1
|
Godinho DP, Yanez RJR, Duque P. Pathogen-responsive alternative splicing in plant immunity. TRENDS IN PLANT SCIENCE 2024:S1360-1385(24)00311-X. [PMID: 39701905 DOI: 10.1016/j.tplants.2024.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 12/21/2024]
Abstract
Plant immunity involves a complex and finely tuned response to a wide variety of pathogens. Alternative splicing, a post-transcriptional mechanism that generates multiple transcripts from a single gene, enhances both the versatility and effectiveness of the plant immune system. Pathogen infection induces alternative splicing in numerous plant genes involved in the two primary layers of pathogen recognition: pattern-triggered immunity (PTI) and effector-triggered immunity (ETI). However, the mechanisms underlying pathogen-responsive alternative splicing are just beginning to be understood. In this article, we review recent findings demonstrating that the interaction between pathogen elicitors and plant receptors modulates the phosphorylation status of splicing factors, altering their function, and that pathogen effectors target components of the host spliceosome, controlling the splicing of plant immunity-related genes.
Collapse
Affiliation(s)
- Diogo P Godinho
- GIMM - Gulbenkian Institute for Molecular Medicine, Lisbon, Portugal.
| | - Romana J R Yanez
- GIMM - Gulbenkian Institute for Molecular Medicine, Lisbon, Portugal
| | - Paula Duque
- GIMM - Gulbenkian Institute for Molecular Medicine, Lisbon, Portugal.
| |
Collapse
|
2
|
Lin H, Jiang Z, He T, Li G, Zhao M, Su L, Zhao J, Zou C, Yang X. Mining of Candidate Genes and Developing Molecular Markers Associated with Pokkah Boeng Resistance in Sugarcane ( Saccharum spp.). PLANTS (BASEL, SWITZERLAND) 2024; 13:3497. [PMID: 39771194 PMCID: PMC11678196 DOI: 10.3390/plants13243497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/28/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025]
Abstract
Sugarcane Pokkah Boeng (PB), a fungal disease caused by Fusarium spp., poses a significant threat to sugar industries globally. Breeding sugarcane varieties resistant to PB has become a priority, and the mining of PB resistance genes and the development of molecular markers provide a solid foundation for this purpose. This work comprehensively analyzes the genetic components of sugarcane's resistance to PB using transcriptome sequencing. A segregating population was created by crossing the susceptible parent ROC25 with the resistant parent Yunzhe89-7, which is a traditional cultivar known for its PB resistance. Transcriptome analysis uncovered many differentially expressed genes (DEGs) associated with PB resistance. Utilizing weighted gene co-expression network analysis (WGCNA), we identified gene modules closely related to disease phenotypes. We annotated their functions with bioinformatics tools, particularly focusing on genes enriched in the plant immune response's MAPK signaling pathway and ABC transporter synthesis pathways. In addition, by integrating whole-genome resequencing data of parental lines and transcriptome data of progeny, we identified a series of putative molecular markers that potentially effectively differentiate between highly resistant and susceptible materials. Our study provides crucial genetic resources and molecular methodologies that are essential for the advancement of sugarcane varieties with improved resistance to PB. These innovations are expected to accelerate the breeding process greatly.
Collapse
Affiliation(s)
- Haidong Lin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China; (H.L.); (Z.J.); (T.H.); (G.L.); (M.Z.); (J.Z.)
- Guangxi Key Laboratory of Sugarcane Biology & National Demonstration Center for Experimental Plant Science Education, Guangxi University, Nanning 530005, China
| | - Zhengjie Jiang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China; (H.L.); (Z.J.); (T.H.); (G.L.); (M.Z.); (J.Z.)
- Guangxi Key Laboratory of Sugarcane Biology & National Demonstration Center for Experimental Plant Science Education, Guangxi University, Nanning 530005, China
| | - Tuan He
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China; (H.L.); (Z.J.); (T.H.); (G.L.); (M.Z.); (J.Z.)
- Guangxi Key Laboratory of Sugarcane Biology & National Demonstration Center for Experimental Plant Science Education, Guangxi University, Nanning 530005, China
| | - Guomeng Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China; (H.L.); (Z.J.); (T.H.); (G.L.); (M.Z.); (J.Z.)
- Guangxi Key Laboratory of Sugarcane Biology & National Demonstration Center for Experimental Plant Science Education, Guangxi University, Nanning 530005, China
| | - Mengyu Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China; (H.L.); (Z.J.); (T.H.); (G.L.); (M.Z.); (J.Z.)
- Guangxi Key Laboratory of Sugarcane Biology & National Demonstration Center for Experimental Plant Science Education, Guangxi University, Nanning 530005, China
| | - Liangyinan Su
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China; (H.L.); (Z.J.); (T.H.); (G.L.); (M.Z.); (J.Z.)
- Guangxi Key Laboratory of Sugarcane Biology & National Demonstration Center for Experimental Plant Science Education, Guangxi University, Nanning 530005, China
| | - Jihan Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China; (H.L.); (Z.J.); (T.H.); (G.L.); (M.Z.); (J.Z.)
- Guangxi Key Laboratory of Sugarcane Biology & National Demonstration Center for Experimental Plant Science Education, Guangxi University, Nanning 530005, China
| | - Chengwu Zou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China; (H.L.); (Z.J.); (T.H.); (G.L.); (M.Z.); (J.Z.)
- Guangxi Key Laboratory of Sugarcane Biology & National Demonstration Center for Experimental Plant Science Education, Guangxi University, Nanning 530005, China
| | - Xiping Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China; (H.L.); (Z.J.); (T.H.); (G.L.); (M.Z.); (J.Z.)
- Guangxi Key Laboratory of Sugarcane Biology & National Demonstration Center for Experimental Plant Science Education, Guangxi University, Nanning 530005, China
| |
Collapse
|
3
|
Xia F, Zhang N, Smith RE, Chakraborty J, Sobol G, Tang X, Fei Z, Sessa G, Martin GB. Related type 2C protein phosphatases Pic3 and Pic12 negatively regulate immunity in tomato to Pseudomonas syringae. PLANT PHYSIOLOGY 2024; 196:1997-2013. [PMID: 39074178 DOI: 10.1093/plphys/kiae401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 07/31/2024]
Abstract
Type 2C protein phosphatases (PP2Cs) constitute a large family in most plant species, but relatively few of them have been implicated in immunity. To identify and characterize PP2C phosphatases that affect tomato (Solanum lycopersicum) immunity, we generated loss-of-function mutations in 11 PP2C-encoding genes whose expression is altered in response to immune elicitors or pathogens. We report that 2 closely related PP2C phosphatases, PP2C immunity-associated candidate 3 (Pic3) and Pic12, are involved in regulating resistance to the bacterial pathogen Pseudomonas syringae pv. tomato (Pst). Loss-of-function mutations in Pic3 led to enhanced resistance to Pst in older but not younger leaves, whereas such mutations in Pic12 resulted in enhanced resistance in both older and younger leaves. Overexpression of Pic3 and Pic12 proteins in leaves of Nicotiana benthamiana inhibited resistance to Pst, and this effect was dependent on Pic3/12 phosphatase activity and an N-terminal palmitoylation motif associated with localization to the cell periphery. Pic3, but not Pic12, had a slight negative effect on flagellin-associated reactive oxygen species generation, although their involvement in the response to Pst appeared independent of flagellin. RNA-sequencing analysis of Rio Grande (RG)-PtoR wild-type plants and 2 independent RG-pic3 mutants revealed that the enhanced disease resistance in RG-pic3 older leaves is associated with increased transcript abundance of multiple defense-related genes. RG-pic3/RG-pic12 double-mutant plants exhibited stronger disease resistance than RG-pic3 or RG-pic12 single mutants. Together, our results reveal that Pic3 and Pic12 negatively regulate tomato immunity in an additive manner through flagellin-independent pathways.
Collapse
Affiliation(s)
- Fan Xia
- Boyce Thompson Institute for Plant Research, Ithaca, NY 14853, USA
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Ning Zhang
- Boyce Thompson Institute for Plant Research, Ithaca, NY 14853, USA
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Renee E Smith
- Boyce Thompson Institute for Plant Research, Ithaca, NY 14853, USA
| | - Joydeep Chakraborty
- The George S. Wise Faculty of Life Sciences, School of Plant Sciences and Food Security, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Guy Sobol
- The George S. Wise Faculty of Life Sciences, School of Plant Sciences and Food Security, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Xuemei Tang
- Boyce Thompson Institute for Plant Research, Ithaca, NY 14853, USA
| | - Zhangjun Fei
- Boyce Thompson Institute for Plant Research, Ithaca, NY 14853, USA
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
- USDA-ARS Robert W. Holley Center for Agriculture and Health, Ithaca, NY 14853, USA
| | - Guido Sessa
- The George S. Wise Faculty of Life Sciences, School of Plant Sciences and Food Security, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Gregory B Martin
- Boyce Thompson Institute for Plant Research, Ithaca, NY 14853, USA
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
4
|
Balcerowicz M. A gap in the defence: Many commercially grown melon cultivars lack a functional FLS2 flagellin receptor. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:1669-1670. [PMID: 39141764 DOI: 10.1111/tpj.16957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
|
5
|
Jin C, Matsuo H, Nakayama Y, Shigita G, Inoue Y, Kato K, Takano Y. A deletion in FLS2 and its expansion after domestication caused global dissemination of melon cultivars defective in flagellin recognition. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:1671-1684. [PMID: 38924650 DOI: 10.1111/tpj.16895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/30/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024]
Abstract
FLAGELLIN SENSING 2 (FLS2) encodes a pattern recognition receptor that perceives bacterial flagellin. While putative FLS2 orthologs are broadly conserved in plants, their functional characterization remains limited. Here, we report the identification of orthologs in cucumber (Cucumis sativus) and melon (C. melo), named CsFLS2 and CmFLS2, respectively. Homology searching identified CsFLS2, and virus-induced gene silencing (VIGS) demonstrated that CsFLS2 is required for flg22-triggered ROS generation. Interestingly, genome re-sequencing of melon cv. Lennon and subsequent genomic PCR revealed that Lennon has two CmFLS2 haplotypes, haplotype I encoding full-length CmFLS2 and haplotype II encoding a truncated form. We show that VIGS-mediated knockdown of CmFLS2 haplotype I resulted in a significant reduction in both flg22-triggered ROS generation and immunity to a bacterial pathogen in melon cv. Lennon. Remarkably, genomic PCR of CmFLS2 revealed that 68% of tested commercial melon cultivars possess only CmFLS2 haplotype II: these cultivars thus lack functional CmFLS2. To explore evolutionary aspects of CmFLS2 haplotype II occurrence, we genotyped the CmFLS2 locus in 142 melon accessions by genomic PCR and analyzed 437 released sequences. The results suggest that CmFLS2 haplotype II is derived from C. melo subsp. melo. Furthermore, we suggest that the proportion of CmFLS2 haplotype II increased among the improved melo group compared with the primitive melo group. Collectively, these findings suggest that the deleted FLS2 locus generated in the primitive melo subspecies expanded after domestication, resulting in the spread of commercial melon cultivars defective in flagellin recognition, which is critical for bacterial immunity.
Collapse
Affiliation(s)
- Chujia Jin
- Laboratory of Plant Pathology, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Hiroki Matsuo
- Laboratory of Plant Pathology, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Yoshizo Nakayama
- Laboratory of Plant Pathology, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Gentaro Shigita
- Laboratory of Plant Biodiversity Research, Department of Life Science Systems, Technical University of Munich, Freising, 85354, Germany
- Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki, 305-8572, Japan
| | - Yoshihiro Inoue
- Laboratory of Plant Genetics, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Kenji Kato
- Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, 1-1-1 Tsushima Naka, Kita-ku, Okayama, 700-8530, Japan
| | - Yoshitaka Takano
- Laboratory of Plant Pathology, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| |
Collapse
|
6
|
Jiang Y, Yue Y, Lu C, Latif MZ, Liu H, Wang Z, Yin Z, Li Y, Ding X. AtSNU13 modulates pre-mRNA splicing of RBOHD and ALD1 to regulate plant immunity. BMC Biol 2024; 22:153. [PMID: 38982460 PMCID: PMC11234627 DOI: 10.1186/s12915-024-01951-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 07/05/2024] [Indexed: 07/11/2024] Open
Abstract
Pre-mRNA splicing is a significant step for post-transcriptional modifications and functions in a wide range of physiological processes in plants. Human NHP2L binds to U4 snRNA during spliceosome assembly; it is involved in RNA splicing and mediates the development of human tumors. However, no ortholog has yet been identified in plants. Therefore, we report At4g12600 encoding the ortholog NHP2L protein, and AtSNU13 associates with the component of the spliceosome complex; the atsnu13 mutant showed compromised resistance in disease resistance, indicating that AtSNU13 is a positive regulator of plant immunity. Compared to wild-type plants, the atsnu13 mutation resulted in altered splicing patterns for defense-related genes and decreased expression of defense-related genes, such as RBOHD and ALD1. Further investigation shows that AtSNU13 promotes the interaction between U4/U6.U5 tri-snRNP-specific 27 K and the motif in target mRNAs to regulate the RNA splicing. Our study highlights the role of AtSNU13 in regulating plant immunity by affecting the pre-mRNA splicing of defense-related genes.
Collapse
Affiliation(s)
- Yanke Jiang
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai an, Shandong, 271018, China
| | - Yingzhe Yue
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai an, Shandong, 271018, China
| | - Chongchong Lu
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai an, Shandong, 271018, China
| | - Muhammad Zunair Latif
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai an, Shandong, 271018, China
| | - Haifeng Liu
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Zhaoxu Wang
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai an, Shandong, 271018, China
| | - Ziyi Yin
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai an, Shandong, 271018, China
| | - Yang Li
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai an, Shandong, 271018, China
| | - Xinhua Ding
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai an, Shandong, 271018, China.
| |
Collapse
|
7
|
Hudson A, Mullens A, Hind S, Jamann T, Balint‐Kurti P. Natural variation in the pattern-triggered immunity response in plants: Investigations, implications and applications. MOLECULAR PLANT PATHOLOGY 2024; 25:e13445. [PMID: 38528659 PMCID: PMC10963888 DOI: 10.1111/mpp.13445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/26/2024] [Accepted: 03/01/2024] [Indexed: 03/27/2024]
Abstract
The pattern-triggered immunity (PTI) response is triggered at the plant cell surface by the recognition of microbe-derived molecules known as microbe- or pathogen-associated molecular patterns or molecules derived from compromised host cells called damage-associated molecular patterns. Membrane-localized receptor proteins, known as pattern recognition receptors, are responsible for this recognition. Although much of the machinery of PTI is conserved, natural variation for the PTI response exists within and across species with respect to the components responsible for pattern recognition, activation of the response, and the strength of the response induced. This review describes what is known about this variation. We discuss how variation in the PTI response can be measured and how this knowledge might be utilized in the control of plant disease and in developing plant varieties with enhanced disease resistance.
Collapse
Affiliation(s)
- Asher Hudson
- Department of Entomology and Plant PathologyNorth Carolina State UniversityRaleighNorth CarolinaUSA
| | - Alexander Mullens
- Department of Crop SciencesUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
| | - Sarah Hind
- Department of Crop SciencesUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
| | - Tiffany Jamann
- Department of Crop SciencesUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
| | - Peter Balint‐Kurti
- Department of Entomology and Plant PathologyNorth Carolina State UniversityRaleighNorth CarolinaUSA
- Plant Science Research UnitUSDA‐ARSRaleighNorth CarolinaUSA
| |
Collapse
|
8
|
Shamnas v M, Singh A, Kumar A, Mishra GP, Sinha SK. Exitrons: offering new roles to retained introns-the novel regulators of protein diversity and utility. AOB PLANTS 2024; 16:plae014. [PMID: 38566894 PMCID: PMC10985678 DOI: 10.1093/aobpla/plae014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 03/15/2024] [Indexed: 04/04/2024]
Abstract
Exitrons are exonic introns. This subclass of intron retention alternative splicing does not contain a Pre-Terminating stop Codon. Therefore, when retained, they are always a part of a protein. Intron retention is a frequent phenomenon predominantly found in plants, which results in either the degradation of the transcripts or can serve as a stable intermediate to be processed upon induction by specific signals or the cell status. Interestingly, exitrons have coding ability and may confer additional attributes to the proteins that retain them. Therefore, exitron-containing and exitron-spliced isoforms will be a driving force for creating protein diversity in the proteome of an organism. This review establishes a basic understanding of exitron, discussing its genesis, key features, identification methods and functions. We also try to depict its other potential roles. The present review also aims to provide a fundamental background to those who found such exitronic sequences in their gene(s) and to speculate the future course of studies.
Collapse
Affiliation(s)
- Muhammed Shamnas v
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi 110012, India
| | - Akanksha Singh
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi 110012, India
- Department of Botany and Plant Pathology, Lilly Hall of Life Sciences, Purdue University, West Lafayette 47906, Indiana, USA
| | - Anuj Kumar
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi 110012, India
| | - Gyan Prakash Mishra
- Division of Genetics, ICAR-Indian Agricultural Research Institute, Pusa Campus, New Delhi 110012, India
| | - Subodh Kumar Sinha
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi 110012, India
| |
Collapse
|
9
|
Kufel J, Diachenko N, Golisz A. Alternative splicing as a key player in the fine-tuning of the immunity response in Arabidopsis. MOLECULAR PLANT PATHOLOGY 2022; 23:1226-1238. [PMID: 35567423 PMCID: PMC9276941 DOI: 10.1111/mpp.13228] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/11/2022] [Accepted: 04/13/2022] [Indexed: 06/01/2023]
Abstract
Plants, like animals, are constantly exposed to abiotic and biotic stresses, which often inhibit plant growth and development, and cause tissue damage, disease, and even plant death. Efficient and timely response to stress requires appropriate co- and posttranscriptional reprogramming of gene expression. Alternative pre-mRNA splicing provides an important layer of this regulation by controlling the level of factors involved in stress response and generating additional protein isoforms with specific features. Recent high-throughput studies have revealed that several defence genes undergo alternative splicing that is often affected by pathogen infection. Despite extensive work, the exact mechanisms underlying these relationships are still unclear, but the contribution of alternative protein isoforms to the defence response and the role of regulatory factors, including components of the splicing machinery, have been established. Modulation of gene expression in response to stress includes alternative splicing, chromatin remodelling, histone modifications, and nucleosome occupancy. How these processes affect plant immunity is mostly unknown, but these facets open new regulatory possibilities. Here we provide an overview of the current state of knowledge and recent findings regarding the growing importance of alternative splicing in plant response to biotic stress.
Collapse
Affiliation(s)
- Joanna Kufel
- Institute of Genetics and BiotechnologyFaculty of BiologyUniversity of WarsawWarsawPoland
| | - Nataliia Diachenko
- Institute of Genetics and BiotechnologyFaculty of BiologyUniversity of WarsawWarsawPoland
| | - Anna Golisz
- Institute of Genetics and BiotechnologyFaculty of BiologyUniversity of WarsawWarsawPoland
| |
Collapse
|
10
|
Li YH, Yang YY, Wang ZG, Chen Z. Emerging Function of Ecotype-Specific Splicing in the Recruitment of Commensal Microbiome. Int J Mol Sci 2022; 23:4860. [PMID: 35563250 PMCID: PMC9100151 DOI: 10.3390/ijms23094860] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 04/15/2022] [Accepted: 04/25/2022] [Indexed: 12/20/2022] Open
Abstract
In recent years, host-microbiome interactions in both animals and plants has emerged as a novel research area for studying the relationship between host organisms and their commensal microbial communities. The fitness advantages of this mutualistic interaction can be found in both plant hosts and their associated microbiome, however, the driving forces mediating this beneficial interaction are poorly understood. Alternative splicing (AS), a pivotal post-transcriptional mechanism, has been demonstrated to play a crucial role in plant development and stress responses among diverse plant ecotypes. This natural variation of plants also has an impact on their commensal microbiome. In this article, we review the current progress of plant natural variation on their microbiome community, and discuss knowledge gaps between AS regulation of plants in response to their intimately related microbiota. Through the impact of this article, an avenue could be established to study the biological mechanism of naturally varied splicing isoforms on plant-associated microbiome assembly.
Collapse
Affiliation(s)
- Yue-Han Li
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Research and Development Center for Fine Chemicals, Guizhou University, Guiyang 550025, China; (Y.-H.L.); (Y.-Y.Y.)
- School of Life Science and Agriculture Forestry, Qiqihar University, Qiqihar 161006, China
- Heilongjiang Provincial Technology Innovation Center of Agromicrobial Preparation Industrialization, Qiqihar 161006, China
| | - Yuan-You Yang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Research and Development Center for Fine Chemicals, Guizhou University, Guiyang 550025, China; (Y.-H.L.); (Y.-Y.Y.)
| | - Zhi-Gang Wang
- School of Life Science and Agriculture Forestry, Qiqihar University, Qiqihar 161006, China
- Heilongjiang Provincial Technology Innovation Center of Agromicrobial Preparation Industrialization, Qiqihar 161006, China
| | - Zhuo Chen
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Research and Development Center for Fine Chemicals, Guizhou University, Guiyang 550025, China; (Y.-H.L.); (Y.-Y.Y.)
| |
Collapse
|
11
|
Cecchini NM, Torres JR, López IL, Cobo S, Nota F, Alvarez ME. Alternative splicing of an exitron determines the subnuclear localization of the Arabidopsis DNA glycosylase MBD4L under heat stress. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:377-388. [PMID: 35061303 DOI: 10.1111/tpj.15675] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 01/15/2022] [Indexed: 06/14/2023]
Affiliation(s)
- Nicolás Miguel Cecchini
- Centro de Investigaciones en Química Biológica de Córdoba, CIQUIBIC, CONICET, Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, Córdoba, Argentina
| | - José Roberto Torres
- Centro de Investigaciones en Química Biológica de Córdoba, CIQUIBIC, CONICET, Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, Córdoba, Argentina
| | - Ignacio Lescano López
- Centro de Investigaciones en Química Biológica de Córdoba, CIQUIBIC, CONICET, Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, Córdoba, Argentina
| | - Santiago Cobo
- Centro de Investigaciones en Química Biológica de Córdoba, CIQUIBIC, CONICET, Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, Córdoba, Argentina
| | - Florencia Nota
- Centro de Investigaciones en Química Biológica de Córdoba, CIQUIBIC, CONICET, Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, Córdoba, Argentina
| | - María Elena Alvarez
- Centro de Investigaciones en Química Biológica de Córdoba, CIQUIBIC, CONICET, Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, Córdoba, Argentina
| |
Collapse
|
12
|
Murakami T, Katsuragi Y, Hirai H, Wataya K, Kondo M, Che FS. Distribution of flagellin CD2-1, flg22, and flgII-28 recognition systems in plant species and regulation of plant immune responses through these recognition systems. Biosci Biotechnol Biochem 2022; 86:490-501. [PMID: 35040954 DOI: 10.1093/bbb/zbac007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/12/2022] [Indexed: 11/12/2022]
Abstract
The first layer of active plant immunity relies upon the recognition of pathogen-associated molecular patterns (PAMPs), and the induction of PTI. Flagellin is the major protein component of the bacterial flagellum. Flagellin-derived peptide fragments such as CD2-1, flg22, and flgII-28 function as PAMPs in most higher plants. To determine the distribution of CD2-1, flg22, and flgII-28 recognition systems within plant species, the inducibility of PTI by CD2-1, flg22, and flgII-28 in 8 plant species, including monocotyledonous and dicotyledonous plants, was investigated. CD2-1 caused PTI responses in Oryza sativa, Brachypodium distachyon, and Asparagus persicus; flg22 caused PTI responses in Phyllostachys nigra, A. persicus, Arabidopsis thaliana, Nicotiana tabacum, Solanum lycopersicum, and Lotus japonicus; and flgII-28 caused PTI responses only in S. lycopersicum. Furthermore, quantitative analysis of FLS2 receptor revealed that the responsiveness of flg22 in plants was dependent on the expression level of the receptor.
Collapse
Affiliation(s)
- Takahiko Murakami
- Graduate School of Biosciences, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga, Japan
| | - Yuya Katsuragi
- Department of Bio-Science, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga, Japan
| | - Hiroyuki Hirai
- Department of Bio-Science, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga, Japan
| | - Koki Wataya
- Department of Bio-Science, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga, Japan
| | - Machiko Kondo
- Department of Bio-Science, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga, Japan
| | - Fang-Sik Che
- Graduate School of Biosciences, N a gahama Institute of Bio-Science and Technology, Nagahama, Shiga, Japan.,Department of Bio-Science, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga, Japan.,Genome Editing Research Institute, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga, Japan
| |
Collapse
|