1
|
Men Y, Lu S, Li L, Wu C, Sun N, Huang Y, Yasir TA, Yang Y, Wang C, Gao X, Lin H, Zotova L, Serikbay D, Liu Y, Yin Y, Zeng C, Hu YG, Li J, Chen L. Genome wide association study and transcriptome analysis identify candidate genes regulating wheat coleoptile length. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2024; 44:78. [PMID: 39553700 PMCID: PMC11561208 DOI: 10.1007/s11032-024-01520-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 10/28/2024] [Indexed: 11/19/2024]
Abstract
Coleoptile length, in wheat, is a significant agronomic trait impacting yield by facilitating the successful establishment of seedlings. In arid regions, varieties possessing longer coleoptile can evade harsh conditions by deep sowing, paving the way for improved yield. However, the study of genes involved in coleoptile development is insufficient. In this study, a high-density 660 K SNP array was used for genome-wide association study (GWAS) on coleoptile length in 150 wheat varieties. The findings revealed the detection of 353 significantly associated SNPs across all environments. The integration of linkage disequilibrium analysis and haplotype analysis mined 23 core QTLs capable responsible for the stable regulating coleoptile length in wheat. In wheat varieties characterized by extended coleoptile length, 6,600, 11,524, and 6,059 genes were found to be differentially expressed at three distinct developmental stages within the coleoptile, respectively. Through GWAS, gene expression levels, and functional annotation, we concluded the identification of two candidate genes (TraesCS2B02G423500, TraesCS2B02G449200) regulating wheat coleoptile length. By employing WGCNA and protein interactions prediction, discovered that the 19 genes were found to interact with candidate genes and participate in plant hormone metabolism and signaling, cell elongation or proliferation, which collectively contributing to coleoptile elongation. Additionally, two KASP markers were developed which can be used in breeding. These results offer a basis for understanding the genetic regulatory network responsible for wheat coleoptile length formation. The QTLs and candidate genes identified in this study can be further utilized for genetic improvement of wheat coleoptile length. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-024-01520-6.
Collapse
Affiliation(s)
- Yihan Men
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and Collage of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Shan Lu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and Collage of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Ling Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and Collage of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Chenran Wu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and Collage of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Nannan Sun
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and Collage of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Yanju Huang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and Collage of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Tauqeer Ahmad Yasir
- Department of Agronomy, Bahauddin Zakariya University, Multan, 60800 Punjab Pakistan
| | - Yang Yang
- Collage of Agricultural, Shanxi Agricultural University, Taigu, 030801 Shanxi China
| | - Changhai Wang
- Jiushenghe Seed Industry Co., Ltd, Changji, 831100 Xinjiang China
| | - Xuefei Gao
- Jiushenghe Seed Industry Co., Ltd, Changji, 831100 Xinjiang China
| | - Huailong Lin
- Jiushenghe Seed Industry Co., Ltd, Changji, 831100 Xinjiang China
| | - Lyudmila Zotova
- Faculty of Agronomy, S. Seifullin Kazakh Agro Technical Research University, Astana, Kazakhstan
| | - Dauren Serikbay
- Faculty of Agronomy, S. Seifullin Kazakh Agro Technical Research University, Astana, Kazakhstan
| | - Yangbin Liu
- Yangling Digital Agricultural Technology Co., Ltd, Yangling, 712100 Shaanxi China
| | - Yongan Yin
- Shaanxi Food & Agriculture Group Co., Ltd, Xian, 710000 Shaanxi China
| | - Chaowu Zeng
- Xinjiang Academy of Agricultural Sciences, Urumqi, 830000 Xinjiang China
| | - Yin-Gang Hu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and Collage of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Jianjiang Li
- Xinjiang Academy of Agricultural Sciences, Urumqi, 830000 Xinjiang China
| | - Liang Chen
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and Collage of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
| |
Collapse
|
2
|
Fan Y, Chen H, Wang B, Li D, Zhou R, Lian W, Shao G, Wei X, Wu W, Liu Q, Sun L, Zhan X, Cheng S, Zhang Y, Cao L. DWARF AND LESS TILLERS ON CHROMOSOME 3 promotes tillering in rice by sustaining FLORAL ORGAN NUMBER 1 expression. PLANT PHYSIOLOGY 2024; 196:1064-1079. [PMID: 38996044 DOI: 10.1093/plphys/kiae367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 05/10/2024] [Accepted: 05/16/2024] [Indexed: 07/14/2024]
Abstract
Three key factors determine yield in rice (Oryza sativa): panicle number, grain number, and grain weight. Panicle number is strongly associated with tiller number. Although many genes regulating tillering have been identified, whether Dof proteins are involved in controlling plant architecture remains unknown. The dwarf and less tillers on chromosome 3 (dlt3) rice mutant produces fewer tillers than the wild type. We cloned DLT3, which encodes a Dof protein that interacts with MONOCULM 3 (MOC3) in vivo and in vitro and recruits MOC1, forming a DLT3-MOC3-MOC1 complex. DLT3 binds to the promoter of FLORAL ORGAN NUMBER 1 (FON1) to activate its transcription and positively regulate tiller number. The overexpression of MOC1, MOC3, or FON1 in the dlt3 mutant increased tiller number. Collectively, these results suggest a model in which DLT3 regulates tiller number by maintaining the expression of MOC1, MOC3, and FON1. We discovered that DLT3 underwent directional selection in the Xian/indica and Geng/japonica populations during rice domestication. To provide genetic resources for breeding varieties with optimal panicle numbers, we performed large-scale diversity sequencing of the 1,080-bp DLT3 coding region of 531 accessions from different countries and regions. Haplotype analysis showed that the superior haplotype, DLT3H1, produced the most tillers, while haplotype DLT3H6 produced the fewest tillers. Our study provides important germplasm resources for breeding super high-yielding rice varieties with combinations of superior haplotypes in different target genes, which will help overcome the challenge of food and nutritional security in the future.
Collapse
Affiliation(s)
- Yongyi Fan
- State Key Laboratory of Rice Biology and Breeding & National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, Zhejiang 311400, China
| | - Hongmei Chen
- State Key Laboratory of Rice Biology and Breeding & National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, Zhejiang 311400, China
| | - Beifang Wang
- State Key Laboratory of Rice Biology and Breeding & National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, Zhejiang 311400, China
- China National Rice Research Institute, Baoqing Northern Rice Research Center, Baoqing, Heilongjiang 155600, China
| | - Dian Li
- State Key Laboratory of Rice Biology and Breeding & National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, Zhejiang 311400, China
| | - Ran Zhou
- State Key Laboratory of Rice Biology and Breeding & National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, Zhejiang 311400, China
| | - Wangmin Lian
- State Key Laboratory of Rice Biology and Breeding & National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, Zhejiang 311400, China
| | - Gaoneng Shao
- State Key Laboratory of Rice Biology and Breeding & National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, Zhejiang 311400, China
| | - Xiangjin Wei
- State Key Laboratory of Rice Biology and Breeding & National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, Zhejiang 311400, China
| | - Weixun Wu
- State Key Laboratory of Rice Biology and Breeding & National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, Zhejiang 311400, China
| | - Qunen Liu
- State Key Laboratory of Rice Biology and Breeding & National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, Zhejiang 311400, China
| | - Lianping Sun
- State Key Laboratory of Rice Biology and Breeding & National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, Zhejiang 311400, China
| | - Xiaodeng Zhan
- State Key Laboratory of Rice Biology and Breeding & National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, Zhejiang 311400, China
| | - Shihua Cheng
- State Key Laboratory of Rice Biology and Breeding & National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, Zhejiang 311400, China
| | - Yingxin Zhang
- State Key Laboratory of Rice Biology and Breeding & National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, Zhejiang 311400, China
| | - Liyong Cao
- State Key Laboratory of Rice Biology and Breeding & National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, Zhejiang 311400, China
- China National Rice Research Institute, Baoqing Northern Rice Research Center, Baoqing, Heilongjiang 155600, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, China
| |
Collapse
|
3
|
Wen X, Zhong Z, Xu P, Yang Q, Wang Y, Liu L, Wu Z, Wu Y, Zhang Y, Liu Q, Zhou Z, Peng Z, He Y, Cheng S, Cao L, Zhan X, Wu W. OsCOL5 suppresses heading through modulation of Ghd7 and Ehd2, enhancing rice yield. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:162. [PMID: 38884792 DOI: 10.1007/s00122-024-04674-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 05/12/2024] [Indexed: 06/18/2024]
Abstract
KEY MESSAGE OsCOL5, an ortholog of Arabidopsis COL5, is involved in photoperiodic flowering and enhances rice yield through modulation of Ghd7 and Ehd2 and interactions with OsELF3-1 and OsELF3-2. Heading date, also known as flowering time, plays a crucial role in determining the adaptability and yield potential of rice (Oryza sativa L.). CONSTANS (CO)-like is one of the most critical flowering-associated gene families, members of which are evolutionarily conserved. Here, we report the molecular functional characterization of OsCOL5, an ortholog of Arabidopsis COL5, which is involved in photoperiodic flowering and influences rice yield. Structural analysis revealed that OsCOL5 is a typical member of CO-like family, containing two B-box domains and one CCT domain. Rice plants overexpressing OsCOL5 showed delayed heading and increases in plant height, main spike number, total grain number per plant, and yield per plant under both long-day (LD) and short-day (SD) conditions. Gene expression analysis indicated that OsCOL5 was primarily expressed in the leaves and stems with a diurnal rhythm expression pattern. RT-qPCR analysis of heading date genes showed that OsCOL5 suppressed flowering by up-regulating Ghd7 and down-regulating Ehd2, consequently reducing the expression of Ehd1, Hd3a, RFT1, OsMADS14, and OsMADS15. Yeast two-hybrid experiments showed direct interactions of OsCOL5 with OsELF3-1 and OsELF3-2. Further verification showed specific interactions between the zinc finger/B-box domain of OsCOL5 and the middle region of OsELF3-1 and OsELF3-2. Yeast one-hybrid assays revealed that OsCOL5 may bind to the CCACA motif. The results suggest that OsCOL5 functions as a floral repressor, playing a vital role in rice's photoperiodic flowering regulation. This gene shows potential in breeding programs aimed at improving rice yield by influencing the timing of flowering, which directly impacts crop productivity.
Collapse
Affiliation(s)
- Xiaoxia Wen
- China National Center for Rice Improvement and State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 311400, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Zhengzheng Zhong
- China National Center for Rice Improvement and State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 311400, China
| | - Peng Xu
- China National Center for Rice Improvement and State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 311400, China
| | - Qinqin Yang
- China National Center for Rice Improvement and State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 311400, China
| | - Yinping Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
- Shenzhen Research Institute of Henan University, Shenzhen, 518000, China
| | - Ling Liu
- China National Center for Rice Improvement and State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 311400, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Zhaozhong Wu
- China National Center for Rice Improvement and State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 311400, China
| | - Yewen Wu
- China National Center for Rice Improvement and State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 311400, China
| | - Yingxin Zhang
- China National Center for Rice Improvement and State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 311400, China
| | - Qunen Liu
- China National Center for Rice Improvement and State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 311400, China
| | - Zhengping Zhou
- China National Center for Rice Improvement and State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 311400, China
| | - Zequn Peng
- China National Center for Rice Improvement and State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 311400, China
| | - Yuqing He
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Shihua Cheng
- China National Center for Rice Improvement and State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 311400, China
| | - Liyong Cao
- China National Center for Rice Improvement and State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 311400, China.
| | - Xiaodeng Zhan
- China National Center for Rice Improvement and State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 311400, China.
| | - Weixun Wu
- China National Center for Rice Improvement and State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 311400, China.
| |
Collapse
|
4
|
Wu W, Zhang TT, You LL, Wang ZY, Du SQ, Song HY, Wang ZH, Huang YJ, Liao JL. The QTL and Candidate Genes Regulating the Early Tillering Vigor Traits of Late-Season Rice in Double-Cropping Systems. Int J Mol Sci 2024; 25:1497. [PMID: 38338776 PMCID: PMC10855346 DOI: 10.3390/ijms25031497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/18/2024] [Accepted: 01/21/2024] [Indexed: 02/12/2024] Open
Abstract
Rice effective panicle is a major trait for grain yield and is affected by both the genetic tiller numbers and the early tillering vigor (ETV) traits to survive environmental adversities. The mechanism behind tiller bud formation has been well described, while the genes and the molecular mechanism underlying rice-regulating ETV traits are unclear. In this study, the candidate genes in regulating ETV traits have been sought by quantitative trait locus (QTL) mapping and bulk-segregation analysis by resequencing method (BSA-seq) conjoint analysis using rice backcross inbred line (BIL) populations, which were cultivated as late-season rice of double-cropping rice systems. By QTL mapping, seven QTLs were detected on chromosomes 1, 3, 4, and 9, with the logarithm of the odds (LOD) values ranging from 3.52 to 7.57 and explained 3.23% to 12.98% of the observed phenotypic variance. By BSA-seq analysis, seven QTLs on chromosomes 1, 2, 4, 5, 7, and 9 were identified using single-nucleotide polymorphism (SNP) and insertions/deletions (InDel) index algorithm and Euclidean distance (ED) algorithm. The overlapping QTL resulting from QTL mapping and BSA-seq analysis was shown in a 1.39 Mb interval on chromosome 4. In the overlap interval, six genes, including the functional unknown genes Os04g0455650, Os04g0470901, Os04g0500600, and ethylene-insensitive 3 (Os04g0456900), sialyltransferase family domain containing protein (Os04g0506800), and ATOZI1 (Os04g0497300), showed the differential expression between ETV rice lines and late tillering vigor (LTV) rice lines and have a missense base mutation in the genomic DNA sequences of the parents. We speculate that the six genes are the candidate genes regulating the ETV trait in rice, which provides a research basis for revealing the molecular mechanism behind the ETV traits in rice.
Collapse
Affiliation(s)
- Wei Wu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding (Jiangxi Agricultural University), Ministry of Education of China, Nanchang 330045, China; (W.W.); (H.-Y.S.)
| | - Tian-Tian Zhang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding (Jiangxi Agricultural University), Ministry of Education of China, Nanchang 330045, China; (W.W.); (H.-Y.S.)
| | - Li-Li You
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding (Jiangxi Agricultural University), Ministry of Education of China, Nanchang 330045, China; (W.W.); (H.-Y.S.)
| | - Zi-Yi Wang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding (Jiangxi Agricultural University), Ministry of Education of China, Nanchang 330045, China; (W.W.); (H.-Y.S.)
| | - Si-Qi Du
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding (Jiangxi Agricultural University), Ministry of Education of China, Nanchang 330045, China; (W.W.); (H.-Y.S.)
| | - Hai-Yan Song
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding (Jiangxi Agricultural University), Ministry of Education of China, Nanchang 330045, China; (W.W.); (H.-Y.S.)
- Key Laboratory of Agriculture Responding to Climate Change, Jiangxi Agricultural University, Nanchang 330045, China
| | - Zao-Hai Wang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding (Jiangxi Agricultural University), Ministry of Education of China, Nanchang 330045, China; (W.W.); (H.-Y.S.)
- Key Laboratory of Agriculture Responding to Climate Change, Jiangxi Agricultural University, Nanchang 330045, China
| | - Ying-Jin Huang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding (Jiangxi Agricultural University), Ministry of Education of China, Nanchang 330045, China; (W.W.); (H.-Y.S.)
- Key Laboratory of Agriculture Responding to Climate Change, Jiangxi Agricultural University, Nanchang 330045, China
| | - Jiang-Lin Liao
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding (Jiangxi Agricultural University), Ministry of Education of China, Nanchang 330045, China; (W.W.); (H.-Y.S.)
- Key Laboratory of Agriculture Responding to Climate Change, Jiangxi Agricultural University, Nanchang 330045, China
| |
Collapse
|
5
|
Tong N, Shu Q, Wang B, Peng L, Liu Z. Histology, physiology, and transcriptomic and metabolomic profiling reveal the developmental dynamics of annual shoots in tree peonies ( Paeonia suffruticosa Andr.). HORTICULTURE RESEARCH 2023; 10:uhad152. [PMID: 37701456 PMCID: PMC10493643 DOI: 10.1093/hr/uhad152] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 07/23/2023] [Indexed: 09/14/2023]
Abstract
The development of tree peony annual shoots is characterized by "withering", which is related to whether there are bud points in the leaf axillaries of annual shoots. However, the mechanism of "withering" in tree peony is still unclear. In this study, Paeonia ostii 'Fengdan' and P. suffruticosa 'Luoyanghong' were used to investigate dynamic changes of annual shoots through anatomy, physiology, transcriptome, and metabolome. The results demonstrated that the developmental dynamics of annual shoots of the two cultivars were comparable. The withering degree of P. suffruticosa 'Luoyanghong' was higher than that of P. ostii 'Fengdan', and their upper internodes of annual flowering shoots had a lower degree of lignin deposition, cellulose, C/N ratio, showing no obvious sclerenchyma, than the bottom ones and the whole internodes of vegetative shoot, which resulted in the "withering" of upper internodes. A total of 36 phytohormone metabolites were detected, of which 33 and 31 were detected in P. ostii 'Fengdan' and P. suffruticosa 'Luoyanghong', respectively. In addition, 302 and 240 differentially expressed genes related to lignin biosynthesis, carbon and nitrogen metabolism, plant hormone signal transduction, and zeatin biosynthesis were screened from the two cultivars. Furtherly, 36 structural genes and 40 transcription factors associated with the development of annual shoots were highly co-expressed, and eight hub genes involved in this developmental process were identified. Consequently, this study explained the developmental dynamic on the varied annual shoots through multi-omics, providing a theoretical foundation for germplasm innovation and the mechanized harvesting of tree peony annual shoots.
Collapse
Affiliation(s)
- Ningning Tong
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingyan Shu
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Baichen Wang
- China National Botanical Garden, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Liping Peng
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Zheng'an Liu
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| |
Collapse
|
6
|
Ran F, Bai X, Li J, Yuan Y, Li C, Li P, Chen H. Cytokinin and Metabolites Affect Rhizome Growth and Development in Kentucky Bluegrass ( Poa pratensis). BIOLOGY 2023; 12:1120. [PMID: 37627004 PMCID: PMC10452147 DOI: 10.3390/biology12081120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023]
Abstract
Rhizome growth and development is regulated by phytohormone. However, endogenous phytohormones affect rhizome initiation, and sustained growth in perennial grass species remains elusive. In this study, we investigated the morphological characteristics and the content of indole-3-acetic acid (IAA), zeatin (ZT), gibberellic acid (GA3), and abscisic acid (ABA) in the rhizomes of two different Kentucky bluegrass. Using ultra-performance liquid chromatography/tandem mass spectrometry (UPLC-MS/MS), we performed metabolite analysis of two different rhizomes. In our study, the multi-rhizome Kentucky bluegrass material 'Yuzhong' had an average of 1113 rhizomes, while the few-rhizome material 'Anding' had an average of 347 rhizomes. The diameter of rhizome and length of rhizome internode in 'Yuzhong' were 1.68-fold and 1.33-fold higher than that of the 'Anding', respectively. The rhizome dry weight of 'Yuzhong' was 75.06 g, while the 'Anding' was 20.79 g. 'Yuzhong' had a higher ZT content (5.50 μg·g-1), which is 2.4-fold that of 'Anding' (2.27 μg·g-1). In contrast, the IAA, ABA, and GA3 content of rhizome were markedly higher in 'Anding' than 'Yuzhong'. Correlation analysis revealed significant correlations between ZT and ZT/ABA with the number of rhizomes, diameter of rhizome, and length of rhizome internode, whereas IAA, ABA, GA3, and IAA/ZT were opposite. In the metabolic profiles, we identified 163 differentially expressed metabolites (DEMs) (60 upregulated and 103 downregulated) in positive ion mode and 75 DEMs (36 upregulated and 39 downregulated) in negative ion mode. Histidine metabolism and ABC transporters pathways were the most significantly enriched in the positive and negative ion mode, respectively, both of which are involved in the synthesis and transport of cytokinin. These results indicate that cytokinin is crucial for rhizome development and promotes rhizome germination and growth of Kentucky bluegrass.
Collapse
Affiliation(s)
- Fu Ran
- College of Grassland Science, Gansu Agricultural University, Lanzhou 730070, China; (F.R.)
| | - Xiaoming Bai
- College of Grassland Science, Gansu Agricultural University, Lanzhou 730070, China; (F.R.)
- Key Laboratory of Grassland Ecosystem, Gansu Agricultural University, Lanzhou 730070, China
| | - Juanxia Li
- College of Grassland Science, Gansu Agricultural University, Lanzhou 730070, China; (F.R.)
| | - Yajuan Yuan
- College of Grassland Science, Gansu Agricultural University, Lanzhou 730070, China; (F.R.)
| | - Changning Li
- College of Grassland Science, Gansu Agricultural University, Lanzhou 730070, China; (F.R.)
| | - Ping Li
- College of Grassland Science, Gansu Agricultural University, Lanzhou 730070, China; (F.R.)
| | - Hui Chen
- College of Grassland Science, Gansu Agricultural University, Lanzhou 730070, China; (F.R.)
- Key Laboratory of Grassland Ecosystem, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
7
|
Yoon DK, Choi I, Won YJ, Shin Y, Cheon KS, Oh H, Lee C, Lee S, Cho MH, Jun S, Kim Y, Kim SL, Baek J, Jeong H, Lyu JI, Lee GS, Kim KH, Ji H. QTL Mapping of Tiller Number in Korean Japonica Rice Varieties. Genes (Basel) 2023; 14:1593. [PMID: 37628644 PMCID: PMC10454613 DOI: 10.3390/genes14081593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/25/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023] Open
Abstract
Tiller number is an important trait associated with yield in rice. Tiller number in Korean japonica rice was analyzed under greenhouse conditions in 160 recombinant inbred lines (RILs) derived from a cross between the temperate japonica varieties Odae and Unbong40 to identify quantitative trait loci (QTLs). A genetic map comprising 239 kompetitive allele-specific PCR (KASP) and 57 cleaved amplified polymorphic sequence markers was constructed. qTN3, a major QTL for tiller number, was identified at 132.4 cm on chromosome 3. This QTL was also detected under field conditions in a backcross population; thus, qTN3 was stable across generations and environments. qTN3 co-located with QTLs associated with panicle number per plant and culm diameter, indicating it had pleiotropic effects. The qTN3 regions of Odae and Unbong40 differed in a known functional variant (4 bp TGTG insertion/deletion) in the 5' UTR of OsTB1, a gene underlying variation in tiller number and culm strength. Investigation of variation in genotype and tiller number revealed that varieties with the insertion genotype had lower tiller numbers than those with the reference genotype. A high-resolution melting marker was developed to enable efficient marker-assisted selection. The QTL qTN3 will therefore be useful in breeding programs developing japonica varieties with optimal tiller numbers for increased yield.
Collapse
Affiliation(s)
- Dong-Kyung Yoon
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration (RDA), Jeonju 54874, Republic of Korea; (D.-K.Y.); (H.O.); (S.L.); (M.H.C.); (S.J.); (Y.K.); (S.L.K.); (J.B.); (H.J.); (J.I.L.); (G.-S.L.); (K.-H.K.)
| | - Inchan Choi
- Department of Agricultural Engineering, National Institute of Agricultural Sciences, Rural Development Administration (RDA), Jeonju 54875, Republic of Korea;
| | - Yong Jae Won
- Cheorwon Branch, National Institute of Crop Science, Rural Development Administration (RDA), Cheorwon 24010, Republic of Korea;
| | - Yunji Shin
- Genecell Biotech Inc., Wanju 55322, Republic of Korea;
| | - Kyeong-Seong Cheon
- Department of Forest Bioresources, National Institute of Forest Science, Suwon 16631, Republic of Korea;
| | - Hyoja Oh
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration (RDA), Jeonju 54874, Republic of Korea; (D.-K.Y.); (H.O.); (S.L.); (M.H.C.); (S.J.); (Y.K.); (S.L.K.); (J.B.); (H.J.); (J.I.L.); (G.-S.L.); (K.-H.K.)
| | - Chaewon Lee
- Department of Central Area Crop Science, National Institute of Crop Science, Rural Development Administration (RDA), Suwon 16429, Republic of Korea;
| | - Seoyeon Lee
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration (RDA), Jeonju 54874, Republic of Korea; (D.-K.Y.); (H.O.); (S.L.); (M.H.C.); (S.J.); (Y.K.); (S.L.K.); (J.B.); (H.J.); (J.I.L.); (G.-S.L.); (K.-H.K.)
| | - Mi Hyun Cho
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration (RDA), Jeonju 54874, Republic of Korea; (D.-K.Y.); (H.O.); (S.L.); (M.H.C.); (S.J.); (Y.K.); (S.L.K.); (J.B.); (H.J.); (J.I.L.); (G.-S.L.); (K.-H.K.)
| | - Soojin Jun
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration (RDA), Jeonju 54874, Republic of Korea; (D.-K.Y.); (H.O.); (S.L.); (M.H.C.); (S.J.); (Y.K.); (S.L.K.); (J.B.); (H.J.); (J.I.L.); (G.-S.L.); (K.-H.K.)
| | - Yeongtae Kim
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration (RDA), Jeonju 54874, Republic of Korea; (D.-K.Y.); (H.O.); (S.L.); (M.H.C.); (S.J.); (Y.K.); (S.L.K.); (J.B.); (H.J.); (J.I.L.); (G.-S.L.); (K.-H.K.)
| | - Song Lim Kim
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration (RDA), Jeonju 54874, Republic of Korea; (D.-K.Y.); (H.O.); (S.L.); (M.H.C.); (S.J.); (Y.K.); (S.L.K.); (J.B.); (H.J.); (J.I.L.); (G.-S.L.); (K.-H.K.)
| | - Jeongho Baek
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration (RDA), Jeonju 54874, Republic of Korea; (D.-K.Y.); (H.O.); (S.L.); (M.H.C.); (S.J.); (Y.K.); (S.L.K.); (J.B.); (H.J.); (J.I.L.); (G.-S.L.); (K.-H.K.)
| | - HwangWeon Jeong
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration (RDA), Jeonju 54874, Republic of Korea; (D.-K.Y.); (H.O.); (S.L.); (M.H.C.); (S.J.); (Y.K.); (S.L.K.); (J.B.); (H.J.); (J.I.L.); (G.-S.L.); (K.-H.K.)
| | - Jae Il Lyu
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration (RDA), Jeonju 54874, Republic of Korea; (D.-K.Y.); (H.O.); (S.L.); (M.H.C.); (S.J.); (Y.K.); (S.L.K.); (J.B.); (H.J.); (J.I.L.); (G.-S.L.); (K.-H.K.)
| | - Gang-Seob Lee
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration (RDA), Jeonju 54874, Republic of Korea; (D.-K.Y.); (H.O.); (S.L.); (M.H.C.); (S.J.); (Y.K.); (S.L.K.); (J.B.); (H.J.); (J.I.L.); (G.-S.L.); (K.-H.K.)
| | - Kyung-Hwan Kim
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration (RDA), Jeonju 54874, Republic of Korea; (D.-K.Y.); (H.O.); (S.L.); (M.H.C.); (S.J.); (Y.K.); (S.L.K.); (J.B.); (H.J.); (J.I.L.); (G.-S.L.); (K.-H.K.)
| | - Hyeonso Ji
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration (RDA), Jeonju 54874, Republic of Korea; (D.-K.Y.); (H.O.); (S.L.); (M.H.C.); (S.J.); (Y.K.); (S.L.K.); (J.B.); (H.J.); (J.I.L.); (G.-S.L.); (K.-H.K.)
| |
Collapse
|
8
|
Sun Z, Liu K, Chen C, Chen D, Peng Z, Zhou R, Liu L, He D, Duan W, Chen H, Huang C, Ruan Z, Zhang Y, Cao L, Zhan X, Cheng S, Sun L. OsLDDT1, encoding a transmembrane structural DUF726 family protein, is essential for tapetum degradation and pollen formation in rice. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 329:111596. [PMID: 36657664 DOI: 10.1016/j.plantsci.2023.111596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 01/02/2023] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
Formation of the pollen wall, which is mainly composed of lipid substances secreted by tapetal cells, is important to ensure pollen development in rice. Although several regulatory factors related to lipid biosynthesis during pollen wall formation have been identified in rice, the molecular mechanisms controlling lipid biosynthesis are unclear. In this study, we isolated the male-sterile rice mutant oslddt1 (leaked and delayed degraded tapetum 1). oslddt1 plants show complete pollen abortion resulting from delayed degradation of the tapetum and blocked formation of Ubisch bodies and pollen walls. OsLDDT1 (LOC_Os03g02170) encodes a DUF726 containing protein of unknown function with highly conserved transmembrane and α/β Hydrolase domains. OsLDDT1 localizes to the endoplasmic reticulum and the gene is highly expressed in rice panicles. Genes involved in regulating fatty acid synthesis and formation of sporopollenin and pollen exine during anther development showed significantly different expression patterns in oslddt1 plants. Interestingly, the wax and cutin contents in mature oslddt1-1 anthers were decreased by 74.07 % and 72.22 % compared to WT, indicating that OsLDDT1 is involved in fatty acid synthesis and affects formation of the anther epidermis. Our results provide as deeper understanding of the role of OsLDDT1 in regulating male sterility and also provide materials for hybrid rice breeding.
Collapse
Affiliation(s)
- Zhihao Sun
- Key Laboratory for Zhejiang Super Rice Research, Chinese National Center for Rice Improvement and Stat Key Laboratory of Rice Biology, China National Rice Research Institute, HangZhou 311402, China
| | - Keke Liu
- Key Laboratory for Zhejiang Super Rice Research, Chinese National Center for Rice Improvement and Stat Key Laboratory of Rice Biology, China National Rice Research Institute, HangZhou 311402, China
| | - Chi Chen
- Key Laboratory for Zhejiang Super Rice Research, Chinese National Center for Rice Improvement and Stat Key Laboratory of Rice Biology, China National Rice Research Institute, HangZhou 311402, China
| | - Daibo Chen
- Key Laboratory for Zhejiang Super Rice Research, Chinese National Center for Rice Improvement and Stat Key Laboratory of Rice Biology, China National Rice Research Institute, HangZhou 311402, China
| | - Zequn Peng
- Key Laboratory for Zhejiang Super Rice Research, Chinese National Center for Rice Improvement and Stat Key Laboratory of Rice Biology, China National Rice Research Institute, HangZhou 311402, China
| | - Ran Zhou
- Key Laboratory for Zhejiang Super Rice Research, Chinese National Center for Rice Improvement and Stat Key Laboratory of Rice Biology, China National Rice Research Institute, HangZhou 311402, China
| | - Ling Liu
- Key Laboratory for Zhejiang Super Rice Research, Chinese National Center for Rice Improvement and Stat Key Laboratory of Rice Biology, China National Rice Research Institute, HangZhou 311402, China
| | - Dengmei He
- Key Laboratory for Zhejiang Super Rice Research, Chinese National Center for Rice Improvement and Stat Key Laboratory of Rice Biology, China National Rice Research Institute, HangZhou 311402, China; College of Agronomy, Heilongjiang Bay Agricultural University, Daqing, Heilongjiang 163711, China
| | - Wenjing Duan
- Key Laboratory for Zhejiang Super Rice Research, Chinese National Center for Rice Improvement and Stat Key Laboratory of Rice Biology, China National Rice Research Institute, HangZhou 311402, China
| | - Hongmei Chen
- Key Laboratory for Zhejiang Super Rice Research, Chinese National Center for Rice Improvement and Stat Key Laboratory of Rice Biology, China National Rice Research Institute, HangZhou 311402, China
| | - Chenbo Huang
- Key Laboratory for Zhejiang Super Rice Research, Chinese National Center for Rice Improvement and Stat Key Laboratory of Rice Biology, China National Rice Research Institute, HangZhou 311402, China
| | - Zheyan Ruan
- Key Laboratory for Zhejiang Super Rice Research, Chinese National Center for Rice Improvement and Stat Key Laboratory of Rice Biology, China National Rice Research Institute, HangZhou 311402, China
| | - Yingxin Zhang
- Key Laboratory for Zhejiang Super Rice Research, Chinese National Center for Rice Improvement and Stat Key Laboratory of Rice Biology, China National Rice Research Institute, HangZhou 311402, China
| | - Liyong Cao
- Key Laboratory for Zhejiang Super Rice Research, Chinese National Center for Rice Improvement and Stat Key Laboratory of Rice Biology, China National Rice Research Institute, HangZhou 311402, China; Baoqing Northern Rice Research Center, Northern Rice Research Center of China National Rice Research Institute, Baoqing, Heilongjiang 155600, China
| | - Xiaodeng Zhan
- Key Laboratory for Zhejiang Super Rice Research, Chinese National Center for Rice Improvement and Stat Key Laboratory of Rice Biology, China National Rice Research Institute, HangZhou 311402, China.
| | - Shihua Cheng
- Key Laboratory for Zhejiang Super Rice Research, Chinese National Center for Rice Improvement and Stat Key Laboratory of Rice Biology, China National Rice Research Institute, HangZhou 311402, China.
| | - Lianping Sun
- Key Laboratory for Zhejiang Super Rice Research, Chinese National Center for Rice Improvement and Stat Key Laboratory of Rice Biology, China National Rice Research Institute, HangZhou 311402, China.
| |
Collapse
|
9
|
Wang L, Gao J, Wang C, Xu Y, Li X, Yang J, Chen K, Kang Y, Wang Y, Cao P, Xie X. Comprehensive Analysis of Long Non-coding RNA Modulates Axillary Bud Development in Tobacco ( Nicotiana tabacum L.). FRONTIERS IN PLANT SCIENCE 2022; 13:809435. [PMID: 35237286 PMCID: PMC8884251 DOI: 10.3389/fpls.2022.809435] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/06/2022] [Indexed: 06/14/2023]
Abstract
Long non-coding RNAs (lncRNAs) regulate gene expression and are crucial for plant growth and development. However, the mechanisms underlying the effects of activated lncRNAs on axillary bud development remain largely unknown. By lncRNA transcriptomes of axillary buds in topped and untopped tobacco plants, we identified a total of 13,694 lncRNAs. LncRNA analysis indicated that the promoted growth of axillary bud by topping might be partially ascribed to the genes related to hormone signal transduction and glycometabolism, trans-regulated by differentially expressed lncRNAs, such as MSTRG.52498.1, MSTRG.60026.1, MSTRG.17770.1, and MSTRG.32431.1. Metabolite profiling indicated that auxin, abscisic acid and gibberellin were decreased in axillary buds of topped tobacco lines, while cytokinin was increased, consistent with the expression levels of related lncRNAs. MSTRG.52498.1, MSTRG.60026.1, MSTRG.17770.1, and MSTRG.32431.1 were shown to be influenced by hormones and sucrose treatments, and were associated with changes of axillary bud growth in the overexpression of NtCCD8 plants (with reduced axillary buds) and RNA interference of NtTB1 plants (with increased axillary buds). Moreover, MSTRG.28151.1 was identified as the antisense lncRNA of NtTB1. Silencing of MSTRG.28151.1 in tobacco significantly attenuated the expression of NtTB1 and resulted in larger axillary buds, suggesting the vital function of MSTRG.28151.1 axillary bud developmen by NtTB1. Our findings shed light on lncRNA-mRNA interactions and their functional roles in axillary bud growth, which would improve our understanding of lncRNAs as important regulators of axillary bud development and plant architecture.
Collapse
Affiliation(s)
- Lin Wang
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of China National Tobacco Corporation (CNTC), Zhengzhou, China
| | - Junping Gao
- China Tobacco Hunan Industrial Co., Ltd., Changsha, China
| | - Chen Wang
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of China National Tobacco Corporation (CNTC), Zhengzhou, China
| | - Yalong Xu
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of China National Tobacco Corporation (CNTC), Zhengzhou, China
| | - Xiaoxu Li
- China Tobacco Hunan Industrial Co., Ltd., Changsha, China
| | - Jun Yang
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of China National Tobacco Corporation (CNTC), Zhengzhou, China
| | - Kai Chen
- China Tobacco Hunan Industrial Co., Ltd., Changsha, China
| | - Yile Kang
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of China National Tobacco Corporation (CNTC), Zhengzhou, China
| | - Yaofu Wang
- China Tobacco Hunan Industrial Co., Ltd., Changsha, China
| | - Peijian Cao
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of China National Tobacco Corporation (CNTC), Zhengzhou, China
| | - Xiaodong Xie
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of China National Tobacco Corporation (CNTC), Zhengzhou, China
| |
Collapse
|
10
|
Li J, Jiang Y, Zhang J, Ni Y, Jiao Z, Li H, Wang T, Zhang P, Guo W, Li L, Liu H, Zhang H, Li Q, Niu J. Key auxin response factor (ARF) genes constraining wheat tillering of mutant dmc. PeerJ 2021; 9:e12221. [PMID: 34616635 PMCID: PMC8462377 DOI: 10.7717/peerj.12221] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 09/06/2021] [Indexed: 02/03/2023] Open
Abstract
Tillering ability is a key agronomy trait for wheat (Triticum aestivum L.) production. Studies on a dwarf monoculm wheat mutant (dmc) showed that ARF11 played an important role in tillering of wheat. In this study, a total of 67 ARF family members were identified and clustered to two main classes with four subgroups based on their protein structures. The promoter regions of T. aestivum ARF (TaARF) genes contain a large number of cis-acting elements closely related to plant growth and development, and hormone response. The segmental duplication events occurred commonly and played a major role in the expansion of TaARFs. The gene collinearity degrees of the ARFs between wheat and other grasses, rice and maize, were significantly high. The evolution distances among TaARFs determine their expression profiles, such as homoeologous genes have similar expression profiles, like TaARF4-3A-1, TaARF4-3A-2 and their homoeologous genes. The expression profiles of TaARFs in various tissues or organs indicated TaARF3, TaARF4, TaARF9 and TaARF22 and their homoeologous genes played basic roles during wheat development. TaARF4, TaARF9, TaARF12, TaARF15, TaARF17, TaARF21, TaARF25 and their homoeologous genes probably played basic roles in tiller development. qRT-PCR analyses of 20 representative TaARF genes revealed that the abnormal expressions of TaARF11 and TaARF14 were major causes constraining the tillering of dmc. Indole-3-acetic acid (IAA) contents in dmc were significantly less than that in Guomai 301 at key tillering stages. Exogenous IAA application significantly promoted wheat tillering, and affected the transcriptions of TaARFs. These data suggested that TaARFs as well as IAA signaling were involved in controlling wheat tillering. This study provided valuable clues for functional characterization of ARFs in wheat.
Collapse
Affiliation(s)
- Junchang Li
- National Centre of Engineering and Technological Research for Wheat/National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, Henan, China
| | - Yumei Jiang
- National Centre of Engineering and Technological Research for Wheat/National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, Henan, China
| | - Jing Zhang
- National Centre of Engineering and Technological Research for Wheat/National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, Henan, China
| | - Yongjing Ni
- Shangqiu Academy of Agricultural and Forestry Sciences, Shangqiu, Henan, China
| | - Zhixin Jiao
- National Centre of Engineering and Technological Research for Wheat/National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, Henan, China
| | - Huijuan Li
- National Centre of Engineering and Technological Research for Wheat/National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, Henan, China
| | - Ting Wang
- National Centre of Engineering and Technological Research for Wheat/National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, Henan, China
| | - Peipei Zhang
- National Centre of Engineering and Technological Research for Wheat/National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, Henan, China
| | - Wenlong Guo
- National Centre of Engineering and Technological Research for Wheat/National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, Henan, China
| | - Lei Li
- National Centre of Engineering and Technological Research for Wheat/National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, Henan, China
| | - Hongjie Liu
- Shangqiu Academy of Agricultural and Forestry Sciences, Shangqiu, Henan, China
| | - Hairong Zhang
- College of Life Sciences, Henan Agricultural University, Zhengzhou, Henan, China
| | - Qiaoyun Li
- National Centre of Engineering and Technological Research for Wheat/National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, Henan, China
| | - Jishan Niu
- National Centre of Engineering and Technological Research for Wheat/National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, Henan, China
| |
Collapse
|
11
|
Wang KL, Zhang Y, Zhang HM, Lin XC, Xia R, Song L, Wu AM. MicroRNAs play important roles in regulating the rapid growth of the Phyllostachys edulis culm internode. THE NEW PHYTOLOGIST 2021; 231:2215-2230. [PMID: 34101835 DOI: 10.1111/nph.17542] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 05/29/2021] [Indexed: 06/12/2023]
Abstract
Moso bamboo (Phyllostachys edulis) is a fast-growing species with uneven growth and lignification from lower to upper segments within one internode. MicroRNAs (miRNAs) play a vital role in post-transcriptional regulation in plants. However, how miRNAs regulate fast growth in bamboo internodes is poorly understood. In this study, one moso bamboo internode was divided during early rapid growth into four segments called F4 (bottom) to F1 (upper) and these were then analysed for transcriptomes, miRNAs and degradomes. The F4 segment had a higher number of actively dividing cells as well as a higher content of auxin (IAA), cytokinin (CK) and gibberellin (GA) compared with the F1 segment. RNA-seq analysis showed DNA replication and cell division-associated genes highly expressed in F4 rather than in F1. In total, 63 miRNAs (DEMs) were identified as differentially expressed between F4 and F1. The degradome and the transcriptome indicated that many downstream transcription factors and hormonal responses genes were modulated by DEMs. Several miR-target interactions were further validated by tobacco co-infiltration. Our findings give new insights into miRNA-mediated regulatory pathways in bamboo, and will contribute to a comprehensive understanding of the molecular mechanisms governing rapid growth.
Collapse
Affiliation(s)
- Kai-Li Wang
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou, 510642, China
| | - Yuanyuan Zhang
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou, 510642, China
| | - Heng-Mu Zhang
- Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Xin-Chun Lin
- The State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, 311300, China
| | - Rui Xia
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Lili Song
- The State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, 311300, China
| | - Ai-Min Wu
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangzhou, 510642, China
| |
Collapse
|
12
|
Huang X, Hilscher J, Stoger E, Christou P, Zhu C. Modification of cereal plant architecture by genome editing to improve yields. PLANT CELL REPORTS 2021; 40:953-978. [PMID: 33559722 DOI: 10.1007/s00299-021-02668-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 01/22/2021] [Indexed: 06/12/2023]
Abstract
KEY MESSAGE We summarize recent genome editing studies that have focused on the examination (or reexamination) of plant architectural phenotypes in cereals and the modification of these traits for crop improvement. Plant architecture is defined as the three-dimensional organization of the entire plant. Shoot architecture refers to the structure and organization of the aboveground components of a plant, reflecting the developmental patterning of stems, branches, leaves and inflorescences/flowers. Root system architecture is essentially determined by four major shape parameters-growth, branching, surface area and angle. Interest in plant architecture has arisen from the profound impact of many architectural traits on agronomic performance, and the genetic and hormonal regulation of these traits which makes them sensitive to both selective breeding and agronomic practices. This is particularly important in staple crops, and a large body of literature has, therefore, accumulated on the control of architectural phenotypes in cereals, particularly rice due to its twin role as one of the world's most important food crops as well as a model organism in plant biology and biotechnology. These studies have revealed many of the molecular mechanisms involved in the regulation of tiller/axillary branching, stem height, leaf and flower development, root architecture and the grain characteristics that ultimately help to determine yield. The advent of genome editing has made it possible, for the first time, to introduce precise mutations into cereal crops to optimize their architecture and close in on the concept of the ideotype. In this review, we consider recent genome editing studies that have focused on the examination (or reexamination) of plant architectural phenotypes in cereals and the modification of these traits for crop improvement.
Collapse
Affiliation(s)
- Xin Huang
- Department of Plant Production and Forestry Science, University of Lleida-Agrotecnio Center, Av. Alcalde Rovira Roure, 191, 25198, Lleida, Spain
| | - Julia Hilscher
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Gregor-Mendel-Straße 33, 1180, Vienna, Austria
| | - Eva Stoger
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Gregor-Mendel-Straße 33, 1180, Vienna, Austria
| | - Paul Christou
- Department of Plant Production and Forestry Science, University of Lleida-Agrotecnio Center, Av. Alcalde Rovira Roure, 191, 25198, Lleida, Spain
- ICREA, Catalan Institute for Research and Advanced Studies, Passeig Lluís Companys 23, 08010, Barcelona, Spain
| | - Changfu Zhu
- Department of Plant Production and Forestry Science, University of Lleida-Agrotecnio Center, Av. Alcalde Rovira Roure, 191, 25198, Lleida, Spain.
| |
Collapse
|
13
|
Kwon YH, Kabange NR, Lee JY, Lee SM, Cha JK, Shin DJ, Cho JH, Kang JW, Ko JM, Lee JH. Novel QTL Associated with Shoot Branching Identified in Doubled Haploid Rice ( Oryza sativa L.) under Low Nitrogen Cultivation. Genes (Basel) 2021; 12:745. [PMID: 34069231 PMCID: PMC8157147 DOI: 10.3390/genes12050745] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/05/2021] [Accepted: 05/12/2021] [Indexed: 02/07/2023] Open
Abstract
Shoot branching is considered as an important trait for the architecture of plants and contributes to their growth and productivity. In cereal crops, such as rice, shoot branching is controlled by many factors, including phytohormones signaling networks, operating either in synergy or antagonizing each other. In rice, shoot branching indicates the ability to produce more tillers that are essential for achieving high productivity and yield potential. In the present study, we evaluated the growth and development, and yield components of a doubled haploid population derived from a cross between 93-11 (P1, indica) and Milyang352 (P2, japonica), grown under normal nitrogen and low nitrogen cultivation open field conditions. The results of the phenotypic evaluation indicated that parental lines 93-11 (P1, a high tillering indica cultivar) and Milyang352 (P2, a low tillering japonica cultivar) showed distinctive phenotypic responses, also reflected in their derived population. In addition, the linkage mapping and quantitative trait locus (QTL) analysis detected three QTLs associated with tiller number on chromosome 2 (qTNN2-1, 130 cM, logarithm of the odds (LOD) 4.14, PVE 14.5%; and qTNL2-1, 134 cM, LOD: 6.05, PVE: 20.5%) and chromosome 4 (qTN4-1, 134 cM, LOD 3.92, PVE 14.5%), with qTNL2-1 having the highest phenotypic variation explained, and the only QTL associated with tiller number under low nitrogen cultivation conditions, using Kompetitive Allele-Specific PCR (KASP) and Fluidigm markers. The additive effect (1.81) of qTNL2-1 indicates that the allele from 93-11 (P1) contributed to the observed phenotypic variation for tiller number under low nitrogen cultivation. The breakthrough is that the majority of the candidate genes harbored by the QTLs qTNL2-1 and qTNN4-1 (here associated with the control of shoot branching under low and normal nitrogen cultivation, respectively), were also proposed to be involved in plant stress signaling or response mechanisms, with regard to their annotations and previous reports. Therefore, put together, these results would suggest that a possible crosstalk exists between the control of plant growth and development and the stress response in rice.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Jong-Hee Lee
- Department of Southern Area Crop Science, National Institute of Crop Science, RDA, Miryang 50424, Korea; (Y.-H.K.); (N.-R.K.); (J.-Y.L.); (S.-M.L.); (J.-K.C.); (D.-J.S.); (J.-H.C.); (J.-W.K.); (J.-M.K.)
| |
Collapse
|
14
|
Bae KD, Um TY, Yang WT, Park TH, Hong SY, Kim KM, Chung YS, Yun DJ, Kim DH. Characterization of dwarf and narrow leaf ( dnl-4) mutant in rice. PLANT SIGNALING & BEHAVIOR 2021; 16:1849490. [PMID: 33300429 PMCID: PMC7849693 DOI: 10.1080/15592324.2020.1849490] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Height and leaf morphology are important agronomic traits of the major crop plant rice (Oryza sativa). In previous studies, the dwarf and narrow leaf genes (dnl1, dnl2 and dnl3) have identified in rice. Using the Ac/Ds knockout system, we found a new dwarf and narrow leaf (dnl) mutant and identified mutated gene. The dnl-4 mutant showed reduced plant height and leaf blade width compared to the wild type, and increased leaf inclination. The morphological defects of the mutant were caused by the suppressed expression of the DNL-4 gene, which encodes a pfkB carbohydrate kinase protein. These results suggest that DNL-4 expression is involved in modulating plant height and leaf growth. Furthermore, DNL-4 expression also affects productivity in rice: the dnl-4 mutant exhibited reduced panicle length and grain width compared with the wild type. To understand DNL-4 function in rice, we analyzed the expression levels of leaf growth-related genes, such as NAL1, NAL7, and CSLD4, in the dnl-4 mutant. Expression of NAL1 and NAL7 was downregulated in the dnl-4 mutant compared to the wild type. The observation that DNL-4 expression corresponded with that of NAL1 and NAL7 is consistent with the narrow leaf phenotype of the dnl-4 mutant. These results suggest that DNL-4 regulates plant height and leaf structure in rice.
Collapse
Affiliation(s)
- Ki-Deuk Bae
- College of Life Science and Natural Resources, Dong-A University, Busan, Korea
| | - Tae-Young Um
- Department of Agriculture and Life Industry, Kangwon National University, Chuncheon, South Korea
| | - Won-Tae Yang
- College of Life Science and Natural Resources, Dong-A University, Busan, Korea
| | - Tae-Hyeon Park
- Graduate School of International Agricultural Technology and Crop Biotechnology Institute/GreenBio Science and Technology, Seoul National University, Pyeongchang, Korea
| | - So-Yeon Hong
- College of Life Science and Natural Resources, Dong-A University, Busan, Korea
| | - Kyung-Min Kim
- College of Agriculture and Life Science, Kyungpook National University, Daegu, Korea
| | - Young-Soo Chung
- College of Life Science and Natural Resources, Dong-A University, Busan, Korea
| | - Dae-Jin Yun
- Department of Biomedical Science and Engineering, Konkuk University, Seoul, Korea
| | - Doh-Hoon Kim
- College of Life Science and Natural Resources, Dong-A University, Busan, Korea
- CONTACT Doh-Hoon KimCollege of Life Science and Natural Resources, Dong-A University, Busan49315, Korea
| |
Collapse
|