1
|
Shahzad N, Nabi HG, Qiao L, Li W. The Molecular Mechanism of Cold-Stress Tolerance: Cold Responsive Genes and Their Mechanisms in Rice ( Oryza sativa L.). BIOLOGY 2024; 13:442. [PMID: 38927322 PMCID: PMC11200503 DOI: 10.3390/biology13060442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024]
Abstract
Rice (Oryza sativa L.) production is highly susceptible to temperature fluctuations, which can significantly reduce plant growth and development at different developmental stages, resulting in a dramatic loss of grain yield. Over the past century, substantial efforts have been undertaken to investigate the physiological, biochemical, and molecular mechanisms of cold stress tolerance in rice. This review aims to provide a comprehensive overview of the recent developments and trends in this field. We summarized the previous advancements and methodologies used for identifying cold-responsive genes and the molecular mechanisms of cold tolerance in rice. Integration of new technologies has significantly improved studies in this era, facilitating the identification of essential genes, QTLs, and molecular modules in rice. These findings have accelerated the molecular breeding of cold-resistant rice varieties. In addition, functional genomics, including the investigation of natural variations in alleles and artificially developed mutants, is emerging as an exciting new approach to investigating cold tolerance. Looking ahead, it is imperative for scientists to evaluate the collective impacts of these novel genes to develop rice cultivars resilient to global climate change.
Collapse
Affiliation(s)
- Nida Shahzad
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Life Sciences, Northwest A&F University, Xianyang 712100, China; (N.S.); (L.Q.)
| | - Hafiz Ghulam Nabi
- State Key Laboratory of Agrobiotechnology/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China;
| | - Lei Qiao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Life Sciences, Northwest A&F University, Xianyang 712100, China; (N.S.); (L.Q.)
| | - Wenqiang Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Life Sciences, Northwest A&F University, Xianyang 712100, China; (N.S.); (L.Q.)
| |
Collapse
|
2
|
Yuan L, Zhang L, Wu Y, Zheng Y, Nie L, Zhang S, Lan T, Zhao Y, Zhu S, Hou J, Chen G, Tang X, Wang C. Comparative transcriptome analysis reveals that chlorophyll metabolism contributes to leaf color changes in wucai (Brassica campestris L.) in response to cold. BMC PLANT BIOLOGY 2021; 21:438. [PMID: 34583634 PMCID: PMC8477495 DOI: 10.1186/s12870-021-03218-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 09/20/2021] [Indexed: 05/25/2023]
Abstract
BACKGROUND Chlorophyll (Chl) is a vital photosynthetic pigment involved in capturing light energy and energy conversion. In this study, the color conversion of inner-leaves from green to yellow in the new wucai (Brassica campestris L.) cultivar W7-2 was detected under low temperature. The W7-2 displayed a normal green leaf phenotype at the seedling stage, but the inner leaves gradually turned yellow when the temperature was decreased to 10 °C/2 °C (day/night), This study facilitates us to understand the physiological and molecular mechanisms underlying leaf color changes in response to low temperature. RESULTS A comparative leaf transcriptome analysis of W7-2 under low temperature treatment was performed on three stages (before, during and after leaf color change) with leaves that did not change color under normal temperature at the same period as a control. A total of 67,826 differentially expressed genes (DEGs) were identified. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and Gene Ontology (GO) analysis revealed that the DEGs were mainly enriched in porphyrin and Chl metabolism, carotenoids metabolism, photosynthesis, and circadian rhythm. In the porphyrin and chlorophyll metabolic pathways, the expression of several genes was reduced [i.e. magnesium chelatase subunit H (CHLH)] under low temperature. Almost all genes [i.e. phytoene synthase (PSY)] in the carotenoids (Car) biosynthesis pathway were downregulated under low temperature. The genes associated with photosynthesis [i.e. photosystem II oxygen-evolving enhancer protein 1 (PsbO)] were also downregulated under LT. Our study also showed that elongated hypocotyl5 (HY5), which participates in circadian rhythm, and the metabolism of Chl and Car, is responsible for the regulation of leaf color change and cold tolerance in W7-2. CONCLUSIONS The color of inner-leaves was changed from green to yellow under low temperature in temperature-sensitive mutant W7-2. Physiological, biochemical and transcriptomic studies showed that HY5 transcription factor and the downstream genes such as CHLH and PSY, which regulate the accumulation of different pigments, are required for the modulation of leaf color change in wucai under low temperature.
Collapse
Affiliation(s)
- Lingyun Yuan
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei, 230036 Anhui China
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, 130 West of Changjiang Road, Hefei, 230036 Anhui China
- Wanjiang Vegetable Industrial Technology Institute, Maanshan, 238200 Anhui China
| | - Liting Zhang
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei, 230036 Anhui China
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, 130 West of Changjiang Road, Hefei, 230036 Anhui China
| | - Ying Wu
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei, 230036 Anhui China
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, 130 West of Changjiang Road, Hefei, 230036 Anhui China
| | - Yushan Zheng
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei, 230036 Anhui China
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, 130 West of Changjiang Road, Hefei, 230036 Anhui China
| | - Libing Nie
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei, 230036 Anhui China
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, 130 West of Changjiang Road, Hefei, 230036 Anhui China
| | - Shengnan Zhang
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei, 230036 Anhui China
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, 130 West of Changjiang Road, Hefei, 230036 Anhui China
| | - Tian Lan
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei, 230036 Anhui China
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, 130 West of Changjiang Road, Hefei, 230036 Anhui China
| | - Yang Zhao
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei, 230036 Anhui China
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, 130 West of Changjiang Road, Hefei, 230036 Anhui China
| | - Shidong Zhu
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei, 230036 Anhui China
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, 130 West of Changjiang Road, Hefei, 230036 Anhui China
- Wanjiang Vegetable Industrial Technology Institute, Maanshan, 238200 Anhui China
| | - Jinfeng Hou
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei, 230036 Anhui China
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, 130 West of Changjiang Road, Hefei, 230036 Anhui China
- Wanjiang Vegetable Industrial Technology Institute, Maanshan, 238200 Anhui China
| | - Guohu Chen
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei, 230036 Anhui China
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, 130 West of Changjiang Road, Hefei, 230036 Anhui China
- Wanjiang Vegetable Industrial Technology Institute, Maanshan, 238200 Anhui China
| | - Xiaoyan Tang
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei, 230036 Anhui China
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, 130 West of Changjiang Road, Hefei, 230036 Anhui China
- Wanjiang Vegetable Industrial Technology Institute, Maanshan, 238200 Anhui China
| | - Chenggang Wang
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei, 230036 Anhui China
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, 130 West of Changjiang Road, Hefei, 230036 Anhui China
- Wanjiang Vegetable Industrial Technology Institute, Maanshan, 238200 Anhui China
| |
Collapse
|
3
|
Gupta R. The oxygen-evolving complex: a super catalyst for life on earth, in response to abiotic stresses. PLANT SIGNALING & BEHAVIOR 2020; 15:1824721. [PMID: 32970515 PMCID: PMC7671056 DOI: 10.1080/15592324.2020.1824721] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The oxygen-evolving complex is integrated into photosystem (PSII). An essential part of oxygenic photosynthetic apparatus, embedded in the thylakoid membrane of chloroplasts. The OEC is a super catalyst to split water into molecular oxygen in the presence of light. The OEC consist of four Mn atoms, one Ca atom and five oxygen atoms (CaMn4O5) and this cluster is maintained by its surrounding proteins viz., PsbQ, PsbP, PsbO, PsbR. The function of this super catalyst with a high turnover frequency of 500 s-1 in standard condition. Chlorophyll a fluorescence (OJIP transients) are used to understand structural and functional cohesion of photosynthetic apparatus. A further K-peak in OJIP curve reflects damage at the OEC donor site in response to salinity, drought, and high temperature. The decline in performance indices (PI, SFI) also revealed structural damage of photosynthetic apparatus that leads to disruption of electron transport rate under abiotic conditions. This review discusses the structural and function cohesion of the OEC in plant against variable abiotic conditions.
Collapse
Affiliation(s)
- Ramwant Gupta
- Department of Biology, School of Pure Sciences, College of Engineering Science and Technology, Fiji National University, Natabua, Fiji Islands
- CONTACT Ramwant Gupta
| |
Collapse
|