1
|
Dong Q, Ren H, Cai X, Zhang Y, Lu S, Liu D, Ateeq M, Chen L, Hu YG. Deciphering the regulatory network of lignocellulose biosynthesis in bread wheat through genome-wide association studies. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2025; 138:85. [PMID: 40148541 DOI: 10.1007/s00122-025-04868-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 02/27/2025] [Indexed: 03/29/2025]
Abstract
KEY MESSAGE This study identified 46 key QTL and 17 candidate genes and developed a KASP marker, providing valuable molecular tools for enhancing lignocellulose traits, lodging resistance, and bioenergy potential in wheat. Wheat lignocellulose, composed of lignin, cellulose, and hemicellulose, plays a crucial role in strengthening plant cell walls, enhancing lodging resistance, and contributing to bioenergy production. However, the genetic basis underlying the variation in lignocellulose content in wheat remains poorly understood. The stem lignin, cellulose, and hemicellulos contents in the second stem internode of a panel of 166 wheat accessions grown in three environments were measured, combined with the genotyping data with 660 K wheat SNP chip; a genome-wide association studies (GWAS) were conducted to identify loci associated with the lignocellulose content in wheat. Significant variations in lignin, cellulose, and hemicellulose contents were observed among the wheat accessions. GWAS identified 1146 significant SNPs associated with lignin, cellulose, and hemicellulose contents, distributed across the A, B, and D sub-genomes of wheat. Joint analysis of haplotype blocks refined these associations, identifying 46 significant quantitative trait loci (QTL) regions and 17 candidate genes, primarily linked to vascular development, hemicellulose synthesis, internode elongation regulation, and lignin biosynthesis. A KASP marker (NW_CC5951) for lignocellulose was developed. These findings provide valuable molecular markers for marker-assisted selection, supporting wheat breeding for improved stem quality and lodging resistance, and offer insights into balancing grain yield with lodging resistance and lignocellulosic energy production.
Collapse
Affiliation(s)
- Qingfeng Dong
- State Key Laboratory of Crop Stress Resistance and High-Efficient Production and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
- Institute of Water Saving Agriculture in Arid Regions of China, Northwest A&F University, Yangling, Shaanxi, China
| | - Hao Ren
- State Key Laboratory of Crop Stress Resistance and High-Efficient Production and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
- Institute of Water Saving Agriculture in Arid Regions of China, Northwest A&F University, Yangling, Shaanxi, China
| | - Xuefen Cai
- State Key Laboratory of Crop Stress Resistance and High-Efficient Production and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
- Institute of Water Saving Agriculture in Arid Regions of China, Northwest A&F University, Yangling, Shaanxi, China
| | - Yujie Zhang
- State Key Laboratory of Crop Stress Resistance and High-Efficient Production and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
- Institute of Water Saving Agriculture in Arid Regions of China, Northwest A&F University, Yangling, Shaanxi, China
| | - Shan Lu
- State Key Laboratory of Crop Stress Resistance and High-Efficient Production and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
- Institute of Water Saving Agriculture in Arid Regions of China, Northwest A&F University, Yangling, Shaanxi, China
| | - Dezheng Liu
- State Key Laboratory of Crop Stress Resistance and High-Efficient Production and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
- Institute of Water Saving Agriculture in Arid Regions of China, Northwest A&F University, Yangling, Shaanxi, China
| | - Muhammad Ateeq
- State Key Laboratory of Crop Stress Resistance and High-Efficient Production and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
- Institute of Water Saving Agriculture in Arid Regions of China, Northwest A&F University, Yangling, Shaanxi, China
| | - Liang Chen
- State Key Laboratory of Crop Stress Resistance and High-Efficient Production and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China.
- Institute of Water Saving Agriculture in Arid Regions of China, Northwest A&F University, Yangling, Shaanxi, China.
- Yangling Digital Agriculture Tech CO., LTD., Xi'an, China.
| | - Yin-Gang Hu
- State Key Laboratory of Crop Stress Resistance and High-Efficient Production and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China.
- Institute of Water Saving Agriculture in Arid Regions of China, Northwest A&F University, Yangling, Shaanxi, China.
| |
Collapse
|
2
|
Li X, Caicedo AL. Comparative tissue-specific transcriptomics reveals the regulatory control of convergent seed shattering in independently evolved weedy rice lineages. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e70083. [PMID: 40121564 DOI: 10.1111/tpj.70083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 02/09/2025] [Accepted: 02/21/2025] [Indexed: 03/25/2025]
Abstract
The repeated evolution of high seed shattering during multiple independent de-domestications of cultivated Asian rice (Oryza sativa) into weedy rice (Oryza spp.) is a prime example of convergent evolution. Weedy rice populations converge in histological features of the abscission zone (AZ), a crucial structure for seed abscission, while ancestral cultivated rice populations exhibit varied AZ morphology and levels of shattering. However, the genetic bases of these phenotypic patterns remain unclear. We examined the expression profiles of the AZ region and its surrounding tissues at three developmental stages in two low-shattering cultivars of aus and temperate japonica domesticated groups and in two genotypes of their derived high-shattering weed groups, Blackhull Awned (BHA) and Spanish Weedy Rice (SWR), respectively. Consistent with the greater alteration of AZ morphology during the de-domestication of SWR than BHA, fewer genes exhibited a comparable AZ-region exclusive expression pattern between weed and crop in the temperate japonica lineage than in the aus lineage. Transcription factors related to the repression of lignin and secondary cell wall deposition, such as, OsWRKY102 and OsXND-1-like, along with certain known shattering genes involved in AZ formation, likely played a role in maintaining AZ region identity in both lineages. Meanwhile, most genes exhibiting AZ-region exclusive expression patterns do not overlap between the two lineages and the genes exhibiting differential expression in the AZ region between weed and crop across the two lineages are enriched for different gene ontology terms. Our findings suggest genetic flexibility in shaping AZ morphology, while genetic constraints on AZ identity determination in these two lineages.
Collapse
Affiliation(s)
- Xiang Li
- Plant Biology Graduate Program and Department of Biology, University of Massachusetts Amherst, Amherst, Massachusetts, 01003, USA
- Department of Genetics, University of Georgia, Athens, Georgia, 30602, USA
| | - Ana L Caicedo
- Plant Biology Graduate Program and Department of Biology, University of Massachusetts Amherst, Amherst, Massachusetts, 01003, USA
| |
Collapse
|
3
|
Jia S, Wang C, Sun W, Yan X, Wang W, Xu B, Guo G, Bi C. OsWRKY12 negatively regulates the drought-stress tolerance and secondary cell wall biosynthesis by targeting different downstream transcription factor genes in rice. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 212:108794. [PMID: 38850730 DOI: 10.1016/j.plaphy.2024.108794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/24/2024] [Accepted: 06/02/2024] [Indexed: 06/10/2024]
Abstract
With the increasing occurrence of global warming, drought is becoming a major constraint for plant growth and crop yield. Plant cell walls experience continuous changes during the growth, development, and in responding to stressful conditions. The plant WRKYs play pivotal roles in regulating the secondary cell wall (SCW) biosynthesis and helping plant defend against abiotic stresses. qRT-PCR evidence showed that OsWRKY12 was affected by drought and ABA treatments. Over-expression of OsWRKY12 decreased the drought tolerance of the rice transgenics at the germination stage and the seedling stage. The transcription levels of drought-stress-associated genes as well as those genes participating in the ABA biosynthesis and signaling were significantly different compared to the wild type (WT). Our results also showed that less lignin and cellulose were deposited in the OsWRKY12-overexpressors, and heterogenous expression of OsWRKY12 in atwrky12 could lower the increased lignin and cellulose contents, as well as the improved PEG-stress tolerance, to a similar level as the WT. qRT-PCR results indicated that the transcription levels of all the genes related to lignin and cellulose biosynthesis were significantly decreased in the rice transgenics than the WT. Further evidence from yeast one-hybrid assay and the dual-luciferase reporter system suggested that OsWRKY12 could bind to promoters of OsABI5 (the critical component of the ABA signaling pathway) and OsSWN3/OsSWN7 (the key positive regulators in the rice SCW thickening), and hence repressing their expression. In conclusion, OsWRKY12 mediates the crosstalk between SCW biosynthesis and plant stress tolerance by binding to the promoters of different downstream genes.
Collapse
Affiliation(s)
- Shuzhen Jia
- College of Life Science, Hebei Normal University, Shijiazhuang, 050024, China.
| | - Chunyue Wang
- College of Life Science, Hebei Normal University, Shijiazhuang, 050024, China.
| | - Wanying Sun
- College of Life Science, Hebei Normal University, Shijiazhuang, 050024, China.
| | - Xiaofei Yan
- College of Life Science, Hebei Normal University, Shijiazhuang, 050024, China.
| | - Weiting Wang
- College of Life Science, Hebei Normal University, Shijiazhuang, 050024, China.
| | - Bing Xu
- College of Life Science, Hebei Normal University, Shijiazhuang, 050024, China.
| | - Guangyan Guo
- College of Life Science, Hebei Normal University, Shijiazhuang, 050024, China.
| | - Caili Bi
- College of Life Science, Hebei Normal University, Shijiazhuang, 050024, China.
| |
Collapse
|
4
|
Umezawa T. Metabolic engineering of Oryza sativa for lignin augmentation and structural simplification. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2024; 41:89-101. [PMID: 39463768 PMCID: PMC11500570 DOI: 10.5511/plantbiotechnology.24.0131a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 01/31/2024] [Indexed: 10/29/2024]
Abstract
The sustainable production and utilization of lignocellulose biomass are indispensable for establishing sustainable societies. Trees and large-sized grasses are the major sources of lignocellulose biomass, while large-sized grasses greatly surpass trees in terms of lignocellulose biomass productivity. With an overall aim to improve lignocellulose usability, it is important to increase the lignin content and simplify lignin structures in biomass plants via lignin metabolic engineering. Rice (Oryza sativa) is not only a representative and important grass crop, but also is a model for large-sized grasses in biotechnology. This review outlines progress in lignin metabolic engineering in grasses, mainly rice, including characterization of the lignocellulose properties, the augmentation of lignin content and the simplification of lignin structures. These findings have broad applicability for the metabolic engineering of lignin in large-sized grass biomass plants.
Collapse
Affiliation(s)
- Toshiaki Umezawa
- Research Institute for Sustainable Humanosphere, Kyoto University
| |
Collapse
|
5
|
Zhang H, Liu M, Yin K, Liu H, Liu J, Yan Z. A novel OsHB5-OsAPL-OsMADS27/OsWRKY102 regulatory module regulates grain size in rice. JOURNAL OF PLANT PHYSIOLOGY 2024; 295:154210. [PMID: 38460401 DOI: 10.1016/j.jplph.2024.154210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/17/2024] [Accepted: 02/29/2024] [Indexed: 03/11/2024]
Abstract
Grain size, a crucial trait that determines rice yield and quality, is typically regulated by multiple genes. Although numerous genes controlling grain size have been identified, the precise and dynamic regulatory network governing grain size is still not fully understood. In this study, we unveiled a novel regulatory module composed of OsHB5, OsAPL and OsMADS27/OsWRKY102, which plays a crucial role in modulating grain size in rice. As a positive regulator of grain size, OsAPL has been found to interact with OsHB5 both in vitro and in vivo. Through chromatin immunoprecipitation-sequencing, we successfully mapped two potential targets of OsAPL, namely OsMADS27, a positive regulator in grain size and OsWRKY102, a negative regulator in lignification that is also associated with grain size control. Further evidence from EMSA and chromatin immunoprecipitation-quantitative PCR experiments has shown that OsAPL acts as an upstream transcription factor that directly binds to the promoters of OsMADS27 and OsWRKY102. Moreover, EMSA and dual-luciferase reporter assays have indicated that the interaction between OsAPL and OsHB5 enhances the repressive effect of OsAPL on OsMADS27 and OsWRKY102. Collectively, our findings discovered a novel regulatory module, OsHB5-OsAPL-OsMADS27/OsWRKY102, which plays a significant role in controlling grain size in rice. These discoveries provide potential targets for breeding high-yield and high-quality rice varieties.
Collapse
Affiliation(s)
- Han Zhang
- Key Laboratory for Bio-resources and Eco-environment & State Key Lab of Hydraulics & Mountain River Engineering, Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Meng Liu
- Key Laboratory for Bio-resources and Eco-environment & State Key Lab of Hydraulics & Mountain River Engineering, Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Kangqun Yin
- Key Laboratory for Bio-resources and Eco-environment & State Key Lab of Hydraulics & Mountain River Engineering, Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Huanhuan Liu
- Key Laboratory for Bio-resources and Eco-environment & State Key Lab of Hydraulics & Mountain River Engineering, Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, China; National Demonstration Center for Experimental Biology Education (Sichuan University), Chengdu, 610064, China
| | - Jianquan Liu
- Key Laboratory for Bio-resources and Eco-environment & State Key Lab of Hydraulics & Mountain River Engineering, Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, China; State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems and College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Zhen Yan
- Key Laboratory for Bio-resources and Eco-environment & State Key Lab of Hydraulics & Mountain River Engineering, Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, China; National Demonstration Center for Experimental Biology Education (Sichuan University), Chengdu, 610064, China.
| |
Collapse
|
6
|
Mahiwal S, Pahuja S, Pandey GK. Review: Structural-functional relationship of WRKY transcription factors: Unfolding the role of WRKY in plants. Int J Biol Macromol 2024; 257:128769. [PMID: 38096937 DOI: 10.1016/j.ijbiomac.2023.128769] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/03/2023] [Accepted: 12/11/2023] [Indexed: 12/18/2023]
Abstract
WRKY as the name suggests, are the transcription factors (TFs) that contain the signature WRKY domains, hence named after it. Since their discovery in 1994, they have been well studied in plants with exploration of approximately 74 WRKY genes in the model plant, Arabidopsis alone. However, the study of these transcription factors (TFs) is not just limited to model plant now. They have been studied widely in crop plants as well, because of their tremendous contribution in stress as well as in growth and development. Here, in this review, we describe the story of WRKY TFs from their identification to their origin, the binding mechanisms, structure and their contribution in regulating plant development and stress physiology. High throughput transcriptomics-based data also opened a doorway to understand the comprehensive and detailed functioning of WRKY TFs in plants. Indeed, the detailed functional role of each and every WRKY member in regulating the gene expression is required to pave the path to develop holistic understanding of their role in stress physiology and developmental processes in plants.
Collapse
Affiliation(s)
- Swati Mahiwal
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi 110021, India
| | - Sonam Pahuja
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi 110021, India
| | - Girdhar K Pandey
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi 110021, India.
| |
Collapse
|
7
|
Zhu Y, Wang Y, Jiang H, Liu W, Zhang S, Hou X, Zhang S, Wang N, Zhang R, Zhang Z, Chen X. Transcriptome analysis reveals that PbMYB61 and PbMYB308 are involved in the regulation of lignin biosynthesis in pear fruit stone cells. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:217-233. [PMID: 37382050 DOI: 10.1111/tpj.16372] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 06/27/2023] [Indexed: 06/30/2023]
Abstract
Pear fruit stone cells have thick walls and are formed by the secondary deposition of lignin in the primary cell wall of thin-walled cells. Their content and size seriously affect fruit characteristics related to edibility. To reveal the regulatory mechanism underlying stone cell formation during pear fruit development and to identify hub genes, we examined the stone cell and lignin contents of 30 'Shannongsu' pear flesh samples and analyzed the transcriptomes of 15 pear flesh samples collected at five developmental stages. On the basis of the RNA-seq data, 35 874 differentially expressed genes were detected. Additionally, two stone cell-related modules were identified according to a WGCNA. A total of 42 lignin-related structural genes were subsequently obtained. Furthermore, nine hub structural genes were identified in the lignin regulatory network. We also identified PbMYB61 and PbMYB308 as candidate transcriptional regulators of stone cell formation after analyzing co-expression networks and phylogenetic relationships. Finally, we experimentally validated and characterized the candidate transcription factors and revealed that PbMYB61 regulates stone cell lignin formation by binding to the AC element in the PbLAC1 promoter to upregulate expression. However, PbMYB308 negatively regulates stone cell lignin synthesis by binding to PbMYB61 to form a dimer that cannot activate PbLAC1 expression. In this study, we explored the lignin synthesis-related functions of MYB family members. The results presented herein are useful for elucidating the complex mechanisms underlying lignin biosynthesis during pear fruit stone cell development.
Collapse
Affiliation(s)
- Yansong Zhu
- College of Horticulture Sciences, Shandong Agricultural University, Taian, Shandong, China
| | - Yicheng Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Huiyan Jiang
- College of Horticulture Sciences, Shandong Agricultural University, Taian, Shandong, China
| | - Wenjun Liu
- College of Horticulture Sciences, Shandong Agricultural University, Taian, Shandong, China
| | - Shuhui Zhang
- College of Horticulture Sciences, Shandong Agricultural University, Taian, Shandong, China
| | - Xukai Hou
- College of Horticulture Sciences, Shandong Agricultural University, Taian, Shandong, China
| | - Susu Zhang
- College of Horticulture Sciences, Shandong Agricultural University, Taian, Shandong, China
| | - Nan Wang
- College of Horticulture Sciences, Shandong Agricultural University, Taian, Shandong, China
| | - Rui Zhang
- College of Agriculture and Bioengineering, Heze University, Heze, Shandong, China
| | - Zongying Zhang
- College of Horticulture Sciences, Shandong Agricultural University, Taian, Shandong, China
| | - Xuesen Chen
- College of Horticulture Sciences, Shandong Agricultural University, Taian, Shandong, China
| |
Collapse
|
8
|
Zhang M, Lu W, Yang X, Li Q, Lin X, Liu K, Yin C, Xiong B, Liao L, Sun G, He S, He J, Wang X, Wang Z. Comprehensive analyses of the citrus WRKY gene family involved in the metabolism of fruit sugars and organic acids. FRONTIERS IN PLANT SCIENCE 2023; 14:1264283. [PMID: 37780491 PMCID: PMC10540311 DOI: 10.3389/fpls.2023.1264283] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 08/24/2023] [Indexed: 10/03/2023]
Abstract
Sugars and organic acids are the main factors determining the flavor of citrus fruit. The WRKY transcription factor family plays a vital role in plant growth and development. However, there are still few studies about the regulation of citrus WRKY transcription factors (CsWRKYs) on sugars and organic acids in citrus fruit. In this work, a genome-wide analysis of CsWRKYs was carried out in the citrus genome, and a total of 81 CsWRKYs were identified, which contained conserved WRKY motifs. Cis-regulatory element analysis revealed that most of the CsWRKY promoters contained several kinds of hormone-responsive and abiotic-responsive cis-elements. Furthermore, gene expression analysis and fruit quality determination showed that multiple CsWRKYs were closely linked to fruit sugars and organic acids with the development of citrus fruit. Notably, transcriptome co-expression network analysis further indicated that three CsWRKYs, namely, CsWRKY3, CsWRKY47, and CsWRKY46, co-expressed with multiple genes involved in various pathways, such as Pyruvate metabolism and Citrate cycle. These CsWRKYs may participate in the metabolism of fruit sugars and organic acids by regulating carbohydrate metabolism genes in citrus fruit. These findings provide comprehensive knowledge of the CsWRKY family on the regulation of fruit quality.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Xun Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Zhihui Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| |
Collapse
|
9
|
Xu J, Du R, Wang Y, Chen J. Wound-Induced Temporal Reprogramming of Gene Expression during Agarwood Formation in Aquilaria sinensis. PLANTS (BASEL, SWITZERLAND) 2023; 12:2901. [PMID: 37631113 PMCID: PMC10459772 DOI: 10.3390/plants12162901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/27/2023] [Accepted: 08/05/2023] [Indexed: 08/27/2023]
Abstract
Agarwood is a resinous heartwood of Aquilaria sinensis that is formed in response to mechanical wounding. However, the transcriptional response of A. sinensis to mechanical wounding during the agarwood formation process is still unclear. Here, three five-year-old A. sinensis trees were mechanically damaged by a chisel, and time-series transcriptomic analysis of xylem tissues in the treated area (TA) was performed at 15 (TA1), 70 (TA2) and 180 days after treatment (TA3). Samples from untreated areas at the corresponding time points (UA1, UA2, UA3, respectively) were collected as controls. A total of 1862 (TA1 vs. UA1), 961 (TA2 vs. UA2), 1370 (TA3 vs. UA3), 3305 (TA2 vs. TA1), 2625 (TA3 vs. TA1), 2899 (TA3 vs. TA2), 782 (UA2 vs. UA1), 4443 (UA3 vs. UA1) and 4031 (UA3 vs. UA2) genes were differentially expressed (DEGs). Functional enrichment analysis showed that DEGs were significantly enriched for secondary metabolic processes, signal transduction and transcriptional regulation processes. Most of the genes involved in lignin biosynthesis were more abundant in the TA groups, which included phenylalanine ammonia-lyase, 4-coumarate CoA ligase, cinnamate 4-hydroxylase, caffeoyl-CoA O-methyltransferase and cinnamoyl-CoA reductase. DEGs involved in sesquiterpene biosynthesis were also identified. Hydroxymethylglutaryl-CoA synthase, 3-hydroxy-3-methylglutaryl-coenzyme A reductase, phosphomevalonate kinase and terpene synthase genes were significantly increased in the TA groups, promoting sesquiterpene biosynthesis in the wounded xylem tissues. The TF-gene transcriptomic networks suggested that MYB DNA-binding, NAM, WRKY, HLH and AP2 TFs co-expressed with genes related to lignin and sesquiterpene synthesis, indicating their critical regulatory roles in the biosynthesis of these compounds. Overall, our study reveals a dynamic transcriptional response of A. sinensis to mechanical wounding, provides a resource for identifying candidate genes for molecular breeding of agarwood quality, and sheds light on the molecular mechanisms of agarwood formation in A. sinensis.
Collapse
Affiliation(s)
- Jieru Xu
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Hainan University, Sanya 572019, China; (J.X.); (R.D.); (Y.W.)
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education/Engineering Research Center of Rare and Precious Tree Species in Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Ruyue Du
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Hainan University, Sanya 572019, China; (J.X.); (R.D.); (Y.W.)
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education/Engineering Research Center of Rare and Precious Tree Species in Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Yue Wang
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Hainan University, Sanya 572019, China; (J.X.); (R.D.); (Y.W.)
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education/Engineering Research Center of Rare and Precious Tree Species in Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Jinhui Chen
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Hainan University, Sanya 572019, China; (J.X.); (R.D.); (Y.W.)
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education/Engineering Research Center of Rare and Precious Tree Species in Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| |
Collapse
|
10
|
Wang H, Chen W, Xu Z, Chen M, Yu D. Functions of WRKYs in plant growth and development. TRENDS IN PLANT SCIENCE 2023; 28:630-645. [PMID: 36628655 DOI: 10.1016/j.tplants.2022.12.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 12/09/2022] [Accepted: 12/15/2022] [Indexed: 05/13/2023]
Abstract
As sessile organisms, plants must overcome various stresses. Accordingly, they have evolved several plant-specific growth and developmental processes. These plant processes may be related to the evolution of plant-specific protein families. The WRKY transcription factors originated in eukaryotes and expanded in plants, but are not present in animals. Over the past two decades, there have been many studies on WRKYs in plants, with much of the research concentrated on their roles in stress responses. Nevertheless, recent findings have revealed that WRKYs are also required for seed dormancy and germination, postembryonic morphogenesis, flowering, gametophyte development, and seed production. Thus, WRKYs may be important for plant adaptations to a sessile lifestyle because they simultaneously regulate stress resistance and plant-specific growth and development.
Collapse
Affiliation(s)
- Houping Wang
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming, China
| | - Wanqin Chen
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming, China
| | - Zhiyu Xu
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming, China
| | - Mifen Chen
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming, China
| | - Diqiu Yu
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming, China.
| |
Collapse
|
11
|
Zhang Y, Li P, Niu Y, Zhang Y, Wen G, Zhao C, Jiang M. Evolution of the WRKY66 Gene Family and Its Mutations Generated by the CRISPR/Cas9 System Increase the Sensitivity to Salt Stress in Arabidopsis. Int J Mol Sci 2023; 24:3071. [PMID: 36834483 PMCID: PMC9959582 DOI: 10.3390/ijms24043071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/29/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
Group Ⅲ WRKY transcription factors (TFs) play pivotal roles in responding to the diverse abiotic stress and secondary metabolism of plants. However, the evolution and function of WRKY66 remains unclear. Here, WRKY66 homologs were traced back to the origin of terrestrial plants and found to have been subjected to both motifs' gain and loss, and purifying selection. A phylogenetic analysis showed that 145 WRKY66 genes could be divided into three main clades (Clade A-C). The substitution rate tests indicated that the WRKY66 lineage was significantly different from others. A sequence analysis displayed that the WRKY66 homologs had conserved WRKY and C2HC motifs with higher proportions of crucial amino acid residues in the average abundance. The AtWRKY66 is a nuclear protein, salt- and ABA- inducible transcription activator. Simultaneously, under salt stress and ABA treatments, the superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) activities, as well as the seed germination rates of Atwrky66-knockdown plants generated by the clustered, regularly interspaced, short palindromic repeats/CRISPR-associated 9 (CRISPR/Cas9) system, were all lower than those of wild type (WT) plants, but the relative electrolyte leakage (REL) was higher, indicating the increased sensitivities of the knockdown plants to the salt stress and ABA treatments. Moreover, RNA-seq and qRT-PCR analyses revealed that several regulatory genes in the ABA-mediated signaling pathway involved in stress response of the knockdown plants were significantly regulated, being evidenced by the more moderate expressions of the genes. Therefore, the AtWRKY66 likely acts as a positive regulator in the salt stress response, which may be involved in an ABA-mediated signaling pathway.
Collapse
Affiliation(s)
- Youze Zhang
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Peng Li
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
| | - Yuqian Niu
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Yuxin Zhang
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Guosong Wen
- Research & Development Center for Heath Product, College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China
| | - Changling Zhao
- Research & Development Center for Heath Product, College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China
| | - Min Jiang
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
| |
Collapse
|
12
|
Chang X, Yang Z, Zhang X, Zhang F, Huang X, Han X. Transcriptome-wide identification of WRKY transcription factors and their expression profiles under different stress in Cynanchum thesioides. PeerJ 2022; 10:e14436. [PMID: 36518281 PMCID: PMC9744163 DOI: 10.7717/peerj.14436] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/31/2022] [Indexed: 12/05/2022] Open
Abstract
Cynanchum thesioides (Freyn) K. Schum. is an important economic and medicinal plant widely distributed in northern China. WRKY transcription factors (TFs) play important roles in plant growth, development and regulating responses. However, there is no report on the WRKY genes in Cynanchum thesioides. A total of 19 WRKY transcriptome sequences with complete ORFs were identified as WRKY transcriptome sequences by searching for WRKYs in RNA sequencing data. Then, the WRKY genes were classified by phylogenetic and conserved motif analysis of the WRKY family in Cynanchum thesioides and Arabidopsis thaliana. qRT-PCR was used to determine the expression patterns of 19 CtWRKY genes in different tissues and seedlings of Cynanchum thesioides under plant hormone (ABA and ETH) and abiotic stresses (cold and salt). The results showed that 19 CtWRKY genes could be divided into groups I-III according to their structure and phylogenetic characteristics, and group II could be divided into five subgroups. The prediction of CtWRKY gene protein interactions indicates that CtWRKY is involved in many biological processes. In addition, the CtWRKY gene was differentially expressed in different tissues and positively responded to abiotic stress and phytohormone treatment, among which CtWRKY9, CtWRKY18, and CtWRKY19 were significantly induced under various stresses. This study is the first to identify the WRKY gene family in Cynanchum thesioides, and the systematic analysis lays a foundation for further identification of the function of WRKY genes in Cynanchum thesioides.
Collapse
Affiliation(s)
- Xiaoyao Chang
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Huhehaote, Inner Mongolia, China
| | - Zhongren Yang
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Huhehaote, Inner Mongolia, China
| | - Xiaoyan Zhang
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Huhehaote, Inner Mongolia, China
| | - Fenglan Zhang
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Huhehaote, Inner Mongolia, China
| | - Xiumei Huang
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Huhehaote, Inner Mongolia, China
| | - Xu Han
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Huhehaote, Inner Mongolia, China
| |
Collapse
|
13
|
Wang Y, Gui C, Wu J, Gao X, Huang T, Cui F, Liu H, Sethupathy S. Spatio-Temporal Modification of Lignin Biosynthesis in Plants: A Promising Strategy for Lignocellulose Improvement and Lignin Valorization. Front Bioeng Biotechnol 2022; 10:917459. [PMID: 35845403 PMCID: PMC9283729 DOI: 10.3389/fbioe.2022.917459] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/14/2022] [Indexed: 11/13/2022] Open
Abstract
Lignin is essential for plant growth, structural integrity, biotic/abiotic stress resistance, and water transport. Besides, lignin constitutes 10–30% of lignocellulosic biomass and is difficult to utilize for biofuel production. Over the past few decades, extensive research has uncovered numerous metabolic pathways and genes involved in lignin biosynthesis, several of which have been highlighted as the primary targets for genetic manipulation. However, direct manipulation of lignin biosynthesis is often associated with unexpected abnormalities in plant growth and development for unknown causes, thus limiting the usefulness of genetic engineering for biomass production and utilization. Recent advances in understanding the complex regulatory mechanisms of lignin biosynthesis have revealed new avenues for spatial and temporal modification of lignin in lignocellulosic plants that avoid growth abnormalities. This review explores recent work on utilizing specific transcriptional regulators to modify lignin biosynthesis at both tissue and cellular levels, focusing on using specific promoters paired with functional or regulatory genes to precisely control lignin synthesis and achieve biomass production with desired properties. Further advances in designing more appropriate promoters and other regulators will increase our capacity to modulate lignin content and structure in plants, thus setting the stage for high-value utilization of lignin in the future.
Collapse
Affiliation(s)
- Yongli Wang
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
- *Correspondence: Yongli Wang, ; Sivasamy Sethupathy,
| | - Cunjin Gui
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Jiangyan Wu
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Xing Gao
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Ting Huang
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Fengjie Cui
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Huan Liu
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Sivasamy Sethupathy
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
- *Correspondence: Yongli Wang, ; Sivasamy Sethupathy,
| |
Collapse
|
14
|
Tao X, Liu M, Yuan Y, Liu R, Qi K, Xie Z, Bao J, Zhang S, Shiratake K, Tao S. Transcriptome provides potential insights into how calcium affects the formation of stone cell in Pyrus. BMC Genomics 2021; 22:831. [PMID: 34789145 PMCID: PMC8600858 DOI: 10.1186/s12864-021-08161-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 10/22/2021] [Indexed: 11/17/2022] Open
Abstract
Background The content of stone cells in pears has a great influence on taste. Stone cells are formed by the accumulation of lignin. The treatment of exogenous calcium can affect the lignin synthesis, but this Ca-mediated mechanism is still unclear. In this study, the author performed a comparative transcriptomic analysis of callus of pears (Pyrus x bretschneideri) treated with calcium nitrate Ca (NO3)2 to investigate the role of calcium in lignin synthesis. Results There were 2889 differentially expressed genes (DEGs) detected between the Control and Ca (NO3)2 treatment in total. Among these 2889 DEGs, not only a large number of genes related to Ca single were found, but also many genes were enriched in secondary metabolic pathway, especially in lignin synthesis. Most of them were up-regulated during the development of callus after Ca (NO3)2 treatment. In order to further explore how calcium nitrate treatment affects lignin synthesis, the author screened genes associated with transduction of calcium signal in DEGs, and finally found CAM, CML, CDPK, CBL and CIPK. Then the author identified the PbCML3 in pears and conducted relevant experiments finding the overexpression of PbCML3 would increase the content of pear stone cells, providing potential insights into how Ca treatment enhances the stone cell in pears. Conclusions Our deep analysis reveals the effects of exogenous calcium on calcium signal and lignin biosynthesis pathway. The function of PbCML3 on stone cells formation was verified in pear. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08161-5.
Collapse
Affiliation(s)
- Xingyu Tao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Min Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yazhou Yuan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ruonan Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Kaijie Qi
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhihua Xie
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jianping Bao
- College of Plant Science, Tarim University, Ala'er, China
| | - Shaoling Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | | | - Shutian Tao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
15
|
Martínez-Cortés T, Pomar F, Novo-Uzal E. Evolutionary Implications of a Peroxidase with High Affinity for Cinnamyl Alcohols from Physcomitrium patens, a Non-Vascular Plant. PLANTS 2021; 10:plants10071476. [PMID: 34371679 PMCID: PMC8309402 DOI: 10.3390/plants10071476] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/15/2021] [Accepted: 07/15/2021] [Indexed: 01/15/2023]
Abstract
Physcomitrium (Physcomitrella) patens is a bryophyte highly tolerant to different stresses, allowing survival when water supply is a limiting factor. This moss lacks a true vascular system, but it has evolved a primitive water-conducting system that contains lignin-like polyphenols. By means of a three-step protocol, including ammonium sulfate precipitation, adsorption chromatography on phenyl Sepharose and cationic exchange chromatography on SP Sepharose, we were able to purify and further characterize a novel class III peroxidase, PpaPrx19, upregulated upon salt and H2O2 treatments. This peroxidase, of a strongly basic nature, shows surprising homology to angiosperm peroxidases related to lignification, despite the lack of true lignins in P. patens cell walls. Moreover, PpaPrx19 shows catalytic and kinetic properties typical of angiosperm peroxidases involved in oxidation of monolignols, being able to efficiently use hydroxycinnamyl alcohols as substrates. Our results pinpoint the presence in P. patens of peroxidases that fulfill the requirements to be involved in the last step of lignin biosynthesis, predating the appearance of true lignin.
Collapse
Affiliation(s)
- Teresa Martínez-Cortés
- Grupo de Investigación en Biología Evolutiva, Centro de Investigaciones Científicas Avanzadas, Universidade da Coruña, 15071 A Coruña, Spain; (T.M.-C.); (F.P.)
| | - Federico Pomar
- Grupo de Investigación en Biología Evolutiva, Centro de Investigaciones Científicas Avanzadas, Universidade da Coruña, 15071 A Coruña, Spain; (T.M.-C.); (F.P.)
| | - Esther Novo-Uzal
- Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal
- Correspondence:
| |
Collapse
|
16
|
Kumari S, Kanth BK, Ahn JY, Kim JH, Lee GJ. Genome-Wide Transcriptomic Identification and Functional Insight of Lily WRKY Genes Responding to Botrytis Fungal Disease. PLANTS (BASEL, SWITZERLAND) 2021; 10:776. [PMID: 33920859 PMCID: PMC8071302 DOI: 10.3390/plants10040776] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/28/2021] [Accepted: 04/12/2021] [Indexed: 05/25/2023]
Abstract
Genome-wide transcriptome analysis using RNA-Seq of Lilium longiflorum revealed valuable genes responding to biotic stresses. WRKY transcription factors are regulatory proteins playing essential roles in defense processes under environmental stresses, causing considerable losses in flower quality and production. Thirty-eight WRKY genes were identified from the transcriptomic profile from lily genotypes, exhibiting leaf blight caused by Botrytis elliptica. Lily WRKYs have a highly conserved motif, WRKYGQK, with a common variant, WRKYGKK. Phylogeny of LlWRKYs with homologous genes from other representative plant species classified them into three groups- I, II, and III consisting of seven, 22, and nine genes, respectively. Base on functional annotation, 22 LlWRKY genes were associated with biotic stress, nine with abiotic stress, and seven with others. Sixteen unique LlWRKY were studied to investigate responses to stress conditions using gene expression under biotic and abiotic stress treatments. Five genes-LlWRKY3, LlWRKY4, LlWRKY5, LlWRKY10, and LlWRKY12-were substantially upregulated, proving to be biotic stress-responsive genes in vivo and in vitro conditions. Moreover, the expression patterns of LlWRKY genes varied in response to drought, heat, cold, and different developmental stages or tissues. Overall, our study provides structural and molecular insights into LlWRKY genes for use in the genetic engineering in Lilium against Botrytis disease.
Collapse
Affiliation(s)
- Shipra Kumari
- Department of Horticulture, Chungnam National University, Daejeon 34134, Korea; (S.K.); (B.K.K.); (J.y.A.)
| | - Bashistha Kumar Kanth
- Department of Horticulture, Chungnam National University, Daejeon 34134, Korea; (S.K.); (B.K.K.); (J.y.A.)
| | - Ju young Ahn
- Department of Horticulture, Chungnam National University, Daejeon 34134, Korea; (S.K.); (B.K.K.); (J.y.A.)
- Department of Smart Agriculture Systems, Chungnam National University, Daejeon 34134, Korea
| | - Jong Hwa Kim
- Department of Horticulture, Kangwon National University, Chuncheon 24341, Gangwon-do, Korea;
| | - Geung-Joo Lee
- Department of Horticulture, Chungnam National University, Daejeon 34134, Korea; (S.K.); (B.K.K.); (J.y.A.)
- Department of Smart Agriculture Systems, Chungnam National University, Daejeon 34134, Korea
| |
Collapse
|