1
|
Massafra A, Forlani S, Periccioli L, Rotasperti L, Mizzotti C, Mariotti L, Tagliani A, Masiero S. NAC100 regulates silique growth during the initial phase of fruit development through the gibberellin biosynthetic pathway. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 352:112344. [PMID: 39638093 DOI: 10.1016/j.plantsci.2024.112344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 10/31/2024] [Accepted: 12/01/2024] [Indexed: 12/07/2024]
Abstract
The NAC transcription factor family is a large class of DNA-binding proteins found in several plant species. In the model plant Arabidopsis thaliana, NAC transcription factors are expressed in different organs, and they are known to modulate many diverse developmental processes, such as meristem formation, flower and fruit development, leaf and fruit senescence. From a previous time-lapse transcriptomic analysis of developing siliques performed by our group, we found a NAC transcription factor, NAC100, that is upregulated during silique development. In this work, we characterized the role of the NAC100 transcription factor and demonstrated that NAC100 contributes to regulating silique growth during the initial phase of their development. nac100 mutant siliques are smaller but such defects can be rescued through the application of exogenous bioactive gibberellin. Gene expression analysis, transactivation assay and endogenous gibberellin quantification indicate that NAC100 modulates gibberellin metabolism, by both directly and indirectly regulating GA-metabolic genes expression, ultimately affecting silique elongation.
Collapse
Affiliation(s)
- Annamaria Massafra
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - Sara Forlani
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - Lorenzo Periccioli
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - Lisa Rotasperti
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - Chiara Mizzotti
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - Lorenzo Mariotti
- Department of Agriculture, Food and Environment, University of Pisa, Pisa 56124, Italy
| | - Andrea Tagliani
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy.
| | - Simona Masiero
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
2
|
Wang X, Wen H, Suprun A, Zhu H. Ethylene Signaling in Regulating Plant Growth, Development, and Stress Responses. PLANTS (BASEL, SWITZERLAND) 2025; 14:309. [PMID: 39942870 PMCID: PMC11820588 DOI: 10.3390/plants14030309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/18/2025] [Accepted: 01/18/2025] [Indexed: 02/16/2025]
Abstract
Ethylene is a gaseous plant hormone that plays a crucial role in coordinating various physiological processes in plants. It acts as a key mediator, integrating both endogenous developmental cues and external environmental signals to regulate a wide range of functions, including growth, fruit ripening, leaf abscission, and responses to stress. The signaling pathway is initiated when ethylene binds to its receptor. After decades of research, the key components of ethylene signaling have been identified and characterized. Although the molecular mechanisms of the sensing of ethylene signal and its transduction have been studied extensively, a new area of research is how respiration and epigenetic modifications influence ethylene signaling and ethylene response. Here, we summarize the research progress in recent years and review the function and importance of ethylene signaling in plant growth and stress responses. In addition, we also describe the current understanding of how epigenetic modifications regulate ethylene signaling and the ethylene response. Together, our review sheds light on the new signaling mechanisms of ethylene.
Collapse
Affiliation(s)
- Xiaoyi Wang
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (X.W.); (H.W.)
| | - Hongyi Wen
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (X.W.); (H.W.)
| | - Andrey Suprun
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russia;
| | - Hongliang Zhu
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (X.W.); (H.W.)
| |
Collapse
|
3
|
Yang Q, Cai L, Wang M, Gan G, Li W, Li W, Jiang Y, Yuan Q, Qin C, Yu C, Wang Y. CRISPR/cas9 Allows for the Quick Improvement of Tomato Firmness Breeding. Curr Issues Mol Biol 2024; 47:9. [PMID: 39852124 PMCID: PMC11763693 DOI: 10.3390/cimb47010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/23/2024] [Accepted: 12/28/2024] [Indexed: 01/26/2025] Open
Abstract
Fruit firmness is crucial for storability, making cultivating varieties with higher firmness a key target in tomato breeding. In recent years, tomato varieties primarily rely on hybridizing ripening mutants to produce F1 hybrids to enhance firmness. However, the undesirable traits introduced by these mutants often lead to a decline in the quality of the varieties. CRISPR/Cas9 has emerged as a crucial tool in accelerating plant breeding and improving specific target traits as technology iterates. In this study, we used a CRISPR/Cas9 system to simultaneously knock out two genes, FIS1 and PL, which negatively regulate firmness in tomato. We generated single and double gene knockout mutants utilizing the tomato genetic transformation system. The fruit firmness of all knockout mutants exhibited a significant enhancement, with the most pronounced improvement observed in the double mutant. Furthermore, we assessed other quality-related traits of the mutants; our results indicated that the fruit quality characteristics of the gene-edited lines remained statistically comparable to those of the wild type. This approach enabled us to create transgenic-free mutants with diverse genotypes across fewer generations, facilitating rapid improvements in tomato firmness. This study offers significant insights into molecular design breeding strategies for tomato.
Collapse
Affiliation(s)
- Qihong Yang
- Vegetable Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (Q.Y.); (L.C.); (M.W.); (G.G.); (W.L.); (W.L.); (Y.J.); (Q.Y.); (C.Q.)
| | - Liangyu Cai
- Vegetable Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (Q.Y.); (L.C.); (M.W.); (G.G.); (W.L.); (W.L.); (Y.J.); (Q.Y.); (C.Q.)
| | - Mila Wang
- Vegetable Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (Q.Y.); (L.C.); (M.W.); (G.G.); (W.L.); (W.L.); (Y.J.); (Q.Y.); (C.Q.)
| | - Guiyun Gan
- Vegetable Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (Q.Y.); (L.C.); (M.W.); (G.G.); (W.L.); (W.L.); (Y.J.); (Q.Y.); (C.Q.)
| | - Weiliu Li
- Vegetable Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (Q.Y.); (L.C.); (M.W.); (G.G.); (W.L.); (W.L.); (Y.J.); (Q.Y.); (C.Q.)
| | - Wenjia Li
- Vegetable Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (Q.Y.); (L.C.); (M.W.); (G.G.); (W.L.); (W.L.); (Y.J.); (Q.Y.); (C.Q.)
| | - Yaqin Jiang
- Vegetable Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (Q.Y.); (L.C.); (M.W.); (G.G.); (W.L.); (W.L.); (Y.J.); (Q.Y.); (C.Q.)
| | - Qi Yuan
- Vegetable Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (Q.Y.); (L.C.); (M.W.); (G.G.); (W.L.); (W.L.); (Y.J.); (Q.Y.); (C.Q.)
| | - Chunchun Qin
- Vegetable Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (Q.Y.); (L.C.); (M.W.); (G.G.); (W.L.); (W.L.); (Y.J.); (Q.Y.); (C.Q.)
- College of Agriculture, Guangxi University, Nanning 530004, China
| | - Chuying Yu
- Vegetable Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (Q.Y.); (L.C.); (M.W.); (G.G.); (W.L.); (W.L.); (Y.J.); (Q.Y.); (C.Q.)
| | - Yikui Wang
- Vegetable Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (Q.Y.); (L.C.); (M.W.); (G.G.); (W.L.); (W.L.); (Y.J.); (Q.Y.); (C.Q.)
| |
Collapse
|
4
|
Nie H, Yang X, Zheng S, Hou L. Gene-Based Developments in Improving Quality of Tomato: Focus on Firmness, Shelf Life, and Pre- and Post-Harvest Stress Adaptations. HORTICULTURAE 2024; 10:641. [DOI: 10.3390/horticulturae10060641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Tomato (Solanum lycopersicum) is a widely consumed vegetable crop with significant economic and nutritional importance. This review paper discusses the recent advancements in gene-based approaches to enhance the quality of tomatoes, particularly focusing on firmness, shelf life, and adaptations to pre- and post-harvest stresses. Utilizing genetic engineering techniques, such as Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated proteins 9 (CRISPR/Cas9) and Transcription Activator-like Effector Nucleases (TALENs), researchers have made remarkable progress in developing tomatoes with improved traits that address key challenges faced during cultivation, storage, and transportation. We further highlighted the potential of genetic modifications in enhancing tomato firmness, thereby reducing post-harvest losses and improving consumer satisfaction. Furthermore, strategies to extend tomato shelf life through genetic interventions are discussed, emphasizing the importance of maintaining quality and freshness for sustainable food supply chains. Furthermore, the review delves into the ways in which gene-based adaptations can bolster tomatoes against environmental stresses, pests, and diseases, thereby enhancing crop resilience and ensuring stable yields. Emphasizing these crucial facets, this review highlights the essential contribution of genetic advancements in transforming tomato production, elevating quality standards, and promoting the sustainability of tomato cultivation practices.
Collapse
Affiliation(s)
- Hongmei Nie
- College of Horticulture, Shanxi Agricultural University, Taigu, Jinzhong 030801, China
| | - Xiu Yang
- College of Horticulture, Shanxi Agricultural University, Taigu, Jinzhong 030801, China
| | - Shaowen Zheng
- College of Horticulture, Shanxi Agricultural University, Taigu, Jinzhong 030801, China
| | - Leiping Hou
- College of Horticulture, Shanxi Agricultural University, Taigu, Jinzhong 030801, China
| |
Collapse
|
5
|
Zhou J, Zhou S, Chen B, Sangsoy K, Luengwilai K, Albornoz K, Beckles DM. Integrative analysis of the methylome and transcriptome of tomato fruit ( Solanum lycopersicum L.) induced by postharvest handling. HORTICULTURE RESEARCH 2024; 11:uhae095. [PMID: 38840937 PMCID: PMC11151332 DOI: 10.1093/hr/uhae095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 04/11/2024] [Indexed: 06/07/2024]
Abstract
Tomato fruit ripening is triggered by the demethylation of key genes, which alters their transcriptional levels thereby initiating and propagating a cascade of physiological events. What is unknown is how these processes are altered when fruit are ripened using postharvest practices to extend shelf-life, as these practices often reduce fruit quality. To address this, postharvest handling-induced changes in the fruit DNA methylome and transcriptome, and how they correlate with ripening speed, and ripening indicators such as ethylene, abscisic acid, and carotenoids, were assessed. This study comprehensively connected changes in physiological events with dynamic molecular changes. Ripening fruit that reached 'Turning' (T) after dark storage at 20°C, 12.5°C, or 5°C chilling (followed by 20°C rewarming) were compared to fresh-harvest fruit 'FHT'. Fruit stored at 12.5°C had the biggest epigenetic marks and alterations in gene expression, exceeding changes induced by postharvest chilling. Fruit physiological and chronological age were uncoupled at 12.5°C, as the time-to-ripening was the longest. Fruit ripening to Turning at 12.5°C was not climacteric; there was no respiratory or ethylene burst, rather, fruit were high in abscisic acid. Clear differentiation between postharvest-ripened and 'FHT' was evident in the methylome and transcriptome. Higher expression of photosynthetic genes and chlorophyll levels in 'FHT' fruit pointed to light as influencing the molecular changes in fruit ripening. Finally, correlative analyses of the -omics data putatively identified genes regulated by DNA methylation. Collectively, these data improve our interpretation of how tomato fruit ripening patterns are altered by postharvest practices, and long-term are expected to help improve fruit quality.
Collapse
Affiliation(s)
- Jiaqi Zhou
- Department of Plant Sciences, University of California, Davis, One Shields Avenue, CA, USA
| | - Sitian Zhou
- Department of Plant Sciences, University of California, Davis, One Shields Avenue, CA, USA
- Department of Biostatistics, School of Public Health, Columbia University, 722 West 168th Street, New York, NY 10032, USA
| | - Bixuan Chen
- Department of Plant Sciences, University of California, Davis, One Shields Avenue, CA, USA
- Germains Seed Technology, 8333 Swanston Lane, Gilroy, CA 95020, USA
| | - Kamonwan Sangsoy
- Department of Horticulture, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand
| | - Kietsuda Luengwilai
- Department of Horticulture, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand
| | - Karin Albornoz
- Department of Plant Sciences, University of California, Davis, One Shields Avenue, CA, USA
- Department of Food, Nutrition, and Packaging Sciences, Coastal Research and Education Center, Clemson University, 2700 Savannah Highway, Charleston, SC 29414 USA
| | - Diane M Beckles
- Department of Plant Sciences, University of California, Davis, One Shields Avenue, CA, USA
| |
Collapse
|
6
|
Nizampatnam NR, Sharma K, Gupta P, Pamei I, Sarma S, Sreelakshmi Y, Sharma R. Introgression of a dominant phototropin1 mutant enhances carotenoids and boosts flavour-related volatiles in genome-edited tomato RIN mutants. THE NEW PHYTOLOGIST 2024; 241:2227-2242. [PMID: 38151719 DOI: 10.1111/nph.19510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 12/10/2023] [Indexed: 12/29/2023]
Abstract
The tomato (Solanum lycopersicum) ripening inhibitor (rin) mutation is known to completely repress fruit ripening. The heterozygous (RIN/rin) fruits have extended shelf life, ripen normally, but have inferior taste/flavour. To address this, we used genome editing to generate newer alleles of RIN (rinCR ) by targeting the K-domain. Unlike previously reported CRISPR alleles, the rinCR alleles displayed delayed onset of ripening, suggesting that the mutated K-domain represses the onset of ripening. The rinCR fruits had extended shelf life and accumulated carotenoids at an intermediate level between rin and progenitor line. Besides, the metabolites and hormonal levels in rinCR fruits were more akin to rin. To overcome the negative attributes of rin, we crossed the rinCR alleles with Nps1, a dominant-negative phototropin1 mutant, which enhances carotenoid levels in tomato fruits. The resulting Nps1/rinCR hybrids had extended shelf life and 4.4-7.1-fold higher carotenoid levels than the wild-type parent. The metabolome of Nps1/rinCR fruits revealed higher sucrose, malate, and volatiles associated with tomato taste and flavour. Notably, the boosted volatiles in Nps1/rinCR were only observed in fruits bearing the homozygous Nps1 mutation. The Nps1 introgression into tomato provides a promising strategy for developing cultivars with extended shelf life, improved taste, and flavour.
Collapse
Grants
- BT/COE/34/SP15209/2015 Department of Biotechnology, Ministry of Science and Technology, India
- BT/INF/22/SP44787/2021 Department of Biotechnology, Ministry of Science and Technology, India
- BT/PR6983/PBD/16/1007/2012 Department of Biotechnology, Ministry of Science and Technology, India
- BT/PR/7002/PBD/16/1009/2012 Department of Biotechnology, Ministry of Science and Technology, India
- BT/PR11671/PBD/16/828/2008 Department of Biotechnology, Ministry of Science and Technology, India
Collapse
Affiliation(s)
- Narasimha Rao Nizampatnam
- Repository of Tomato Genomics Resources, Department of Plant Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Kapil Sharma
- Repository of Tomato Genomics Resources, Department of Plant Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Prateek Gupta
- Repository of Tomato Genomics Resources, Department of Plant Sciences, University of Hyderabad, Hyderabad, 500046, India
- Department of Biological Sciences, SRM University-AP, Neerukonda, Andhra Pradesh, 522240, India
| | - Injangbuanang Pamei
- Repository of Tomato Genomics Resources, Department of Plant Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Supriya Sarma
- Repository of Tomato Genomics Resources, Department of Plant Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Yellamaraju Sreelakshmi
- Repository of Tomato Genomics Resources, Department of Plant Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Rameshwar Sharma
- Repository of Tomato Genomics Resources, Department of Plant Sciences, University of Hyderabad, Hyderabad, 500046, India
| |
Collapse
|
7
|
Sun C, Yao G, Zhao J, Chen R, Hu K, He G, Zhang H. SlERF109-like and SlNAC1 Coordinately Regulated Tomato Ripening by Inhibiting ACO1 Transcription. Int J Mol Sci 2024; 25:1873. [PMID: 38339150 PMCID: PMC10855853 DOI: 10.3390/ijms25031873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/16/2024] [Accepted: 01/27/2024] [Indexed: 02/12/2024] Open
Abstract
As a typical climacteric fruit, tomato (Solanum lycopersicum) is widely used for studying the ripening process. The negative regulation of tomato fruits by transcription factor SlNAC1 has been reported, but its regulatory network was unclear. In the present study, we screened a transcription factor, SlERF109-like, and found it had a stronger relationship with SlNAC1 at the early stage of tomato fruit development through the use of transcriptome data, RT-qPCR, and correlation analysis. We inferred that SlERF109-like could interact with SlNAC1 to become a regulatory complex that co-regulates the tomato fruit ripening process. Results of transient silencing (VIGS) and transient overexpression showed that SlERF109-like and SlNAC1 could regulate chlorophyll degradation-related genes (NYC1, PAO, PPH, SGR1), carotenoids accumulation-related genes (PSY1, PDS, ZDS), ETH-related genes (ACO1, E4, E8), and cell wall metabolism-related genes expression levels (CEL2, EXP, PG, TBG4, XTH5) to inhibit tomato fruit ripening. A dual-luciferase reporter and yeast one-hybrid (Y1H) showed that SlNAC1 could bind to the SlACO1 promoter, but SlERF109-like could not. Furthermore, SlERF109-like could interact with SlNAC1 to increase the transcription for ACO1 by a yeast two-hybrid (Y2H) assay, a luciferase complementation assay, and a dual-luciferase reporter. A correlation analysis showed that SlERF109-like and SlNAC1 were positively correlated with chlorophyll contents, and negatively correlated with carotenoid content and ripening-related genes. Thus, we provide a model in which SlERF109-like could interact with SlNAC1 to become a regulatory complex that negatively regulates the tomato ripening process by inhibiting SlACO1 expression. Our study provided a new regulatory network of tomato fruit ripening and effectively reduced the waste of resources.
Collapse
Affiliation(s)
- Chen Sun
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310012, China; (C.S.); (R.C.)
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; (G.Y.); (J.Z.); (K.H.)
| | - Gaifang Yao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; (G.Y.); (J.Z.); (K.H.)
| | - Jinghan Zhao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; (G.Y.); (J.Z.); (K.H.)
| | - Ruying Chen
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310012, China; (C.S.); (R.C.)
| | - Kangdi Hu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; (G.Y.); (J.Z.); (K.H.)
| | - Guanghua He
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310012, China; (C.S.); (R.C.)
| | - Hua Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; (G.Y.); (J.Z.); (K.H.)
| |
Collapse
|
8
|
Li H, Wang S, Zhai L, Cui Y, Tang G, Huo J, Li X, Bian S. The miR156/SPL12 module orchestrates fruit colour change through directly regulating ethylene production pathway in blueberry. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:386-400. [PMID: 37797061 PMCID: PMC10826998 DOI: 10.1111/pbi.14193] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 07/26/2023] [Accepted: 09/23/2023] [Indexed: 10/07/2023]
Abstract
Colour change is an important event during fruit ripening in blueberry. It is well known that miR156/SPLs act as regulatory modules mediating anthocyanin biosynthesis and ethylene plays critical roles during colour change, but the intrinsic connections between the two pathways remain poorly understood. Previously, we demonstrated that blueberry VcMIR156a/VcSPL12 affects the accumulation of anthocyanins and chlorophylls in tomato and Arabidopsis. In this study, we first showed that VcMIR156a overexpression in blueberry led to enhanced anthocyanin biosynthesis, decreased chlorophyll accumulation, and, intriguingly, concomitant elevation in the expression of ethylene biosynthesis genes and the level of the ethylene precursor ACC. Conversely, VcSPL12 enhanced chlorophyll accumulation and suppressed anthocyanin biosynthesis and ACC synthesis in fruits. Moreover, the treatment with ethylene substitutes and inhibitors attenuated the effects of VcMIR156a and VcSPL12 on pigment accumulation. Protein-DNA interaction assays indicated that VcSPL12 could specifically bind to the promoters and inhibit the activities of the ethylene biosynthetic genes VcACS1 and VcACO6. Collectively, our results show that VcMIR156a/VcSPL12 alters ethylene production through targeting VcACS1 and VcACO6, therefore governing fruit colour change. Additionally, VcSPL12 may directly interact with the promoter region of the chlorophyll biosynthetic gene VcDVR, thereby activating its expression. These findings established an intrinsic connection between the miR156/SPL regulatory module and ethylene pathway.
Collapse
Affiliation(s)
- Hongxue Li
- College of Plant ScienceJilin UniversityChangchunChina
| | - Shouwen Wang
- College of Plant ScienceJilin UniversityChangchunChina
| | - Lulu Zhai
- College of Plant ScienceJilin UniversityChangchunChina
| | - Yuhai Cui
- Agriculture and Agri‐Food Canada, London Research and Development CentreLondonONCanada
- Department of BiologyWestern UniversityLondonONCanada
| | - Guiliang Tang
- Department of Biological Sciences, Life Science and Technology InstituteMichigan Technological UniversityHoughtonMIUSA
| | - Junwei Huo
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural AffairsNortheast Agricultural UniversityHarbinChina
| | - Xuyan Li
- College of Plant ScienceJilin UniversityChangchunChina
| | - Shaomin Bian
- College of Plant ScienceJilin UniversityChangchunChina
| |
Collapse
|
9
|
Bellinazzo F. Solving the puzzle of climacteric fruit ripening: EMB1444-like and its regulatory function. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6396-6398. [PMID: 37988177 PMCID: PMC10662220 DOI: 10.1093/jxb/erad378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 11/23/2023]
Abstract
This article comments on:Zhao W, Wang S, Li W, Shan X, Naeem M, Zhang L, Zhao L. 2023. The transcription factor EMB1444-like affects tomato fruit ripening by regulating YELLOW-FRUITED TOMATO 1, a core component of ethylene signaling transduction. Journal of Experimental Botany 74, 6563–6574.
Collapse
Affiliation(s)
- Francesca Bellinazzo
- Laboratory of Molecular Biology, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
- Bioscience, Wageningen Plant Research, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
| |
Collapse
|
10
|
Zhu Q, Deng L, Chen J, Rodríguez GR, Sun C, Chang Z, Yang T, Zhai H, Jiang H, Topcu Y, Francis D, Hutton S, Sun L, Li CB, van der Knaap E, Li C. Redesigning the tomato fruit shape for mechanized production. NATURE PLANTS 2023; 9:1659-1674. [PMID: 37723204 DOI: 10.1038/s41477-023-01522-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 08/23/2023] [Indexed: 09/20/2023]
Abstract
Crop breeding for mechanized harvesting has driven modern agriculture. In tomato, machine harvesting for industrial processing varieties became the norm in the 1970s. However, fresh-market varieties whose fruits are suitable for mechanical harvesting are difficult to breed because of associated reduction in flavour and nutritional qualities. Here we report the cloning and functional characterization of fs8.1, which controls the elongated fruit shape and crush resistance of machine-harvestable processing tomatoes. FS8.1 encodes a non-canonical GT-2 factor that activates the expression of cell-cycle inhibitor genes through the formation of a transcriptional module with the canonical GT-2 factor SlGT-16. The fs8.1 mutation results in a lower inhibitory effect on the cell proliferation of the ovary wall, leading to elongated fruits with enhanced compression resistance. Our study provides a potential route for introducing the beneficial allele into fresh-market tomatoes without reducing quality, thereby facilitating mechanical harvesting.
Collapse
Affiliation(s)
- Qiang Zhu
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Lei Deng
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Jie Chen
- College of Horticulture, China Agricultural University, Beijing, China
| | - Gustavo R Rodríguez
- Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR-CONICET-UNR), Rosario, Argentina
| | - Chuanlong Sun
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Zeqian Chang
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Tianxia Yang
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Huawei Zhai
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Hongling Jiang
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yasin Topcu
- Institute of Plant Breeding, Department of Horticulture, University of Georgia, Athens, GA, USA
- Batı Akdeniz Agricultural Research Institute, Antalya, Turkey
| | - David Francis
- Department of Horticulture and Crop Science, The Ohio State University, Columbus, OH, USA
| | - Samuel Hutton
- Gulf Coast Research and Education Center, University of Florida, Gainesville, FL, USA
| | - Liang Sun
- College of Horticulture, China Agricultural University, Beijing, China
| | - Chang-Bao Li
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Esther van der Knaap
- Institute of Plant Breeding, Department of Horticulture, University of Georgia, Athens, GA, USA
| | - Chuanyou Li
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China.
- College of Life Sciences, Shandong Agricultural University, Tai'an, China.
| |
Collapse
|
11
|
Yoon KN, Yoon YS, Hong HJ, Park JH, Song BS, Eun JB, Kim JK. Gamma irradiation delays tomato (Solanum lycopersicum) ripening by inducing transcriptional changes. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:6640-6653. [PMID: 37267467 DOI: 10.1002/jsfa.12760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 05/02/2023] [Accepted: 06/02/2023] [Indexed: 06/04/2023]
Abstract
BACKGROUND Tomato (Solanum lycopersicum) has a relatively short shelf life as a result of rapid ripening, limiting its transportability and marketability. Recently, gamma irradiation has emerged as a viable method for delaying tomato fruit ripening. Although few studies have shown that gamma irradiation delays the ripening of tomatoes, the underlying mechanism remains unknown. Therefore, the present study aimed to examine the effects of gamma irradiation on tomato fruit ripening and the underlying mechanisms using transcriptomics. RESULTS Following gamma irradiation, the total microbial count, weight loss, and decay rate of tomatoes significantly reduced during storage. Furthermore, the redness (a*), color change (∆E), and lycopene content of gamma-irradiated tomatoes decreased in a dose-dependent manner during storage. Moreover, gamma irradiation significantly upregulated the expression levels of genes associated with DNA, chloroplast, and oxidative damage repairs, whereas those of ethylene and auxin signaling-, ripening-, and cell wall metabolism-related, as well as carotenoid genes, were downregulated. CONCLUSION Gamma irradiation effectively delayed ripening by downregulating the expression of ripening-related genes and inhibiting microbial growth, which prevented decay and prolonged the shelf life of tomatoes. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Ki-Nam Yoon
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, Republic of Korea
- Department of Food Science and Technology, Graduate School of Chonnam National University, Gwangju, Republic of Korea
| | - Yeong-Seok Yoon
- Center for Industrialization of Agricultural and Livestock Microorganisms, Jeongeup-si, Republic of Korea
| | - Hae-Jung Hong
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, Republic of Korea
| | - Jong-Heum Park
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, Republic of Korea
| | - Beom-Seok Song
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, Republic of Korea
| | - Jong-Bang Eun
- Department of Food Science and Technology, Graduate School of Chonnam National University, Gwangju, Republic of Korea
| | - Jae-Kyung Kim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, Republic of Korea
| |
Collapse
|
12
|
Prusky D, Romanazzi G. Induced Resistance in Fruit and Vegetables: A Host Physiological Response Limiting Postharvest Disease Development. ANNUAL REVIEW OF PHYTOPATHOLOGY 2023; 61:279-300. [PMID: 37201920 DOI: 10.1146/annurev-phyto-021722-035135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Harvested fruit and vegetables are perishable, subject to desiccation, show increased respiration during ripening, and are colonized by postharvest fungal pathogens. Induced resistance is a strategy to control diseases by eliciting biochemical processes in fruits and vegetables. This is accomplished by modulating the progress of ripening and senescence, which maintains the produce in a state of heightened resistance to decay-causing fungi. Utilization of induced resistance to protect produce has been improved by scientific tools that better characterize physiological changes in plants. Induced resistance slows the decline of innate immunity after harvest and increases the production of defensive responses that directly inhibit plant pathogens. This increase in defense response in fruits and vegetables contributes to higher amounts of phenols and antioxidant compounds, improving both the quality and appearance of the produce. This review summarizes mechanisms and treatments that induce resistance in harvested fruits and vegetables to suppress fungal colonization. Moreover, it highlights the importance of host maturity and stage of ripening as limiting conditions for the improved expression of induced-resistance processes.
Collapse
Affiliation(s)
- Dov Prusky
- Department of Postharvest Science, Agricultural Research Organization, The Volcani Institute, Rishon LeZion, Israel;
| | - Gianfranco Romanazzi
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Ancona, Italy;
| |
Collapse
|
13
|
Ji D, Liu W, Jiang L, Chen T. Cuticles and postharvest life of tomato fruit: A rigid cover for aerial epidermis or a multifaceted guard of freshness? Food Chem 2023; 411:135484. [PMID: 36682164 DOI: 10.1016/j.foodchem.2023.135484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 01/04/2023] [Accepted: 01/11/2023] [Indexed: 01/20/2023]
Abstract
Fruit cuticle is a specialized cell wall hydrophobic architecture covering the aerial surfaces of fruit, which forms the interface between the fruit and its environment. As a specialized seed-bearing organ, fruit utilize cuticles as physical barriers, water permeation regulator and resistance to pathogens, thus appealing extensive research interests for its potential values in developing postharvest freshness-keeping strategies. Here, we provide an overview for the composition and functions of fruit cuticles, mainly focusing on its functions in mechanical support, water permeability barrier and protection over pathogens, further introduce key mechanisms implicated in fruit cuticle biosynthesis. Moreover, currently available state-of-art techniques for examining compositional diversity and architecture of fruit are also compared.
Collapse
Affiliation(s)
- Dongchao Ji
- School of Life Sciences and Medicine, Shandong University of Technology, Xincun West Road 266, Zhangdian District, Zibo, Shandong 255049, China; Key Laboratory of Plant Resources, Institute of Botany, Innovative Academy of Seed Design, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Haidian District, Beijing 100093, China; University of Chinese Academy of Sciences, Yuquan Road 19(A), Shijingshan District, Beijing 100049, China
| | - Wei Liu
- Key Laboratory of Plant Resources, Institute of Botany, Innovative Academy of Seed Design, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Haidian District, Beijing 100093, China; University of Chinese Academy of Sciences, Yuquan Road 19(A), Shijingshan District, Beijing 100049, China
| | - Libo Jiang
- School of Life Sciences and Medicine, Shandong University of Technology, Xincun West Road 266, Zhangdian District, Zibo, Shandong 255049, China
| | - Tong Chen
- Key Laboratory of Plant Resources, Institute of Botany, Innovative Academy of Seed Design, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Haidian District, Beijing 100093, China; University of Chinese Academy of Sciences, Yuquan Road 19(A), Shijingshan District, Beijing 100049, China; Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture, Nanxincun 20, Xiangshan, Haidian District, Beijing 100093, China.
| |
Collapse
|
14
|
Yoosefzadeh Najafabadi M, Hesami M, Rajcan I. Unveiling the Mysteries of Non-Mendelian Heredity in Plant Breeding. PLANTS (BASEL, SWITZERLAND) 2023; 12:1956. [PMID: 37653871 PMCID: PMC10221147 DOI: 10.3390/plants12101956] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 07/30/2023]
Abstract
Mendelian heredity is the cornerstone of plant breeding and has been used to develop new varieties of plants since the 19th century. However, there are several breeding cases, such as cytoplasmic inheritance, methylation, epigenetics, hybrid vigor, and loss of heterozygosity (LOH), where Mendelian heredity is not applicable, known as non-Mendelian heredity. This type of inheritance can be influenced by several factors besides the genetic architecture of the plant and its breeding potential. Therefore, exploring various non-Mendelian heredity mechanisms, their prevalence in plants, and the implications for plant breeding is of paramount importance to accelerate the pace of crop improvement. In this review, we examine the current understanding of non-Mendelian heredity in plants, including the mechanisms, inheritance patterns, and applications in plant breeding, provide an overview of the various forms of non-Mendelian inheritance (including epigenetic inheritance, cytoplasmic inheritance, hybrid vigor, and LOH), explore insight into the implications of non-Mendelian heredity in plant breeding, and the potential it holds for future research.
Collapse
Affiliation(s)
| | | | - Istvan Rajcan
- Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada; (M.Y.N.); (M.H.)
| |
Collapse
|
15
|
Tonutti P, Brizzolara S, Beckles DM. Reducing crop losses by gene-editing control of organ developmental physiology. Curr Opin Biotechnol 2023; 81:102925. [PMID: 37003167 DOI: 10.1016/j.copbio.2023.102925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/21/2023] [Accepted: 03/02/2023] [Indexed: 04/03/2023]
Abstract
Some physiological processes in reproductive organs, if not controlled, can lead to crop loss even in the absence of environmental stress. These processes may occur pre- or post- harvest, and in diverse species and include abscission processes in cereal grain, e.g., shattering and in immature fruit, e.g., preharvest drop, preharvest sprouting of cereals, and postharvest senescence in fruit. Some of the molecular mechanisms and genetic determinants underlying these processes are now better detailed, making it possible to refine them by gene editing. Here, we discuss using advanced genomics to identify genetic determinants underlying crop physiological traits. Examples of improved phenotypes developed for preharvest problems are provided, and suggestions for reducing postharvest fruit losses by gene and promoter editing were made.
Collapse
Affiliation(s)
- Pietro Tonutti
- Crop Science Research Center, Scuola Superiore Sant'Anna, 56127 Pisa, Italy
| | - Stefano Brizzolara
- Crop Science Research Center, Scuola Superiore Sant'Anna, 56127 Pisa, Italy
| | - Diane M Beckles
- Department of Plant Sciences, University of California, Davis, CA 95616, USA.
| |
Collapse
|
16
|
Targeting ripening regulators to develop fruit with high quality and extended shelf life. Curr Opin Biotechnol 2023; 79:102872. [PMID: 36621222 DOI: 10.1016/j.copbio.2022.102872] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/26/2022] [Accepted: 11/04/2022] [Indexed: 01/07/2023]
Abstract
Fruit quality directly impacts fruit marketability and consumer acceptance. Breeders have focused on fruit quality traits to extend shelf life, primarily through fruit texture, but, in some cases, have neglected other qualities such as flavor and nutrition. In recent years, integrative biotechnology and consumer-minded approaches have surfaced, aiding in the development of flavorful, long-lasting fruit. Here, we discussed how specific transcription factors and hormones involved in fruit ripening can be targeted to generate high-quality fruit through traditional breeding and bioengineering. We highlight regulators that can be used to generate novel-colored fruit or biofortify fresh produce with health-promoting nutrients, such as vitamin C. Overall, we argue that addressing grower and industry needs must be balanced with consumer-based traits.
Collapse
|
17
|
Deshpande R, Patidar H. Tomato plant leaf disease detection using generative adversarial network and deep convolutional neural network. THE IMAGING SCIENCE JOURNAL 2023. [DOI: 10.1080/13682199.2022.2161696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Rashmi Deshpande
- Department of Electronics & Communication Engineering, Oriental University, Indore, Madhya Pradesh, India
| | - Hemant Patidar
- Department of Electronics & Communication Engineering, Oriental University, Indore, Madhya Pradesh, India
| |
Collapse
|
18
|
Brummell DA, Bowen JK, Gapper NE. Biotechnological approaches for controlling postharvest fruit softening. Curr Opin Biotechnol 2022; 78:102786. [PMID: 36081292 DOI: 10.1016/j.copbio.2022.102786] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/28/2022] [Accepted: 08/02/2022] [Indexed: 12/14/2022]
Abstract
Fruit softening is the major factor determining the postharvest life of fruit, affecting bruise and damage susceptibility, pathogen colonisation, and consumer satisfaction, all of which contribute to product losses in the supply chain and consumers' homes. Ripening-related changes to the cell wall, cuticle and soluble sugars largely determine softening, and some are amenable to biotechnological intervention, for example, by manipulation of the expression of genes encoding cell wall-modifying proteins or wax and cutin synthases. In this review, we discuss work exploring the role of genes involved in cell wall and cuticle properties, and recent developments in the silencing of multiple genes by targeting single transcription factors. Identification of transcription factors that control the expression of suites of genes encoding cell wall-modifying proteins provides exciting targets for biotechnology.
Collapse
Affiliation(s)
- David A Brummell
- The New Zealand Institute for Plant and Food Research Limited, Food Industry Science Centre, Private Bag 11600, Palmerston North 4442, New Zealand
| | - Joanna K Bowen
- The New Zealand Institute for Plant and Food Research Limited, Mount Albert Research Centre, Private Bag 92169, Auckland 1142, New Zealand
| | - Nigel E Gapper
- The New Zealand Institute for Plant and Food Research Limited, Mount Albert Research Centre, Private Bag 92169, Auckland 1142, New Zealand.
| |
Collapse
|
19
|
Cocetta G, Natalini A. Ethylene: Management and breeding for postharvest quality in vegetable crops. A review. FRONTIERS IN PLANT SCIENCE 2022; 13:968315. [PMID: 36452083 PMCID: PMC9702508 DOI: 10.3389/fpls.2022.968315] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 10/21/2022] [Indexed: 05/06/2023]
Abstract
Ethylene is a two-carbon gaseous plant growth regulator that involved in several important physiological events, including growth, development, ripening and senescence of fruits, vegetables, and ornamental crops. The hormone accelerates ripening of ethylene sensitive fruits, leafy greens and vegetables at micromolar concentrations, and its accumulation can led to fruit decay and waste during the postharvest stage. Several strategies of crops management and techniques of plant breeding have been attempted in the last decades to understand ethylene regulation pathways and ethylene-dependent biochemical and physiological processes, with the final aim to extend the produce shelf-life and improve the postharvest quality of fruits and vegetables. These investigation approaches involve the use of conventional and new breeding techniques, including precise genome-editing. This review paper aims to provide a relevant overview on the state of the art related to the use of modern breeding techniques focused on ethylene and ethylene-related metabolism, as well as on the possible postharvest technological applications for the postharvest management of ethylene-sensitive crops. An updated view and perspective on the implications of new breeding and management strategies to maintain the quality and the marketability of different crops during postharvest are given, with particular focus on: postharvest physiology (ethylene dependent) for mature and immature fruits and vegetables; postharvest quality management of vegetables: fresh and fresh cut products, focusing on the most important ethylene-dependent biochemical pathways; evolution of breeding technologies for facing old and new challenges in postharvest quality of vegetable crops: from conventional breeding and marker assisted selection to new breeding technologies focusing on transgenesis and gene editing. Examples of applied breeding techniques for model plants (tomato, zucchini and brocccoli) are given to elucidate ethylene metabolism, as well as beneficial and detrimental ethylene effects.
Collapse
Affiliation(s)
- Giacomo Cocetta
- Department of Agricultural and Environmental Sciences, Università degli Studi di Milano, Milano, Italy
| | - Alessandro Natalini
- Council for Agricultural Research and Economics – Research Centre for Vegetable and Ornamental Crops, Monsampolo del Tronto, Italy
| |
Collapse
|
20
|
Tyagi K, Sunkum A, Rai M, Yadav A, Sircar S, Sreelakshmi Y, Sharma R. Seeing the unseen: a trifoliate (MYB117) mutant allele fortifies folate and carotenoids in tomato fruits. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:38-54. [PMID: 35899408 DOI: 10.1111/tpj.15925] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 07/13/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
In tomato (Solanum lycopersicum), mutations in the gene encoding the R2R3-MYB117 transcription factor elicit trifoliate leaves and initiate the formation of axillary meristems; however, their effects on fruit ripening remain unexplored. The fruits of a new trifoliate (tf) mutant (tf-5) were firmer and had higher °Brix values and higher folate and carotenoid contents. The transcriptome, proteome, and metabolome profiling of tf-5 reflected a broad-spectrum change in cellular homeostasis. The tf-5 allele enhanced the fruit firmness by suppressing cell wall softening-related proteins. tf-5 fruit displayed a substantial increase in amino acids, particularly γ-aminobutyric acid, with a parallel reduction in aminoacyl-tRNA synthases. The increased lipoxygenase protein and transcript levels seemingly elevated jasmonic acid levels. In addition, increased abscisic acid hydrolase transcript levels coupled with reduced precursor supply lowered abscisic acid levels. The upregulation of carotenoids was mediated by modulation of methylerythreitol and plastoquinone pathways and increased the levels of carotenoid isomerization proteins. The upregulation of folate in tf-5 was connoted by the increase in the precursor p-aminobenzoic acid and transcript levels of several folate biosynthesis genes. The reduction in pterin-6-carboxylate levels and γ-glutamyl hydrolase activity indicated that reduced folate degradation in tf-5 increased folate levels. Our study delineates that in addition to leaf development, MYB117 also influences fruit metabolism. The tf-5 allele can be used to increase γ-aminobutyric acid, carotenoid, and folate levels in tomato.
Collapse
Affiliation(s)
- Kamal Tyagi
- Repository of Tomato Genomics Resources, Department of Plant Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Anusha Sunkum
- Repository of Tomato Genomics Resources, Department of Plant Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Meenakshi Rai
- Repository of Tomato Genomics Resources, Department of Plant Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Amita Yadav
- Repository of Tomato Genomics Resources, Department of Plant Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Sanchari Sircar
- Repository of Tomato Genomics Resources, Department of Plant Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Yellamaraju Sreelakshmi
- Repository of Tomato Genomics Resources, Department of Plant Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Rameshwar Sharma
- Repository of Tomato Genomics Resources, Department of Plant Sciences, University of Hyderabad, Hyderabad, 500046, India
| |
Collapse
|
21
|
Choi I, Ahn CS, Lee DH, Baek SA, Jung JW, Kim JK, Lee HS, Pai HS. Silencing of the Target of Rapamycin Complex Genes Stimulates Tomato Fruit Ripening. Mol Cells 2022; 45:660-672. [PMID: 35993163 PMCID: PMC9448650 DOI: 10.14348/molcells.2022.2025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 04/19/2022] [Accepted: 04/25/2022] [Indexed: 11/27/2022] Open
Abstract
The target of rapamycin complex (TORC) plays a key role in plant cell growth and survival by regulating the gene expression and metabolism according to environmental information. TORC activates transcription, mRNA translation, and anabolic processes under favorable conditions, thereby promoting plant growth and development. Tomato fruit ripening is a complex developmental process promoted by ethylene and specific transcription factors. TORC is known to modulate leaf senescence in tomato. In this study, we investigated the function of TORC in tomato fruit ripening using virus-induced gene silencing (VIGS) of the TORC genes, TOR, lethal with SEC13 protein 8 (LST8), and regulatory-associated protein of TOR (RAPTOR). Quantitative reverse transcription-polymerase chain reaction showed that the expression levels of tomato TORC genes were the highest in the orange stage during fruit development in Micro-Tom tomato. VIGS of these TORC genes using stage 2 tomato accelerated fruit ripening with premature orange/red coloring and decreased fruit growth, when control tobacco rattle virus 2 (TRV2)-myc fruits reached the mature green stage. TORC-deficient fruits showed early accumulation of carotenoid lycopene and reduced cellulose deposition in pericarp cell walls. The early ripening fruits had higher levels of transcripts related to fruit ripening transcription factors, ethylene biosynthesis, carotenoid synthesis, and cell wall modification. Finally, the early ripening phenotype in Micro-Tom tomato was reproduced in the commercial cultivar Moneymaker tomato by VIGS of the TORC genes. Collectively, these results demonstrate that TORC plays an important role in tomato fruit ripening by modulating the transcription of various ripening-related genes.
Collapse
Affiliation(s)
- Ilyeong Choi
- Department of Systems Biology, Yonsei University, Seoul 03722, Korea
| | - Chang Sook Ahn
- Department of Systems Biology, Yonsei University, Seoul 03722, Korea
- Platform Technology Research Center, Corporate R&D, LG Chem/LG Science Park, Seoul 07796, Korea
| | - Du-Hwa Lee
- Department of Systems Biology, Yonsei University, Seoul 03722, Korea
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Seung-A Baek
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Korea
| | - Jung Won Jung
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Korea
| | - Jae Kwang Kim
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Korea
| | - Ho-Seok Lee
- Department of Biology, Kyung Hee University, Seoul 02447, Korea
| | - Hyun-Sook Pai
- Department of Systems Biology, Yonsei University, Seoul 03722, Korea
| |
Collapse
|
22
|
Li X, Yang Y, Zeng N, Qu G, Fu D, Zhu B, Luo Y, Ostersetzer-Biran O, Zhu H. Glycine-rich RNA-binding cofactor RZ1AL is associated with tomato ripening and development. HORTICULTURE RESEARCH 2022; 9:uhac134. [PMID: 35937858 PMCID: PMC9350831 DOI: 10.1093/hr/uhac134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 06/04/2022] [Indexed: 06/15/2023]
Abstract
Tomato ripening is a complex and dynamic process coordinated by many regulatory elements, including plant hormones, transcription factors, and numerous ripening-related RNAs and proteins. Although recent studies have shown that some RNA-binding proteins are involved in the regulation of the ripening process, understanding of how RNA-binding proteins affect fruit ripening is still limited. Here, we report the analysis of a glycine-rich RNA-binding protein, RZ1A-Like (RZ1AL), which plays an important role in tomato ripening, especially fruit coloring. To analyze the functions of RZ1AL in fruit development and ripening, we generated knockout cr-rz1al mutant lines via the CRISPR/Cas9 gene-editing system. Knockout of RZ1AL reduced fruit lycopene content and weight in the cr-rz1al mutant plants. RZ1AL encodes a nucleus-localized protein that is associated with Cajal-related bodies. RNA-seq data demonstrated that the expression levels of genes that encode several key enzymes associated with carotenoid biosynthesis and metabolism were notably downregulated in cr-rz1al fruits. Proteomic analysis revealed that the levels of various ribosomal subunit proteins were reduced. This could affect the translation of ripening-related proteins such as ZDS. Collectively, our findings demonstrate that RZ1AL may participate in the regulation of carotenoid biosynthesis and metabolism and affect tomato development and fruit ripening.
Collapse
Affiliation(s)
- Xindi Li
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77840, USA
- Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX 77840, USA
| | - Yongfang Yang
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Ni Zeng
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Guiqin Qu
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Daqi Fu
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Benzhong Zhu
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yunbo Luo
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Oren Ostersetzer-Biran
- Department of Plant and Environmental Sciences, Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus - Givat Ram, Jerusalem 9190401, Israel
| | | |
Collapse
|
23
|
Mir TUG, Wani AK, Akhtar N, Shukla S. CRISPR/Cas9: Regulations and challenges for law enforcement to combat its dual-use. Forensic Sci Int 2022; 334:111274. [DOI: 10.1016/j.forsciint.2022.111274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/19/2022] [Accepted: 03/13/2022] [Indexed: 12/15/2022]
|
24
|
Santo Domingo M, Areco L, Mayobre C, Valverde L, Martín-Hernández AM, Pujol M, Garcia-Mas J. Modulating climacteric intensity in melon through QTL stacking. HORTICULTURE RESEARCH 2022; 9:uhac131. [PMID: 35928400 PMCID: PMC9343914 DOI: 10.1093/hr/uhac131] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/29/2022] [Indexed: 05/14/2023]
Abstract
Fruit ripening is one of the main processes affecting fruit quality and shelf life. In melon there are both climacteric and non-climacteric genotypes, making it a suitable species to study fruit ripening. In the current study, in order to fine tune ripening, we have pyramided three climacteric QTLs in the non-climacteric genotype "Piel de Sapo": ETHQB3.5, ETHQV6.3 and ETHQV8.1. The results showed that the three QTLs interact epistatically, affecting ethylene production and ripening-related traits such as aroma profile. Each individual QTL has a specific role in the ethylene production profile. ETHQB3.5 accelerates the ethylene peak, ETHQV6.3 advances the ethylene production and ETHQV8.1 enhances the effect of the other two QTLs. Regarding aroma, the three QTLs independently activated the production of esters changing the aroma profile of the fruits, with no significant effects in fruit firmness, soluble solid content and fruit size. Understanding the interaction and the effect of different ripening QTLs offers a powerful knowledge for candidate gene identification as well as for melon breeding programs, where fruit ripening is one of the main objectives.
Collapse
Affiliation(s)
- Miguel Santo Domingo
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Edifici CRAG, Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Lorena Areco
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Edifici CRAG, Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Carlos Mayobre
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Edifici CRAG, Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Laura Valverde
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Edifici CRAG, Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Ana Montserrat Martín-Hernández
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Edifici CRAG, Campus UAB, Bellaterra, 08193 Barcelona, Spain
- Institut de Recerca i Tecnologia Agoralimentàries (IRTA), Edifici CRAG, Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | | | | |
Collapse
|
25
|
Liu B, Santo Domingo M, Mayobre C, Martín-Hernández AM, Pujol M, Garcia-Mas J. Knock-Out of CmNAC-NOR Affects Melon Climacteric Fruit Ripening. FRONTIERS IN PLANT SCIENCE 2022; 13:878037. [PMID: 35755703 PMCID: PMC9226586 DOI: 10.3389/fpls.2022.878037] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 05/23/2022] [Indexed: 05/14/2023]
Abstract
Fruit ripening is an important process that affects fruit quality. A QTL in melon, ETHQV6.3, involved in climacteric ripening regulation, has been found to be encoded by CmNAC-NOR, a homologue of the tomato NOR gene. To further investigate CmNAC-NOR function, we obtained two CRISPR/Cas9-mediated mutants (nor-3 and nor-1) in the climacteric Védrantais background. nor-3, containing a 3-bp deletion altering the NAC domain A, resulted in ~8 days delay in ripening without affecting fruit quality. In contrast, the 1-bp deletion in nor-1 resulted in a fully disrupted NAC domain, which completely blocked climacteric ripening. The nor-1 fruits did not produce ethylene, no abscission layer was formed and there was no external color change. Additionally, volatile components were dramatically altered, seeds were not well developed and flesh firmness was also altered. There was a delay in fruit ripening with the nor-1 allele in heterozygosis of ~20 days. Our results provide new information regarding the function of CmNAC-NOR in melon fruit ripening, suggesting that it is a potential target for modulating shelf life in commercial climacteric melon varieties.
Collapse
Affiliation(s)
- Bin Liu
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Barcelona, Spain
| | - Miguel Santo Domingo
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Barcelona, Spain
| | - Carlos Mayobre
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Barcelona, Spain
| | - Ana Montserrat Martín-Hernández
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Barcelona, Spain
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Barcelona, Spain
| | - Marta Pujol
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Barcelona, Spain
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Barcelona, Spain
- *Correspondence: Marta Pujol,
| | - Jordi Garcia-Mas
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Barcelona, Spain
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Barcelona, Spain
- Jordi Garcia-Mas,
| |
Collapse
|
26
|
Trivedi NK, Gautam V, Anand A, Aljahdali HM, Villar SG, Anand D, Goyal N, Kadry S. Early Detection and Classification of Tomato Leaf Disease Using High-Performance Deep Neural Network. SENSORS 2021; 21:s21237987. [PMID: 34883991 PMCID: PMC8659659 DOI: 10.3390/s21237987] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 12/02/2022]
Abstract
Tomato is one of the most essential and consumable crops in the world. Tomatoes differ in quantity depending on how they are fertilized. Leaf disease is the primary factor impacting the amount and quality of crop yield. As a result, it is critical to diagnose and classify these disorders appropriately. Different kinds of diseases influence the production of tomatoes. Earlier identification of these diseases would reduce the disease’s effect on tomato plants and enhance good crop yield. Different innovative ways of identifying and classifying certain diseases have been used extensively. The motive of work is to support farmers in identifying early-stage diseases accurately and informing them about these diseases. The Convolutional Neural Network (CNN) is used to effectively define and classify tomato diseases. Google Colab is used to conduct the complete experiment with a dataset containing 3000 images of tomato leaves affected by nine different diseases and a healthy leaf. The complete process is described: Firstly, the input images are preprocessed, and the targeted area of images are segmented from the original images. Secondly, the images are further processed with varying hyper-parameters of the CNN model. Finally, CNN extracts other characteristics from pictures like colors, texture, and edges, etc. The findings demonstrate that the proposed model predictions are 98.49% accurate.
Collapse
Affiliation(s)
- Naresh K. Trivedi
- Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura 140401, India; (N.K.T.); (A.A.)
| | - Vinay Gautam
- School of Computing, DIT University, Dehradun 248009, India;
| | - Abhineet Anand
- Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura 140401, India; (N.K.T.); (A.A.)
| | - Hani Moaiteq Aljahdali
- Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah 37848, Saudi Arabia;
| | - Santos Gracia Villar
- Higher Polytechnic School/Industrial Organization Engineering, Universidad Europea del Atlántico, Isabel Torres 21, 39011 Santander, Spain;
- Department of Project Management, Universidad Internacional Iberoamericana, Campeche 24560, Mexico
| | - Divya Anand
- Department of Computer Science and Engineering, Lovely Professional University, Phagwara 144411, India;
| | - Nitin Goyal
- Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura 140401, India; (N.K.T.); (A.A.)
- Correspondence: (N.G.)
| | - Seifedine Kadry
- Faculty of Applied Computing and Technology, Noroff University College, 4608 Kristiansand, Norway;
| |
Collapse
|
27
|
Fu BL, Wang WQ, Liu XF, Duan XW, Allan AC, Grierson D, Yin XR. An ethylene-hypersensitive methionine sulfoxide reductase regulated by NAC transcription factors increases methionine pool size and ethylene production during kiwifruit ripening. THE NEW PHYTOLOGIST 2021; 232:237-251. [PMID: 34137052 DOI: 10.1111/nph.17560] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 06/11/2021] [Indexed: 06/12/2023]
Abstract
Ethylene plays an important role in regulating fruit ripening by triggering dynamic changes in expression of ripening-associated genes, but the functions of many of these genes are still unknown. Here, a methionine sulfoxide reductase gene (AdMsrB1) was identified by transcriptomics-based analysis as the gene most responsive to ethylene treatment in ripening kiwifruit. The AdMsrB1 protein exhibits a stereospecific activity toward the oxidative stress-induced R enantiomer of methionine sulfoxide (MetSO), reducing it to methionine (Met). Stable overexpression of AdMsrB1 in kiwifruit significantly increased the content of free Met and 1-aminocyclopropane-1-carboxylic acid (ACC), the immediate precursor of ethylene, and increased ethylene production. Dual-luciferase assays indicated that the AdMsrB1 promoter was not directly upregulated by ethylene treatment but was modulated by two ethylene-inducible NAM/ATAF/CUC transcription factors (AdNAC2 and AdNAC72) that bind directly to the AdMsrB1 promoter. Overexpression of AdNAC72 in kiwifruit not only enhanced AdMsrB1 expression, but also increased free Met and ACC content and ethylene production rates. This finding establishes an unexpected regulatory loop that enhances ethylene production and the concentration of its biosynthetic intermediates.
Collapse
Affiliation(s)
- Bei-Ling Fu
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Wen-Qiu Wang
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Xiao-Fen Liu
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Xue-Wu Duan
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Andrew C Allan
- New Zealand Institute for Plant & Food Research Limited, Private Bag 92169, Auckland, New Zealand
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Donald Grierson
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
- Plant & Crop Sciences Division, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| | - Xue-Ren Yin
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| |
Collapse
|
28
|
Characterization of RIN Isoforms and Their Expression in Tomato Fruit Ripening. Cells 2021; 10:cells10071739. [PMID: 34359909 PMCID: PMC8304285 DOI: 10.3390/cells10071739] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/02/2021] [Accepted: 07/07/2021] [Indexed: 11/17/2022] Open
Abstract
Ripening of tomato fleshy fruit is coordinated by transcription factor RIN, which triggers ethylene and carotenoid biosynthesis, sugar accumulation, and cell wall modifications. In this study, we identified and characterized complete sequences of the RIN chromosomal locus in two tomato Solanum lycopersicum cultivars, its rin/RIN genotype, and three wild green-fruited species differing in fruit color and composition. The results reveal that S. lycopersicum cultivars and some wild species (S. pennellii, S. habrochaites, and S. huaylasense) had a 3′-splicing site enabling the transcription of RIN1i and RIN2i isoforms. The other wild species (S. arcanum, S. chmielewskii, S. neorickii, and S. peruvianum) had a 3′-splicing site only for RIN2i, which was consistent with RIN1i and RIN2i expression patterns. The genotype rin/RIN, which had an extended 3′-terminal deletion in the rin allele, mainly expressed the chimeric RIN–MC transcript, which was also found in cultivars (RIN/RIN). The RIN1, but not RIN2, protein is able to induce the transcription of the reporter gene in the Y2H system, which positively correlated with the transcription profile of RIN1i and RIN target genes. We suggest that during fruit ripening, RIN1 activates ripening-related genes, whereas RIN2 and RIN–MC act as modulators by competing for RIN-binding sites in gene promoters, which should be confirmed by further studies on the association between RIN-splicing mechanisms and tomato fruit ripening.
Collapse
|
29
|
Forlani S, Mizzotti C, Masiero S. The NAC side of the fruit: tuning of fruit development and maturation. BMC PLANT BIOLOGY 2021; 21:238. [PMID: 34044765 PMCID: PMC8157701 DOI: 10.1186/s12870-021-03029-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 05/10/2021] [Indexed: 05/16/2023]
Abstract
Fruits and seeds resulting from fertilization of flowers, represent an incredible evolutionary advantage in angiosperms and have seen them become a critical element in our food supply.Many studies have been conducted to reveal how fruit matures while protecting growing seeds and ensuring their dispersal. As result, several transcription factors involved in fruit maturation and senescence have been isolated both in model and crop plants. These regulators modulate several cellular processes that occur during fruit ripening such as chlorophyll breakdown, tissue softening, carbohydrates and pigments accumulation.The NAC superfamily of transcription factors is known to be involved in almost all these aspects of fruit development and maturation. In this review, we summarise the current knowledge regarding NACs that modulate fruit ripening in model species (Arabidopsis thaliana and Solanum lycopersicum) and in crops of commercial interest (Oryza sativa, Malus domestica, Fragaria genus, Citrus sinensis and Musa acuminata).
Collapse
Affiliation(s)
- Sara Forlani
- Department of Biosciences, Università Degli Studi Di Milano, Via Celoria 26, 20133, Milan, Italy
| | - Chiara Mizzotti
- Department of Biosciences, Università Degli Studi Di Milano, Via Celoria 26, 20133, Milan, Italy
| | - Simona Masiero
- Department of Biosciences, Università Degli Studi Di Milano, Via Celoria 26, 20133, Milan, Italy.
| |
Collapse
|
30
|
Li S, Chen K, Grierson D. Molecular and Hormonal Mechanisms Regulating Fleshy Fruit Ripening. Cells 2021; 10:1136. [PMID: 34066675 PMCID: PMC8151651 DOI: 10.3390/cells10051136] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/03/2021] [Accepted: 05/05/2021] [Indexed: 12/17/2022] Open
Abstract
This article focuses on the molecular and hormonal mechanisms underlying the control of fleshy fruit ripening and quality. Recent research on tomato shows that ethylene, acting through transcription factors, is responsible for the initiation of tomato ripening. Several other hormones, including abscisic acid (ABA), jasmonic acid (JA) and brassinosteroids (BR), promote ripening by upregulating ethylene biosynthesis genes in different fruits. Changes to histone marks and DNA methylation are associated with the activation of ripening genes and are necessary for ripening initiation. Light, detected by different photoreceptors and operating through ELONGATED HYPOCOTYL 5(HY5), also modulates ripening. Re-evaluation of the roles of 'master regulators' indicates that MADS-RIN, NAC-NOR, Nor-like1 and other MADS and NAC genes, together with ethylene, promote the full expression of genes required for further ethylene synthesis and change in colour, flavour, texture and progression of ripening. Several different types of non-coding RNAs are involved in regulating expression of ripening genes, but further clarification of their diverse mechanisms of action is required. We discuss a model that integrates the main hormonal and genetic regulatory interactions governing the ripening of tomato fruit and consider variations in ripening regulatory circuits that operate in other fruits.
Collapse
Affiliation(s)
- Shan Li
- College of Agriculture & Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China;
| | - Kunsong Chen
- College of Agriculture & Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China;
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
| | - Donald Grierson
- College of Agriculture & Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China;
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
- Plant and Crop Sciences Division, School of Biosciences, Sutton Bonington Campus, University of Nottingham, Loughborough LE12 5RD, UK
| |
Collapse
|
31
|
Ito Y, Nakamura N, Kotake-Nara E. Semi-dominant effects of a novel ripening inhibitor (rin) locus allele on tomato fruit ripening. PLoS One 2021; 16:e0249575. [PMID: 33886595 PMCID: PMC8061929 DOI: 10.1371/journal.pone.0249575] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/21/2021] [Indexed: 11/17/2022] Open
Abstract
The tomato (Solanum lycopersicum) ripening inhibitor (rin) mutation completely represses fruit ripening, as rin fruits fail to express ripening-associated genes and remain green and firm. Moreover, heterozygous rin fruits (rin/+) ripen normally but have extended shelf life, an important consideration for this perishable fruit crop; therefore, heterozygous rin has been widely used to breed varieties that produce red tomatoes with improved shelf life. We previously used CRISPR/Cas9 to produce novel alleles at the rin locus. The wild-type allele RIN encodes a MADS-box transcription factor and the novel allele, named as rinG2, generates an early stop codon, resulting in C-terminal truncation of the transcription factor. Like rin fruits, rinG2 fruits exhibit extended shelf life, but unlike rin fruits, which remain yellow-green even after long-term storage, rinG2 fruits turn orange due to ripening-associated carotenoid production. Here, to explore the potential of the rinG2 mutation for breeding, we characterized the effects of rinG2 in the heterozygous state (rinG2/+) compared to the effects of rin/+. The softening of rinG2/+ fruits was delayed compared to the wild type but to a lesser degree than rin/+ fruits. Lycopene and β-carotene levels in rinG2/+ fruits were similar to those of the wild type, whereas rin/+ fruits accumulated half the amount of β-carotene compared to the wild type. The rinG2/+ fruits produced lower levels of ethylene than wild-type and rin/+ fruits. Expression analysis revealed that in rinG2/+ fruits, the rinG2 mutation (like rin) partially inhibited the expression of ripening-associated genes. The small differences in the inhibitory effects of rinG2 vs. rin coincided with small differences in phenotypes, such as ethylene production, softening, and carotenoid accumulation. Therefore, rinG2 represents a promising genetic resource for developing tomato cultivars with extended shelf life.
Collapse
Affiliation(s)
- Yasuhiro Ito
- Food Research Institute, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
| | - Nobutaka Nakamura
- Food Research Institute, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
| | - Eiichi Kotake-Nara
- Food Research Institute, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
| |
Collapse
|
32
|
Liu Q, Yang F, Zhang J, Liu H, Rahman S, Islam S, Ma W, She M. Application of CRISPR/Cas9 in Crop Quality Improvement. Int J Mol Sci 2021; 22:4206. [PMID: 33921600 PMCID: PMC8073294 DOI: 10.3390/ijms22084206] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/16/2021] [Accepted: 04/16/2021] [Indexed: 02/06/2023] Open
Abstract
The various crop species are major agricultural products and play an indispensable role in sustaining human life. Over a long period, breeders strove to increase crop yield and improve quality through traditional breeding strategies. Today, many breeders have achieved remarkable results using modern molecular technologies. Recently, a new gene-editing system, named the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 technology, has also succeeded in improving crop quality. It has become the most popular tool for crop improvement due to its versatility. It has accelerated crop breeding progress by virtue of its precision in specific gene editing. This review summarizes the current application of CRISPR/Cas9 technology in crop quality improvement. It includes the modulation in appearance, palatability, nutritional components and other preferred traits of various crops. In addition, the challenge in its future application is also discussed.
Collapse
Affiliation(s)
- Qier Liu
- Institute of Agricultural Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China;
- State Agricultural Biotechnology Centre, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA 6150, Australia; (F.Y.); (J.Z.); (H.L.); (S.R.); (S.I.)
| | - Fan Yang
- State Agricultural Biotechnology Centre, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA 6150, Australia; (F.Y.); (J.Z.); (H.L.); (S.R.); (S.I.)
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| | - Jingjuan Zhang
- State Agricultural Biotechnology Centre, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA 6150, Australia; (F.Y.); (J.Z.); (H.L.); (S.R.); (S.I.)
| | - Hang Liu
- State Agricultural Biotechnology Centre, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA 6150, Australia; (F.Y.); (J.Z.); (H.L.); (S.R.); (S.I.)
| | - Shanjida Rahman
- State Agricultural Biotechnology Centre, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA 6150, Australia; (F.Y.); (J.Z.); (H.L.); (S.R.); (S.I.)
| | - Shahidul Islam
- State Agricultural Biotechnology Centre, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA 6150, Australia; (F.Y.); (J.Z.); (H.L.); (S.R.); (S.I.)
| | - Wujun Ma
- State Agricultural Biotechnology Centre, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA 6150, Australia; (F.Y.); (J.Z.); (H.L.); (S.R.); (S.I.)
| | - Maoyun She
- State Agricultural Biotechnology Centre, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA 6150, Australia; (F.Y.); (J.Z.); (H.L.); (S.R.); (S.I.)
| |
Collapse
|
33
|
Adaskaveg JA, Silva CJ, Huang P, Blanco-Ulate B. Single and Double Mutations in Tomato Ripening Transcription Factors Have Distinct Effects on Fruit Development and Quality Traits. FRONTIERS IN PLANT SCIENCE 2021; 12:647035. [PMID: 33986762 PMCID: PMC8110730 DOI: 10.3389/fpls.2021.647035] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 03/25/2021] [Indexed: 05/03/2023]
Abstract
Spontaneous mutations associated with the tomato transcription factors COLORLESS NON-RIPENING (SPL-CNR), NON-RIPENING (NAC-NOR), and RIPENING-INHIBITOR (MADS-RIN) result in fruit that do not undergo the normal hallmarks of ripening but are phenotypically distinguishable. Here, we expanded knowledge of the physiological, molecular, and genetic impacts of the ripening mutations on fruit development beyond ripening. We demonstrated through phenotypic and transcriptome analyses that Cnr fruit exhibit a broad range of developmental defects before the onset of fruit ripening, but fruit still undergo some ripening changes similar to wild type. Thus, Cnr should be considered as a fruit developmental mutant and not just a ripening mutant. Additionally, we showed that some ripening processes occur during senescence in the nor and rin mutant fruit, indicating that while some ripening processes are inhibited in these mutants, others are merely delayed. Through gene expression analysis and direct measurement of hormones, we found that Cnr, nor, and rin have alterations in the metabolism and signaling of plant hormones. Cnr mutants produce more than basal levels of ethylene, while nor and rin accumulate high concentrations of abscisic acid. To determine genetic interactions between the mutations, we created for the first time homozygous double mutants. Phenotypic analyses of the double ripening mutants revealed that Cnr has a strong influence on fruit traits and that combining nor and rin leads to an intermediate ripening mutant phenotype. However, we found that the genetic interactions between the mutations are more complex than anticipated, as the Cnr/nor double mutant fruit has a Cnr phenotype but displayed inhibition of ripening-related gene expression just like nor fruit. Our reevaluation of the Cnr, nor, and rin mutants provides new insights into the utilization of the mutants for studying fruit development and their implications in breeding for tomato fruit quality.
Collapse
|
34
|
Esposito S, Cardi T, Campanelli G, Sestili S, Díez MJ, Soler S, Prohens J, Tripodi P. ddRAD sequencing-based genotyping for population structure analysis in cultivated tomato provides new insights into the genomic diversity of Mediterranean 'da serbo' type long shelf-life germplasm. HORTICULTURE RESEARCH 2020; 7:134. [PMID: 32922806 PMCID: PMC7459340 DOI: 10.1038/s41438-020-00353-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/10/2020] [Accepted: 06/19/2020] [Indexed: 05/26/2023]
Abstract
Double digest restriction-site associated sequencing (ddRAD-seq) is a flexible and cost-effective strategy for providing in-depth insights into the genetic architecture of germplasm collections. Using this methodology, we investigated the genomic diversity of a panel of 288 diverse tomato (Solanum lycopersicum L.) accessions enriched in 'da serbo' (called 'de penjar' in Spain) long shelf life (LSL) materials (152 accessions) mostly originating from Italy and Spain. The rest of the materials originate from different countries and include landraces for fresh consumption, elite cultivars, heirlooms, and breeding lines. Apart from their LSL trait, 'da serbo' landraces are of remarkable interest for their resilience. We identified 32,799 high-quality SNPs, which were used for model ancestry population structure and non-parametric hierarchical clustering. Six genetic subgroups were revealed, clearly separating most 'da serbo' landraces, but also the Spanish germplasm, suggesting a subdivision of the population based on type and geographical provenance. Linkage disequilibrium (LD) in the collection decayed very rapidly within <5 kb. We then investigated SNPs showing contrasted minor frequency allele (MAF) in 'da serbo' materials, resulting in the identification of high frequencies in this germplasm of several mutations in genes related to stress tolerance and fruit maturation such as CTR1 and JAR1. Finally, a mini-core collection of 58 accessions encompassing most of the diversity was selected for further exploitation of key traits. Our findings suggest the presence of a genetic footprint of the 'da serbo' germplasm selected in the Mediterranean basin. Moreover, we provide novel insights on LSL 'da serbo' germplasm as a promising source of alleles for tolerance to stresses.
Collapse
Affiliation(s)
- Salvatore Esposito
- CREA Research Centre for Vegetable and Ornamental Crops, Pontecagnano, (SA) Italy
| | - Teodoro Cardi
- CREA Research Centre for Vegetable and Ornamental Crops, Pontecagnano, (SA) Italy
| | - Gabriele Campanelli
- CREA Research Centre for Vegetable and Ornamental Crops, Monsampolo del Tronto (AP), Tronto, Italy
| | - Sara Sestili
- CREA Research Centre for Vegetable and Ornamental Crops, Monsampolo del Tronto (AP), Tronto, Italy
| | - María José Díez
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, 46022 Valencia, Spain
| | - Salvador Soler
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, 46022 Valencia, Spain
| | - Jaime Prohens
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, 46022 Valencia, Spain
| | - Pasquale Tripodi
- CREA Research Centre for Vegetable and Ornamental Crops, Pontecagnano, (SA) Italy
| |
Collapse
|
35
|
Sun Q, Liu L, Zhang L, Lv H, He Q, Guo L, Zhang X, He H, Ren S, Zhang N, Zhao B, Guo YD. Melatonin promotes carotenoid biosynthesis in an ethylene-dependent manner in tomato fruits. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 298:110580. [PMID: 32771141 DOI: 10.1016/j.plantsci.2020.110580] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/21/2020] [Accepted: 06/23/2020] [Indexed: 05/27/2023]
Abstract
In tomato, red color is a key commercial trait and arises from the accumulation of carotenoids. Previous studies have revealed that melatonin promotes lycopene accumulation and ethylene production. However, it is unclear if melatonin similarly increases other carotenoids, and whether any increase of carotenoids in tomato fruit is directly related to ethylene production. In this study, changes in carotenoid profiles during fruit ripening were investigated in control (CK) and in fruits treated with melatonin (M50). The α, β-carotene, and lycopene levels were significantly increased in M50, and there was increased carotenoid biosynthetic gene expression. We also observed up-regulated transcript levels of SlRIN, SlCNR, and SlNOR in M50 compared to CK. To better understand the regulation of carotenoid biosynthesis by melatonin and its potential response to endogenous ethylene, we tested an ethylene-insensitive mutant, Never ripe (Nr). Melatonin-treated Nr failed to accumulate more carotenoids compared to CK, although there was significantly changed ethylene production. Additionally, there was no general upregulation of expression of ripening-related genes in this mutant under melatonin treatment. These results suggest melatonin function might require ethylene to promote carotenoid synthesis in tomato.
Collapse
Affiliation(s)
- Qianqian Sun
- College of Horticulture, China Agricultural University, Beijing 100193, China; Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Beijing 100193, China
| | - Lun Liu
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Lei Zhang
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Hongmei Lv
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Qing He
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Luqin Guo
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Xichun Zhang
- College of Plant Science & Technology, Beijing University of Agriculture, Beijing, 102206, China
| | - Hongju He
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Shuxin Ren
- School of Agriculture, Virginia State University, Petersburg, VA, USA
| | - Na Zhang
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Bing Zhao
- College of Horticulture, China Agricultural University, Beijing 100193, China.
| | - Yang-Dong Guo
- College of Horticulture, China Agricultural University, Beijing 100193, China.
| |
Collapse
|