193 Beijing, China
| | - Chaoran Xu
- grid.22935.3f0000 0004 0530 8290Collage of Horticulture, China Agricultural University, 100193 Beijing, China
| | - Yunfei Yu
- grid.22935.3f0000 0004 0530 8290Collage of Horticulture, China Agricultural University, 100193 Beijing, China
| | - Ling Xiang
- grid.22935.3f0000 0004 0530 8290Collage of Horticulture, China Agricultural University, 100193 Beijing, China
| | - Tianzhong Li
- grid.22935.3f0000 0004 0530 8290Collage of Horticulture, China Agricultural University, 100193 Beijing, China
| | - Feng Jiang
- grid.22935.3f0000 0004 0530 8290Collage of Horticulture, China Agricultural University, 100193 Beijing, China
| |
Collapse
|
13
|
Yang L, Xia L, Zeng Y, Han Q, Zhang S. Grafting enhances plants drought resistance: Current understanding, mechanisms, and future perspectives. FRONTIERS IN PLANT SCIENCE 2022; 13:1015317. [PMID: 36275555 PMCID: PMC9583147 DOI: 10.3389/fpls.2022.1015317] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 09/20/2022] [Indexed: 05/28/2023]
Abstract
Drought, one of the most severe and complex abiotic stresses, is increasingly occurring due to global climate change and adversely affects plant growth and yield. Grafting is a proven and effective tool to enhance plant drought resistance ability by regulating their physiological and molecular processes. In this review, we have summarized the current understanding, mechanisms, and perspectives of the drought stress resistance of grafted plants. Plants resist drought through adaptive changes in their root, stem, and leaf morphology and structure, stomatal closure modulation to reduce transpiration, activating osmoregulation, enhancing antioxidant systems, and regulating phytohormones and gene expression changes. Additionally, the mRNAs, miRNAs and peptides crossing the grafted healing sites also confer drought resistance. However, the interaction between phytohormones, establishment of the scion-rootstock communication through genetic materials to enhance drought resistance is becoming a hot research topic. Therefore, our review provides not only physiological evidences for selecting drought-resistant rootstocks or scions, but also a clear understanding of the potential molecular effects to enhance drought resistance using grafted plants.
Collapse
Affiliation(s)
- Le Yang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Linchao Xia
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yi Zeng
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Qingquan Han
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, Yantai, China
| | - Sheng Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| |
Collapse
|
14
|
Wang S, Yu Y, Xu C, Xiang L, Huang W, Zhang C, Sun S, Li T, Wang S. PbANK facilitates the long-distance movement of the PbWoxT1-PbPTB3 RNP complex by degrading deposited callose. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 318:111232. [PMID: 35351304 DOI: 10.1016/j.plantsci.2022.111232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/10/2022] [Accepted: 02/19/2022] [Indexed: 06/14/2023]
Abstract
Grafting horticultural crops can result in phenotypic changes in the grafted materials due to the movement of macromolecular signals, including RNAs and proteins, across the graft union; however, little is known about the composition of trafficking ribonucleoprotein (RNP) complexes or how these macromolecules are transported. Here, we used the core of PbPTB3-PbWoxT1 RNP complex, PbPTB3, as bait to screen Pyrus betulaefolia cDNA library for its interaction partners. We identified an ankyrin protein, PbANK, that interacts with PbPTB3 to facilitate its transport through the phloem alongside PbWoxT1 mRNA. Heterografting experiments showed that silencing PbANK in rootstock prevented the transport of PbPTB3 and PbWoxT1 mRNA from the rootstock to the scion. Similarly, heterologous grafting experiments demonstrated that PbANK itself cannot be transported over long distances through a graft union. Fluorescence microscopy showed that silencing ANK affected the intercellular diffusion of PbPTB3 and increased callose deposition at plasmodesmata. Collectively, these findings demonstrate that PbANK mediates the long-distance movement of PbPTB3 and PbWoxT1 by degrading callose to increase the efficiency of cell-to-cell movement.
Collapse
Affiliation(s)
- Shengyuan Wang
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Yunfei Yu
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Chaoran Xu
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Ling Xiang
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Wenting Huang
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Chuan Zhang
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Shiyue Sun
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Tianzhong Li
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Shengnan Wang
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
15
|
Shen X, He J, Ping Y, Guo J, Hou N, Cao F, Li X, Geng D, Wang S, Chen P, Qin G, Ma F, Guan Q. The positive feedback regulatory loop of miR160-Auxin Response Factor 17-HYPONASTIC LEAVES 1 mediates drought tolerance in apple trees. PLANT PHYSIOLOGY 2022; 188:1686-1708. [PMID: 34893896 PMCID: PMC8896624 DOI: 10.1093/plphys/kiab565] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 11/10/2021] [Indexed: 05/25/2023]
Abstract
Drought stress tolerance is a complex trait regulated by multiple factors. Here, we demonstrate that the miRNA160-Auxin Response Factor 17 (ARF17)-HYPONASTIC LEAVES 1 module is crucial for apple (Malus domestica) drought tolerance. Using stable transgenic plants, we found that drought tolerance was improved by higher levels of Mdm-miR160 or MdHYL1 and by decreased levels of MdARF17, whereas reductions in MdHYL1 or increases in MdARF17 led to greater drought sensitivity. Further study revealed that modulation of drought tolerance was achieved through regulation of drought-responsive miRNA levels by MdARF17 and MdHYL1; MdARF17 interacted with MdHYL1 and bound to the promoter of MdHYL1. Genetic analysis further suggested that MdHYL1 is a direct downstream target of MdARF17. Importantly, MdARF17 and MdHYL1 regulated the abundance of Mdm-miR160. In addition, the Mdm-miR160-MdARF17-MdHYL1 module regulated adventitious root development. We also found that Mdm-miR160 can move from the scion to the rootstock in apple and tomato (Solanum lycopersicum), thereby improving root development and drought tolerance of the rootstock. Our study revealed the mechanisms by which the positive feedback loop of Mdm-miR160-MdARF17-MdHYL1 influences apple drought tolerance.
Collapse
Affiliation(s)
- Xiaoxia Shen
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jieqiang He
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yikun Ping
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Junxing Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Nan Hou
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Fuguo Cao
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xuewei Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Dali Geng
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shicong Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Pengxiang Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Gege Qin
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qingmei Guan
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
16
|
Liu W, Wang Q, Zhang R, Liu M, Wang C, Liu Z, Xiang C, Lu X, Zhang X, Li X, Wang T, Gao L, Zhang W. Rootstock-scion exchanging mRNAs participate in the pathways of amino acids and fatty acid metabolism in cucumber under early chilling stress. HORTICULTURE RESEARCH 2022; 9:uhac031. [PMID: 35184197 PMCID: PMC9039506 DOI: 10.1093/hr/uhac031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/29/2021] [Accepted: 12/30/2021] [Indexed: 06/14/2023]
Abstract
Cucumber (Cucumis sativus L.) often experiences chilling stress that limits their growth and productivity. Grafting is widely used to improve abiotic stress resistance by alternating a vigorous root system, suggesting there exists systemic signals communication between distant organs. mRNAs are reported to be evolving in fortification strategies by long-distance signaling when plants suffering from chilling stress. However, the potential function of mobile mRNAs alleviating chilling stress in grafted cucumber is still unknown. Here, the physiological changes, mobile mRNAs profiling, transcriptomic and metabolomic changes in above- and underground tissues of all graft combinations of cucumber and pumpkin responding to chilling stress were established and analyzed comprehensively. The co-relationship between the cluster of chilling-induced pumpkin mobile mRNAs with Differentially Expressed Genes (DEGs) and Differentially Intensive Metabolites (DIMs) revealed that four key chilling-induced pumpkin mobile mRNAs were highly related to glycine, serine and threonine synthesis and fatty acid β-oxidative degradation metabolism in cucumber tissues of heterografts. The verification of mobile mRNAs, potential transport of metabolites and exogenous application of key metabolites of glycerophospholipid metabolism pathway in cucumber seedlings confirmed that the role of mobile mRNAs in regulating chilling responses in grafted cucumber. Our results build a link between the long-distance mRNAs of chilling-tolerant pumpkin and the fatty acid β-oxidative degradation metabolism of chilling-sensitive cucumber. It helps to uncover the mechanism of signaling interaction between scion and stock responding to chilling tolerant in grafted cucumber.
Collapse
Affiliation(s)
- Wenqian Liu
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China
| | - Qing Wang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China
| | - Ruoyan Zhang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China
| | - Mengshuang Liu
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China
| | - Cuicui Wang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China
| | - Zixi Liu
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China
| | - Chenggang Xiang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China
- College of Life Science and Technology, HongHe University, Mengzi, Yunnan 661100, China
| | - Xiaohong Lu
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China
| | - Xiaojing Zhang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China
| | - Xiaojun Li
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China
| | - Tao Wang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China
| | - Lihong Gao
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China
| | - Wenna Zhang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China
| |
Collapse
|
17
|
Davoudi M, Song M, Zhang M, Chen J, Lou Q. Long-distance control of pumpkin rootstock over cucumber scion under drought stress as revealed by transcriptome sequencing and mobile mRNAs identifications. HORTICULTURE RESEARCH 2022; 9:uhab033. [PMID: 35043177 PMCID: PMC8854630 DOI: 10.1093/hr/uhab033] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 10/21/2021] [Indexed: 06/01/2023]
Abstract
Grafting with pumpkin rootstock is commonly used not only to improve the quality of cucumber fruits but also to confer biotic or abiotic stress tolerance. However, the molecular mechanism of grafted cucumbers to drought stress and the possible roles of mobile mRNAs to improve stress tolerance have remained obscure. Hence, we conducted transcriptome sequencing and combined it with morpho-physiological experiments to compare the response of homografts (cucumber as scion and rootstock) (C) and heterografts (cucumber as scion and pumpkin as rootstock) (P) to drought stress. After applying drought stress, homografts and heterografts expressed 2960 and 3088 genes in response to drought stress, respectively. The identified DEGs in heterografts under drought stress were categorized into different stress-responsive groups, such as carbohydrate metabolism (involved in osmotic adjustment by sugar accumulation), lipid and cell wall metabolism (involved in cell membrane integrity by a reduction in lipid peroxidation), redox homeostasis (increased antioxidant enzymes activities), phytohormone (increased ABA content), protein kinases and transcription factors (TFs) using MapMan software. Earlier and greater H2O2 accumulation in xylem below the graft union was accompanied by leaf ABA accumulation in heterografts in response to drought stress. Greater leaf ABA helped heterografted cucumbers to sense and respond to drought stress earlier than homografts. The timely response of heterografts to drought stress led to maintain higher water content in the leaves even in the late stage of drought stress. The identified mobile mRNAs (mb-mRNAs) in heterografts were mostly related to photosynthesis which would be the possible reason for improved chlorophyll content and maximum photochemical efficiency of PSII (Fv/Fm). The existence of some stress-responsive pumpkin (rootstock) mRNAs in cucumber (scion), such as heat shock protein (HSP70, a well-known stress-responsive gene), led to the higher proline accumulation than homografts. The expression of the mobile and immobile stress-responsive mRNAs and timely response of heterografts to drought stress could improve drought tolerance in pumpkin-rooted plants.
Collapse
Affiliation(s)
- Marzieh Davoudi
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street 13 No.1, Nanjing 210095, China
| | - Mengfei Song
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street 13 No.1, Nanjing 210095, China
| | - Mengru Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street 13 No.1, Nanjing 210095, China
| | - Jinfeng Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street 13 No.1, Nanjing 210095, China
| | - Qunfeng Lou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street 13 No.1, Nanjing 210095, China
| |
Collapse
|
18
|
Zhang G, Kong G, Li Y. Long-distance communication through systemic macromolecular signaling mediates stress defense responses in plants. PHYSIOLOGIA PLANTARUM 2021; 173:1926-1934. [PMID: 34431527 DOI: 10.1111/ppl.13535] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/23/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
Land plants have a unique vascular bundle system that ranges in length from a few centimeters to hundreds of meters. These systems integrate the various organs of the whole plant, perform material exchange between different plant tissues and mediate the transmission of signals between cells or over long distances. Grafting and parasitism can reshape the vascular tissues of different ecotypes or species and represent two important systems for studying plant systemic signaling. In recent years, with the advancement of genomics and sequencing technology, the transportation, identification, and function of systemic plant macromolecules have been extensively studied. Here, we review the current body of knowledge of the transport pathways and regulatory mechanisms of macromolecules in plants and assess systemic, long-distance signal trafficking that mediates stress responses, and plant-environment or plant-insect community interactions. Additionally, we propose several methods for identifying mobile mRNAs and proteins. Finally, we discuss the challenges facing systemic signaling research and put forth the most urgent questions that need to be answered to advance our understanding of plant systemic signaling.
Collapse
Affiliation(s)
- Guanghai Zhang
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, Yunnan, China
| | - Guanghui Kong
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, Yunnan, China
| | - Yongping Li
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, Yunnan, China
| |
Collapse
|
19
|
Lezzhov AA, Morozov SY, Solovyev AG. Phloem Exit as a Possible Control Point in Selective Systemic Transport of RNA. FRONTIERS IN PLANT SCIENCE 2021; 12:739369. [PMID: 34899773 PMCID: PMC8660857 DOI: 10.3389/fpls.2021.739369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 10/28/2021] [Indexed: 06/01/2023]
Affiliation(s)
- Alexander A. Lezzhov
- Faculty of Bioengineering and Bioinformatics, Moscow State University, Moscow, Russia
- A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia
| | - Sergey Y. Morozov
- A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia
- Department of Virology, Faculty of Biology, Moscow State University, Moscow, Russia
| | - Andrey G. Solovyev
- A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia
- Department of Virology, Faculty of Biology, Moscow State University, Moscow, Russia
| |
Collapse
|
20
|
Gao Y, Yang Q, Yan X, Wu X, Yang F, Li J, Wei J, Ni J, Ahmad M, Bai S, Teng Y. High-quality genome assembly of 'Cuiguan' pear (Pyrus pyrifolia) as a reference genome for identifying regulatory genes and epigenetic modifications responsible for bud dormancy. HORTICULTURE RESEARCH 2021; 8:197. [PMID: 34465760 PMCID: PMC8408243 DOI: 10.1038/s41438-021-00632-w] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 06/09/2021] [Accepted: 06/13/2021] [Indexed: 05/26/2023]
Abstract
Dormancy-associated MADS-box (DAM) genes serve as crucial regulators of the endodormancy cycle in rosaceous plants. Although pear DAM genes have been identified previously, the lack of a high-quality reference genome and techniques to study gene function have prevented accurate genome-wide analysis and functional verification of such genes. Additionally, the contribution of other genes to the regulation of endodormancy release remains poorly understood. In this study, a high-quality genome assembly for 'Cuiguan' pear (Pyrus pyrifolia), which is a leading cultivar with a low chilling requirement cultivated in China, was constructed using PacBio and Hi-C technologies. Using this genome sequence, we revealed that pear DAM genes were tandemly clustered on Chr8 and Chr15 and were differentially expressed in the buds between 'Cuiguan' and the high-chilling-requirement cultivar 'Suli' during the dormancy cycle. Using a virus-induced gene silencing system, we determined the repressive effects of DAM genes on bud break. Several novel genes potentially involved in the regulation of endodormancy release were identified by RNA sequencing and H3K4me3 chromatin immunoprecipitation sequencing analyses of 'Suli' buds during artificial chilling using the new reference genome. Our findings enrich the knowledge of the regulatory mechanism underlying endodormancy release and chilling requirements and provide a foundation for the practical regulation of dormancy release in fruit trees as an adaptation to climate change.
Collapse
Affiliation(s)
- Yuhao Gao
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Qinsong Yang
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- Key Laboratory for Silviculture and Conservation, Ministry of Education, Beijing Forestry University, Haidian District, Beijing, 100083, China
| | - Xinhui Yan
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Xinyue Wu
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Feng Yang
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Jianzhao Li
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- College of Agriculture, Ludong University, Yantai, Shandong, 264025, China
| | - Jia Wei
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Junbei Ni
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Mudassar Ahmad
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Songling Bai
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| | - Yuanwen Teng
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- Hainan Institute of Zhejiang University, Sanya, Hainan, 572000, China
| |
Collapse
|
21
|
Liu X, Zhang A, Zhao J, Shang J, Zhu Z, Wu X, Zha D. Transcriptome profiling reveals potential genes involved in browning of fresh-cut eggplant (Solanum melongena L.). Sci Rep 2021; 11:16081. [PMID: 34373468 PMCID: PMC8352891 DOI: 10.1038/s41598-021-94831-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 07/16/2021] [Indexed: 11/25/2022] Open
Abstract
Fresh-cut processing promotes enzymatic browning of fresh fruits and vegetables, which negatively affects the product appearance and impacts their nutrition. We used RNA-sequencing to analyze the transcriptomic changes occurring during the browning of fresh-cut eggplant fruit samples from both browning-sensitive and browning-resistant cultivars to investigate the molecular mechanisms involved in browning. A total of 8347 differentially expressed genes were identified, of which 62 genes were from six gene families (i.e., PPO, PAL, POD, CAT, APX, and GST) potentially associated with enzymatic browning. Furthermore, using qRT-PCR, we verified 231 differentially regulated transcription factors in fresh-cut eggplant fruits. The enzyme activities of PPO, POD, PAL, and CAT in '36' were significantly higher than those of 'F' fresh-cut for 15 min. Both PPO and POD play a major role in the browning of eggplant pulp and might therefore act synergistically in the browning process. Meanwhile, qPCR results of 18 browning related genes randomly screened in 15 eggplant materials with different browning tolerance showed variant-specific expression of genes. Lastly, gene regulatory networks were constructed to identify the browning-related genes. This work provides a basis for future molecular studies of eggplants, and lays a theoretical foundation for the development of browning-resistant fresh-cut fruits and vegetables.
Collapse
Affiliation(s)
- Xiaohui Liu
- Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
- Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai, 201403, China
- College of Food Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Aidong Zhang
- Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
- Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai, 201403, China
| | - Jie Zhao
- Pudong New District Agro-Technology Extension Center, Shanghai, 201201, China
| | - Jing Shang
- Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
- Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai, 201403, China
- College of Food Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Zongwen Zhu
- Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
- Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai, 201403, China
| | - Xuexia Wu
- Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China.
- Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai, 201403, China.
| | - Dingshi Zha
- Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China.
- Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai, 201403, China.
| |
Collapse
|
22
|
Kondhare KR, Patil NS, Banerjee AK. A historical overview of long-distance signalling in plants. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:4218-4236. [PMID: 33682884 DOI: 10.1093/jxb/erab048] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 02/01/2021] [Indexed: 06/12/2023]
Abstract
Be it a small herb or a large tree, intra- and intercellular communication and long-distance signalling between distant organs are crucial for every aspect of plant development. The vascular system, comprising xylem and phloem, acts as a major conduit for the transmission of long-distance signals in plants. In addition to expanding our knowledge of vascular development, numerous reports in the past two decades revealed that selective populations of RNAs, proteins, and phytohormones function as mobile signals. Many of these signals were shown to regulate diverse physiological processes, such as flowering, leaf and root development, nutrient acquisition, crop yield, and biotic/abiotic stress responses. In this review, we summarize the significant discoveries made in the past 25 years, with emphasis on key mobile signalling molecules (mRNAs, proteins including RNA-binding proteins, and small RNAs) that have revolutionized our understanding of how plants integrate various intrinsic and external cues in orchestrating growth and development. Additionally, we provide detailed insights on the emerging molecular mechanisms that might control the selective trafficking and delivery of phloem-mobile RNAs to target tissues. We also highlight the cross-kingdom movement of mobile signals during plant-parasite relationships. Considering the dynamic functions of these signals, their implications in crop improvement are also discussed.
Collapse
Affiliation(s)
- Kirtikumar R Kondhare
- Plant Molecular Biology Unit, Biochemical Sciences Division, CSIR-National Chemical Laboratory (NCL) Pune, Maharashtra, India
| | - Nikita S Patil
- Biology Division, Indian Institute of Science Education and Research (IISER) Pune, Maharashtra, India
| | - Anjan K Banerjee
- Biology Division, Indian Institute of Science Education and Research (IISER) Pune, Maharashtra, India
| |
Collapse
|