1
|
Sachdeva S, Singh R, Maurya A, Singh VK, Singh UM, Kumar A, Singh GP. Multi-model genome-wide association studies for appearance quality in rice. FRONTIERS IN PLANT SCIENCE 2024; 14:1304388. [PMID: 38273959 PMCID: PMC10808671 DOI: 10.3389/fpls.2023.1304388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 12/22/2023] [Indexed: 01/27/2024]
Abstract
Improving the quality of the appearance of rice is critical to meet market acceptance. Mining putative quality-related genes has been geared towards the development of effective breeding approaches for rice. In the present study, two SL-GWAS (CMLM and MLM) and three ML-GWAS (FASTmrEMMA, mrMLM, and FASTmrMLM) genome-wide association studies were conducted in a subset of 3K-RGP consisting of 198 rice accessions with 553,831 SNP markers. A total of 594 SNP markers were identified using the mixed linear model method for grain quality traits. Additionally, 70 quantitative trait nucleotides (QTNs) detected by the ML-GWAS models were strongly associated with grain aroma (AR), head rice recovery (HRR, %), and percentage of grains with chalkiness (PGC, %). Finally, 39 QTNs were identified using single- and multi-locus GWAS methods. Among the 39 reliable QTNs, 20 novel QTNs were identified for the above-mentioned three quality-related traits. Based on annotation and previous studies, four functional candidate genes (LOC_Os01g66110, LOC_Os01g66140, LOC_Os07g44910, and LOC_Os02g14120) were found to influence AR, HRR (%), and PGC (%), which could be utilized in rice breeding to improve grain quality traits.
Collapse
Affiliation(s)
- Supriya Sachdeva
- Division of Genomic Resources, ICAR-National Bureau of Plant Genetic Resources (NBPGR), New Delhi, India
| | - Rakesh Singh
- Division of Genomic Resources, ICAR-National Bureau of Plant Genetic Resources (NBPGR), New Delhi, India
| | - Avantika Maurya
- Division of Genomic Resources, ICAR-National Bureau of Plant Genetic Resources (NBPGR), New Delhi, India
| | - Vikas Kumar Singh
- International Rice Research Institute, South Asia Hub, International Crop Reseach Institute for Semi Arid Tropics (ICRISAT), Hyderabad, India
| | - Uma Maheshwar Singh
- International Rice Research Institute, South Asia Regional Centre (ISARC), Varanasi, India
| | - Arvind Kumar
- International Crops Research Institute for the Semi-Arid Tropics, Patancheru, Telangana, India
| | - Gyanendra Pratap Singh
- Indian Council of Agricultural Research (ICAR)-National Bureau of Plant Genetic Resources, New Delhi, India
| |
Collapse
|
2
|
Sun H, Yuan Z, Li F, Zhang Q, Peng T, Li J, Du Y. Mapping of qChalk1 controlling grain chalkiness in japonica rice. Mol Biol Rep 2023:10.1007/s11033-023-08537-8. [PMID: 37231212 DOI: 10.1007/s11033-023-08537-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 05/17/2023] [Indexed: 05/27/2023]
Abstract
BACKGROUND Rice grain chalkiness is an undesirable characteristic that affects grain quality. The aim of this study was to map QTLs controlling grain chalkiness in japonica rice. METHODS AND RESULTS In this study, two japonica rice cultivars with similar grain shapes but different grain chalkiness rates were crossed and the F2 and BC1F2 populations were subjected to QTL-seq analysis to map the QTLs controlling the grain chalkiness rate. QTL-seq analysis revealed SNP index differences on chromosome 1 in both of the segregating populations. Using polymorphic markers between the two parents, QTL mapping was conducted on 213 individual plants in the BC1F2 population. QTL mapping confined a QTL controlling grain chalkiness, qChalk1, to a 1.1 Mb genomic region on chromosome 1. qChalk1 explained 19.7% of the phenotypic variation. CONCLUSION A QTL controlling grain chalkiness qChalk1 was detected in both F2 and BC1F2 segregating populations by QTL-Seq and QTL mapping methods. This result would be helpful for further cloning of the genes controlling grain chalkiness in japonica rice.
Collapse
Affiliation(s)
- Hongzheng Sun
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, People's Republic of China
| | - Zeke Yuan
- Henan Zhumadian Agricultural School, Zhumadian, 463000, People's Republic of China
| | - Fuhao Li
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, People's Republic of China
| | - Qianqian Zhang
- Xinxiang Academy of Agricultural Sciences, Xinxiang, 453004, People's Republic of China
| | - Ting Peng
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, People's Republic of China
| | - Junzhou Li
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, People's Republic of China
| | - Yanxiu Du
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, People's Republic of China.
| |
Collapse
|
3
|
Low Light Stress Increases Chalkiness by Disturbing Starch Synthesis and Grain Filling of Rice. Int J Mol Sci 2022; 23:ijms23169153. [PMID: 36012414 PMCID: PMC9408977 DOI: 10.3390/ijms23169153] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/09/2022] [Accepted: 08/12/2022] [Indexed: 11/17/2022] Open
Abstract
Low light stress increases the chalkiness of rice; however, this effect has not been fully characterized. In this study, we demonstrated that low light resulted in markedly decreased activity of ADP-glucose pyrophosphorylase in the grains and those of sucrose synthase and soluble starch synthase in the early period of grain filling. Furthermore, low light also resulted in decreased activities of granule-bound starch synthase and starch branching enzyme in the late period of grain filling. Therefore, the maximum and mean grain filling rates were reduced but the time to reach the maximum grain filling rates and effective grain filling period were increased by low light. Thus, it significantly decreased the grain weight at the maximum grain filling rate and grain weight and retarded the endosperm growth and development, leading to a loose arrangement of the amyloplasts and an increase in the chalkiness of the rice grains. Compared to the grains at the top panicle part, low light led to a greater decrease in the grain weight at the maximum grain filling rate and time to reach the grain weight at the maximum grain filling rate at the bottom panicle part, which contributed to an increase in chalkiness by increasing the rates of different chalky types at the bottom panicle part. In conclusion, low light disturbed starch synthesis in grains, thereby impeding the grain filling progress and increasing chalkiness, particularly for grains at the bottom panicle part.
Collapse
|
4
|
Liu Z, Jiang S, Jiang L, Li W, Tang Y, He W, Wang M, Xing J, Cui Y, Lin Q, Yu F, Wang L. Transcription factor OsSGL is a regulator of starch synthesis and grain quality in rice. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:3417-3430. [PMID: 35182423 DOI: 10.1093/jxb/erac068] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 02/18/2022] [Indexed: 06/14/2023]
Abstract
Starch biosynthesis during rice endosperm development is important for grain quality, as it influences grain size and physico-chemical properties, which together determine rice eating quality. Cereal starch biosynthetic pathways have been comprehensively investigated; however, their regulation, especially by transcriptional repressors remains largely unknown. Here, we identified a DUF1645 domain-containing protein, STRESS_tolerance and GRAIN_LENGTH (OsSGL), that participates in regulating rice starch biosynthesis. Overexpression of OsSGL reduced total starch and amylose content in the endosperm compared with the wild type. Chromatin immunoprecipitation sequencing and RNA-seq analyses indicated that OsSGL targets the transcriptional activity of several starch and sucrose metabolism genes. In addition, ChIP-qPCR, yeast one-hybrid, EMSA and dual-luciferase assays demonstrated that OsSGL directly inhibits the expression of SUCROSE SYNTHASE 1 (OsSUS1) in the endosperm. Furthermore, OsSUS1 interacts with OsSGL to release its transcriptional repression ability. Unexpectedly, our results also show that knock down and mutation of OsSGL disrupts the starch biosynthetic pathway, causing lower starch and amylose content. Therefore, our findings demonstrate that accurate control of OsSGL homeostasis is essential for starch synthesis and grain quality. In addition, we revealed the molecular mechanism of OsSGL in regulating starch biosynthesis-related genes, which are required for grain quality.
Collapse
Affiliation(s)
- Zhenming Liu
- College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, and Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, P. R. China
- National Engineering Laboratory for Rice and By-product Deep Processing, Central South University of Forestry and Technology, Changsha, P. R. China
| | - Shun Jiang
- National Engineering Laboratory for Rice and By-product Deep Processing, Central South University of Forestry and Technology, Changsha, P. R. China
| | - Lingli Jiang
- College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, and Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, P. R. China
| | - Wanjing Li
- National Engineering Laboratory for Rice and By-product Deep Processing, Central South University of Forestry and Technology, Changsha, P. R. China
| | - Yuqin Tang
- National Engineering Laboratory for Rice and By-product Deep Processing, Central South University of Forestry and Technology, Changsha, P. R. China
| | - Wei He
- College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, and Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, P. R. China
- National Engineering Laboratory for Rice and By-product Deep Processing, Central South University of Forestry and Technology, Changsha, P. R. China
| | - Manling Wang
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, P.R. China
| | - Junjie Xing
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, P.R. China
| | - Yanchun Cui
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, P.R. China
| | - Qinlu Lin
- National Engineering Laboratory for Rice and By-product Deep Processing, Central South University of Forestry and Technology, Changsha, P. R. China
| | - Feng Yu
- College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, and Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, P. R. China
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, P.R. China
| | - Long Wang
- College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, and Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, P. R. China
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, P.R. China
| |
Collapse
|
5
|
Shin NH, Han JH, Vo KTX, Seo J, Navea IP, Yoo SC, Jeon JS, Chin JH. Development of a Temperate Climate-Adapted indica Multi-stress Tolerant Rice Variety by Pyramiding Quantitative Trait Loci. RICE (NEW YORK, N.Y.) 2022; 15:22. [PMID: 35397732 PMCID: PMC8994804 DOI: 10.1186/s12284-022-00568-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 03/27/2022] [Indexed: 06/14/2023]
Abstract
Successful cultivation of rice (Oryza sativa L.) in many Asian countries requires submergence stress tolerance at the germination and early establishment stages. Two quantitative trait loci, Sub1 (conferring submergence tolerance) and AG1 (conferring anaerobic germination), were recently pyramided into a single genetic background, without compromising any desirable agronomic traits, leading to the development of Ciherang-Sub1 + AG1 (CSA). However, little research has been conducted to enhance plant tolerance to abiotic stress (submergence) and biotic stress (rice blast), which occur in a damp climate following flooding. The BC2F5 breeding line was phenotypically characterized using the AvrPi9 isolate. The biotic and abiotic stress tolerance of selected lines was tested under submergence stress and anaerobic germination conditions, and lines tolerant to each stress condition were identified through phenotypic and gene expression analyses. The Ciherang-Sub1 + AG1 + Pi9 (CSA-Pi9) line showed similar agronomic performance to its recurrent parent, CSA, but had significantly reduced chalkiness in field trials conducted in temperate regions. Unexpectedly, the CSA-Pi9 line also showed salinity tolerance. Thus, the breeding line newly developed in this study, CSA-Pi9, functioned under stress conditions, in which Sub1, AG1, and Pi9 play a role and had superior grain quality traits compared to its recurrent parent in temperate regions. We speculate that CSA-Pi9 will enable the establishment of climate-resilient rice cropping systems, particularly in East Asia.
Collapse
Affiliation(s)
- Na-Hyun Shin
- Department of Integrative Biological Sciences and Industry, College of Life Sciences, Sejong University, Seoul, 05006, Korea
| | - Jae-Hyuk Han
- Department of Integrative Biological Sciences and Industry, College of Life Sciences, Sejong University, Seoul, 05006, Korea
| | - Kieu Thi Xuan Vo
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin, Gyeonggi-do, 17104, Korea
| | - Jeonghwan Seo
- Department of Plant Bioscience, College of Natural Resources and Life Science, Pusan National University, Miryang, 50463, Korea
- Life and Industry Convergence Research Institute, Pusan National University, Miryang, 50463, Korea
| | - Ian Paul Navea
- Department of Integrative Biological Sciences and Industry, College of Life Sciences, Sejong University, Seoul, 05006, Korea
- Plant Breeding, Genetics, and Biotechnology Division, International Rice Research Institute, Los Banos, Philippines
| | - Soo-Cheul Yoo
- Department of Plant Life and Environmental Science, Hankyong National University, Anseong, Gyeonggi-do, 17579, Korea
| | - Jong-Seong Jeon
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin, Gyeonggi-do, 17104, Korea.
| | - Joong Hyoun Chin
- Department of Integrative Biological Sciences and Industry, College of Life Sciences, Sejong University, Seoul, 05006, Korea.
| |
Collapse
|
6
|
Rana N, Kumawat S, Kumar V, Bansal R, Mandlik R, Dhiman P, Patil GB, Deshmukh R, Sharma TR, Sonah H. Deciphering Haplotypic Variation and Gene Expression Dynamics Associated with Nutritional and Cooking Quality in Rice. Cells 2022; 11:cells11071144. [PMID: 35406707 PMCID: PMC8998046 DOI: 10.3390/cells11071144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/21/2022] [Accepted: 03/24/2022] [Indexed: 02/01/2023] Open
Abstract
Nutritional quality improvement of rice is the key to ensure global food security. Consequently, enormous efforts have been made to develop genomics and transcriptomics resources for rice. The available omics resources along with the molecular understanding of trait development can be utilized for efficient exploration of genetic resources for breeding programs. In the present study, 80 genes known to regulate the nutritional and cooking quality of rice were extensively studied to understand the haplotypic variability and gene expression dynamics. The haplotypic variability of selected genes were defined using whole-genome re-sequencing data of ~4700 diverse genotypes. The analytical workflow identified 133 deleterious single-nucleotide polymorphisms, which are predicted to affect the gene function. Furthermore, 788 haplotype groups were defined for 80 genes, and the distribution and evolution of these haplotype groups in rice were described. The nucleotide diversity for the selected genes was significantly reduced in cultivated rice as compared with that in wild rice. The utility of the approach was successfully demonstrated by revealing the haplotypic association of chalk5 gene with the varying degree of grain chalkiness. The gene expression atlas was developed for these genes by analyzing RNA-Seq transcriptome profiling data from 102 independent sequence libraries. Subsequently, weighted gene co-expression meta-analyses of 11,726 publicly available RNAseq libraries identified 19 genes as the hub of interactions. The comprehensive analyses of genetic polymorphisms, allelic distribution, and gene expression profiling of key quality traits will help in exploring the most desired haplotype for grain quality improvement. Similarly, the information provided here will be helpful to understand the molecular mechanism involved in the development of nutritional and cooking quality traits in rice.
Collapse
Affiliation(s)
- Nitika Rana
- Department of Agriculture Biotechnology, National Agri-Food Biotechnology Institute (NABI), Mohali 140306, India; (N.R.); (S.K.); (V.K.); (R.B.); (R.M.); (P.D.); (R.D.); (T.R.S.)
- Department of Biotechnology, Panjab University, Chandigarh 160014, India
| | - Surbhi Kumawat
- Department of Agriculture Biotechnology, National Agri-Food Biotechnology Institute (NABI), Mohali 140306, India; (N.R.); (S.K.); (V.K.); (R.B.); (R.M.); (P.D.); (R.D.); (T.R.S.)
- Department of Biotechnology, Panjab University, Chandigarh 160014, India
| | - Virender Kumar
- Department of Agriculture Biotechnology, National Agri-Food Biotechnology Institute (NABI), Mohali 140306, India; (N.R.); (S.K.); (V.K.); (R.B.); (R.M.); (P.D.); (R.D.); (T.R.S.)
| | - Ruchi Bansal
- Department of Agriculture Biotechnology, National Agri-Food Biotechnology Institute (NABI), Mohali 140306, India; (N.R.); (S.K.); (V.K.); (R.B.); (R.M.); (P.D.); (R.D.); (T.R.S.)
- Department of Biotechnology, Panjab University, Chandigarh 160014, India
| | - Rushil Mandlik
- Department of Agriculture Biotechnology, National Agri-Food Biotechnology Institute (NABI), Mohali 140306, India; (N.R.); (S.K.); (V.K.); (R.B.); (R.M.); (P.D.); (R.D.); (T.R.S.)
- Department of Biotechnology, Panjab University, Chandigarh 160014, India
| | - Pallavi Dhiman
- Department of Agriculture Biotechnology, National Agri-Food Biotechnology Institute (NABI), Mohali 140306, India; (N.R.); (S.K.); (V.K.); (R.B.); (R.M.); (P.D.); (R.D.); (T.R.S.)
| | - Gunvant B. Patil
- Department of Plant and Soil Sciences, Institute of Genomics for Crop Abiotic Stress Tolerance, Texas Tech University, Lubbock, TX 79409, USA;
| | - Rupesh Deshmukh
- Department of Agriculture Biotechnology, National Agri-Food Biotechnology Institute (NABI), Mohali 140306, India; (N.R.); (S.K.); (V.K.); (R.B.); (R.M.); (P.D.); (R.D.); (T.R.S.)
| | - Tilak Raj Sharma
- Department of Agriculture Biotechnology, National Agri-Food Biotechnology Institute (NABI), Mohali 140306, India; (N.R.); (S.K.); (V.K.); (R.B.); (R.M.); (P.D.); (R.D.); (T.R.S.)
- Department of Crop Science, Indian Council of Agriculture Research (ICAR), Krishi Bhavan, New Delhi 110001, India
| | - Humira Sonah
- Department of Agriculture Biotechnology, National Agri-Food Biotechnology Institute (NABI), Mohali 140306, India; (N.R.); (S.K.); (V.K.); (R.B.); (R.M.); (P.D.); (R.D.); (T.R.S.)
- Correspondence: ; Tel.: +91-6239715281
| |
Collapse
|
7
|
Hori K, Okunishi T, Nakamura K, Iijima K, Hagimoto M, Hayakawa K, Shu K, Ikka T, Yamashita H, Yamasaki M, Takeuchi Y, Koyama S, Tsujii Y, Kayano T, Ishii T, Kumamaru T, Kawagoe Y, Yamamoto T. Genetic Background Negates Improvements in Rice Flour Characteristics and Food Processing Properties Caused by a Mutant Allele of the PDIL1-1 Seed Storage Protein Gene. RICE (NEW YORK, N.Y.) 2022; 15:13. [PMID: 35247122 PMCID: PMC8898210 DOI: 10.1186/s12284-022-00560-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/08/2022] [Indexed: 05/18/2023]
Abstract
Phenotypic differences among breeding lines that introduce the same superior gene allele can be a barrier to effective development of cultivars with desirable traits in some crop species. For example, a deficient mutation of the Protein Disulfide Isomerase Like 1-1 (PDIL1-1) gene can cause accumulation of glutelin seed storage protein precursors in rice endosperm, and improves rice flour characteristics and food processing properties. However, the gene must be expressed to be useful. A deficient mutant allele of PDIL1-1 was introduced into two rice cultivars with different genetic backgrounds (Koshihikari and Oonari). The grain components, agronomic traits, and rice flour and food processing properties of the resulting lines were evaluated. The two breeding lines had similar seed storage protein accumulation, amylose content, and low-molecular-weight metabolites. However, only the Koshihikari breeding line had high flour quality and was highly suitable for rice bread, noodles, and sponge cake, evidence of the formation of high-molecular-weight protein complexes in the endosperm. Transcriptome analysis revealed that mRNA levels of fourteen PDI, Ero1, and BiP genes were increased in the Koshihikari breeding line, whereas this change was not observed in the Oonari breeding line. We elucidated part of the molecular basis of the phenotypic differences between two breeding lines possessing the same mutant allele in different genetic backgrounds. The results suggest that certain genetic backgrounds can negate the beneficial effect of the PDIL1-1 mutant allele. Better understanding of the molecular basis for such interactions may accelerate future breeding of novel rice cultivars to meet the strong demand for gluten-free foods.
Collapse
Affiliation(s)
- Kiyosumi Hori
- National Agricultural and Food Research Organization (NARO), Tsukuba, 305-8518, Japan.
- National Institute of Agrobiological Sciences, Tsukuba, 305-8602, Japan.
| | - Tomoya Okunishi
- National Agricultural and Food Research Organization (NARO), Tsukuba, 305-8518, Japan
| | - Kenji Nakamura
- Cereal Science Research Center of Tsukuba, Nisshin Flour Milling Inc, Tsukuba, 300-2611, Japan
| | - Ken Iijima
- National Agricultural and Food Research Organization (NARO), Tsukuba, 305-8518, Japan
- National Institute of Agrobiological Sciences, Tsukuba, 305-8602, Japan
| | - Masahiro Hagimoto
- Cereal Science Research Center of Tsukuba, Nisshin Flour Milling Inc, Tsukuba, 300-2611, Japan
| | - Katsuyuki Hayakawa
- Cereal Science Research Center of Tsukuba, Nisshin Flour Milling Inc, Tsukuba, 300-2611, Japan
| | - Koka Shu
- National Agricultural and Food Research Organization (NARO), Tsukuba, 305-8518, Japan
- National Institute of Agrobiological Sciences, Tsukuba, 305-8602, Japan
| | - Takashi Ikka
- National Institute of Agrobiological Sciences, Tsukuba, 305-8602, Japan
- Faculty of Agriculture, Shizuoka University, Shizuoka, 422-8529, Japan
| | - Hiroto Yamashita
- National Agricultural and Food Research Organization (NARO), Tsukuba, 305-8518, Japan
- Faculty of Agriculture, Shizuoka University, Shizuoka, 422-8529, Japan
| | - Masanori Yamasaki
- Food Resources Education and Research Center, Kobe University, Kasai, 675-2103, Japan
| | - Yoshinobu Takeuchi
- National Agricultural and Food Research Organization (NARO), Tsukuba, 305-8518, Japan
| | - Shota Koyama
- Department of Agricultural Chemistry, Tokyo University of Agriculture, Tokyo, 156-8502, Japan
| | - Yoshimasa Tsujii
- Department of Agricultural Chemistry, Tokyo University of Agriculture, Tokyo, 156-8502, Japan
| | - Toshiaki Kayano
- National Institute of Agrobiological Sciences, Tsukuba, 305-8602, Japan
| | - Takuro Ishii
- National Agricultural and Food Research Organization (NARO), Tsukuba, 305-8518, Japan
| | | | - Yasushi Kawagoe
- National Institute of Agrobiological Sciences, Tsukuba, 305-8602, Japan
| | - Toshio Yamamoto
- National Agricultural and Food Research Organization (NARO), Tsukuba, 305-8518, Japan
- National Institute of Agrobiological Sciences, Tsukuba, 305-8602, Japan
- Institute of Plant Science and Resources, Okayama University, Kurashiki, 710-0046, Japan
| |
Collapse
|
8
|
The Deubiquitinase OTUB1 Is a Key Regulator of Energy Metabolism. Int J Mol Sci 2022; 23:ijms23031536. [PMID: 35163456 PMCID: PMC8836018 DOI: 10.3390/ijms23031536] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 11/17/2022] Open
Abstract
Dysregulated energy metabolism is a major contributor to a multitude of pathologies, including obesity and diabetes. Understanding the regulation of metabolic homeostasis is of utmost importance for the identification of therapeutic targets for the treatment of metabolically driven diseases. We previously identified the deubiquitinase OTUB1 as substrate for the cellular oxygen sensor factor-inhibiting HIF (FIH) with regulatory effects on cellular energy metabolism, but the physiological relevance of OTUB1 is unclear. Here, we report that the induced global deletion of OTUB1 in adult mice (Otub1 iKO) elevated energy expenditure, reduced age-dependent body weight gain, facilitated blood glucose clearance and lowered basal plasma insulin levels. The respiratory exchange ratio was maintained, indicating an unaltered nutrient oxidation. In addition, Otub1 deletion in cells enhanced AKT activity, leading to a larger cell size, higher ATP levels and reduced AMPK phosphorylation. AKT is an integral part of insulin-mediated signaling and Otub1 iKO mice presented with increased AKT phosphorylation following acute insulin administration combined with insulin hypersensitivity. We conclude that OTUB1 is an important regulator of metabolic homeostasis.
Collapse
|
9
|
Chen K, Łyskowski A, Jaremko Ł, Jaremko M. Genetic and Molecular Factors Determining Grain Weight in Rice. FRONTIERS IN PLANT SCIENCE 2021; 12:605799. [PMID: 34322138 PMCID: PMC8313227 DOI: 10.3389/fpls.2021.605799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 06/22/2021] [Indexed: 05/06/2023]
Abstract
Grain weight is one of the major factors determining single plant yield production of rice and other cereal crops. Research has begun to reveal the regulatory mechanisms underlying grain weight as well as grain size, highlighting the importance of this research for plant molecular biology. The developmental trait of grain weight is affected by multiple molecular and genetic aspects that lead to dynamic changes in cell division, expansion and differentiation. Additionally, several important biological pathways contribute to grain weight, such as ubiquitination, phytohormones, G-proteins, photosynthesis, epigenetic modifications and microRNAs. Our review integrates early and more recent findings, and provides future perspectives for how a more complete understanding of grain weight can optimize strategies for improving yield production. It is surprising that the acquired wealth of knowledge has not revealed more insights into the underlying molecular mechanisms. To accelerating molecular breeding of rice and other cereals is becoming an emergent and critical task for agronomists. Lastly, we highlighted the importance of leveraging gene editing technologies as well as structural studies for future rice breeding applications.
Collapse
Affiliation(s)
- Ke Chen
- Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, China
| | - Andrzej Łyskowski
- Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Faculty of Chemistry, Rzeszow University of Technology, Rzeszow, Poland
| | - Łukasz Jaremko
- Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Mariusz Jaremko
- Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| |
Collapse
|