1
|
Yang G, Xue Z, Lin-Wang K, Chen G, Zhao Y, Chang Y, Xu S, Sun M, Xue C, Li J, Allan AC, Espley RV, Wu J. An 'activator-repressor' loop controls the anthocyanin biosynthesis in red-skinned pear. MOLECULAR HORTICULTURE 2024; 4:26. [PMID: 38945997 PMCID: PMC11215833 DOI: 10.1186/s43897-024-00102-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/07/2024] [Indexed: 07/02/2024]
Abstract
The color of red-skinned pear (Pyrus spp.) is primarily attributed to accumulation of anthocyanins, which provide nutritional benefits for human health and are closely associated with the commercial value of fruits. Here, we reported the functional characterization of a R2R3-MYB repressor PyMYB107, which forms an 'activator-repressor' loop to control anthocyanin accumulation in the red-skinned pear. PyMYB107 overexpression inhibited anthocyanin biosynthesis in both pear calli and fruits, while virus-induced gene silencing of PyMYB107 increased anthocyanin accumulation in pear fruits. Furthermore, ectopic expression of PyMYB107 decreased anthocyanin accumulation in tomato, strawberry and tobacco. PyMYB107 can competitively bind to PybHLH3 with PyMYB10/MYB114, thereby suppressing the transcriptional activation of key anthocyanin biosynthesis genes, PyANS and PyUFGT. Site-directed mutagenesis showed that mutations within the R3 domain and EAR motif of PyMYB107 eliminated its repressive activity. Additionally, PyMYB107 exhibited a comparable expression pattern to PyMYB10/MYB114 and was transcriptionally activated by them. Our finding advanced comprehension of the repression mechanism underlying anthocyanin accumulation, providing valuable molecular insights into improving quality of pear fruits.
Collapse
Affiliation(s)
- Guangyan Yang
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
- Zhongshan Biological Breeding Laboratory, Nanjing, 210014, Jiangsu, China
| | - Zhaolong Xue
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
- Zhongshan Biological Breeding Laboratory, Nanjing, 210014, Jiangsu, China
| | - Kui Lin-Wang
- The New Zealand Institute for Plant & Food Research Limited, Auckland, 1025, New Zealand
| | - Guosong Chen
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
- Zhongshan Biological Breeding Laboratory, Nanjing, 210014, Jiangsu, China
| | - Yongqi Zhao
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
- Zhongshan Biological Breeding Laboratory, Nanjing, 210014, Jiangsu, China
| | - Yaojun Chang
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shaozhuo Xu
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Manyi Sun
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
- Zhongshan Biological Breeding Laboratory, Nanjing, 210014, Jiangsu, China
| | - Cheng Xue
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, China
| | - Jiaming Li
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
- Zhongshan Biological Breeding Laboratory, Nanjing, 210014, Jiangsu, China
| | - Andrew C Allan
- The New Zealand Institute for Plant & Food Research Limited, Auckland, 1025, New Zealand
| | - Richard V Espley
- The New Zealand Institute for Plant & Food Research Limited, Auckland, 1025, New Zealand
| | - Jun Wu
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China.
- Zhongshan Biological Breeding Laboratory, Nanjing, 210014, Jiangsu, China.
| |
Collapse
|
2
|
Li Q, Zhang F, Wang Z, Feng Y, Han Y. Advances in the Preparation, Stability, Metabolism, and Physiological Roles of Anthocyanins: A Review. Foods 2023; 12:3969. [PMID: 37959087 PMCID: PMC10647620 DOI: 10.3390/foods12213969] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/17/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Anthocyanins are natural flavonoid polyphenolic compounds widely found in fruits and vegetables. They exhibit antioxidant properties and prophylactic effects in the immune and cardiovascular systems, confer protection against cancer, and contribute to the prevention of cardiovascular diseases. Thus, their incorporation into functional foods, pharmaceuticals, supplements, and cosmetic formulations aims at promoting human well-being. This review comprehensively outlined the structural attributes of anthocyanins, expanding upon diverse methodologies employed for their extraction and production. Additionally, the stability, metabolic pathways, and manifold physiological functions of anthocyanins were discussed. However, their constrained fat solubility, susceptibility to instability, and restricted bioavailability collectively curtail their applicability and therapeutic efficacy. Consequently, a multidimensional approach was imperative, necessitating the exploration of innovative pathways to surmount these limitations, thereby amplifying the utilitarian significance of anthocyanins and furnishing pivotal support for their continual advancement and broader application.
Collapse
Affiliation(s)
- Qi Li
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Fengzhen Zhang
- School of Public Health, Wuhan University, Wuhan 430071, China
| | - Zhenzhen Wang
- School of Public Health, Wuhan University, Wuhan 430071, China
| | - Yaoze Feng
- Key Laboratory of Aquaculture Facilities Engineering, Ministry of Agriculture and Rural Affairs, College of Engineering, Huazhong Agricultural University, Wuhan 430070, China;
| | - Yahong Han
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| |
Collapse
|
3
|
D'Amelia V, Curaba J, Abid MA, Esposito S, Cavagnaro P, Carputo D, Iorizzo M. Functional characterization of DcMYB11, an R2R3 MYB associated with the purple pigmentation of carrot petiole. PLANTA 2023; 258:50. [PMID: 37488440 DOI: 10.1007/s00425-023-04200-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 07/04/2023] [Indexed: 07/26/2023]
Abstract
MAIN CONCLUSION DcMYB11, an R2R3 MYB gene associated with petiole anthocyanin pigmentation in carrot, was functionally characterized. A putative enhancer sequence is able to increase DcMYB11 activity. The accumulation of anthocyanin pigments can exhibit different patterns across plant tissues and crop varieties. This variability allowed the investigation of the molecular mechanisms behind the biosynthesis of these pigments in several plant species. Among crops, carrots have a well-defined anthocyanin pigmentation pattern depending on the genic background. In this work, we report on the discovery of DNA structural differences affecting the activity of an R2R3 MYB (encoded by DcMYB11) involved in anthocyanin regulation in carrot petiole. To this end, we first verified the function of DcMYB11 using heterologous systems and identified three different alleles which may explain differences in petiole pigmentation. Characterization of the DcMYB11 alleles at the 5' upstream sequence unveiled a sequence that functions as a putative enhancer. In conclusion, this study provides novel insight into the molecular mechanisms controlling anthocyanin accumulation in carrot. By these outcomes, we expanded our knowledge on the cis-regulatory sequences in plants.
Collapse
Affiliation(s)
- Vincenzo D'Amelia
- Institute of Bioscience and BioResources, National Research Council, Via Università 100, 80055, Portici, Italy
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055, Portici, Italy
| | - Julien Curaba
- Horticulture Science Department, Plants for Human Health Institute, North Carolina State University, North Carolina Research Campus, Kannapolis, NC, USA
| | - Muhammad Ali Abid
- Horticulture Science Department, Plants for Human Health Institute, North Carolina State University, North Carolina Research Campus, Kannapolis, NC, USA
| | - Salvatore Esposito
- CREA Research Centre for Cereal and Industrial Crops (CREA-CI), 71122, Foggia, Italy
| | - Pablo Cavagnaro
- National Scientific and Technical Research Council (CONICET), National Institute of Agricultural Technology (INTA) E.E.A. La Consulta, La Consulta CC8, San Carlos, 5567, Mendoza, Argentina
| | - Domenico Carputo
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055, Portici, Italy
| | - Massimo Iorizzo
- Horticulture Science Department, Plants for Human Health Institute, North Carolina State University, North Carolina Research Campus, Kannapolis, NC, USA.
| |
Collapse
|
4
|
Liu Y, Li Y, Liu Z, Wang L, Lin-Wang K, Zhu J, Bi Z, Sun C, Zhang J, Bai J. Integrative analysis of metabolome and transcriptome reveals a dynamic regulatory network of potato tuber pigmentation. iScience 2023; 26:105903. [PMID: 36818280 PMCID: PMC9932491 DOI: 10.1016/j.isci.2022.105903] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/12/2022] [Accepted: 12/26/2022] [Indexed: 12/30/2022] Open
Abstract
Potatoes consist of flavonoids that provide health benefits for human consumers. To learn more about how potato tuber flavonoid accumulation and flesh pigmentation are controlled, we analyzed the transcriptomic and metabolomic profile of potato tubers from three colored potato clones at three developmental phases using an integrated approach. From the 72 flavonoids identified in pigmented flesh, differential abundance was noted for anthocyanins, flavonols, and flavones. Weighted gene co-expression network analysis further allowed modules and candidate genes that positively or negatively regulate flavonoid biosynthesis to be identified. Furthermore, an R2R3-MYB repressor StMYB3 and an R3-MYB repressor StMYBATV involved in the modulation of anthocyanin biosynthesis during tuber development were identified. Both StMYB3 and StMYBATV could interact with the cofactor StbHLH1 and repress anthocyanin biosynthesis. Our results indicate a feedback regulatory mechanism of a coordinated MYB activator-repressor network on fine-tuning of potato tuber pigmentation during tuber development.
Collapse
Affiliation(s)
- Yuhui Liu
- State Key Laboratory of Aridland Crop Science/Agronomy College, Gansu Agricultural University, Lanzhou 730070, China
| | - Yuanming Li
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Zhen Liu
- State Key Laboratory of Aridland Crop Science/Agronomy College, Gansu Agricultural University, Lanzhou 730070, China
| | - Lei Wang
- Potato Research Center, Hebei North University, Zhangjiakou 075000, China
| | - Kui Lin-Wang
- The New Zealand Institute for Plant and Food Research Limited, Mt Albert, Private Bag 92169, Auckland Mail Centre, Auckland 1142, New Zealand
| | - Jinyong Zhu
- State Key Laboratory of Aridland Crop Science/Agronomy College, Gansu Agricultural University, Lanzhou 730070, China
| | - Zhenzhen Bi
- State Key Laboratory of Aridland Crop Science/Agronomy College, Gansu Agricultural University, Lanzhou 730070, China
| | - Chao Sun
- State Key Laboratory of Aridland Crop Science/Agronomy College, Gansu Agricultural University, Lanzhou 730070, China
| | - Junlian Zhang
- State Key Laboratory of Aridland Crop Science/Agronomy College, Gansu Agricultural University, Lanzhou 730070, China
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Jiangping Bai
- State Key Laboratory of Aridland Crop Science/Agronomy College, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
5
|
Jia S, Liu X, Wen X, Waheed A, Ding Y, Kahar G, Li X, Zhang D. Genome-Wide Identification of bHLH Transcription Factor Family in Malus sieversii and Functional Exploration of MsbHLH155.1 Gene under Valsa Canker Infection. PLANTS (BASEL, SWITZERLAND) 2023; 12:620. [PMID: 36771705 PMCID: PMC9919239 DOI: 10.3390/plants12030620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/15/2023] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Xinjiang wild apple (Malus sieversii) is an ancient relic; a plant with abundant genetic diversity and disease resistance. Several transcription factors were studied in response to different biotic and abiotic stresses on the wild apple. Basic/helix-loop-helix (bHLH) is a large plant transcription factor family that plays important roles in plant responses to various biotic and abiotic stresses and has been extensively studied in several plants. However, no study has yet been conducted on the bHLH gene in M. sieversii. Based on the genome of M. sieversii, 184 putative MsbHLH genes were identified, and their physicochemical properties were studied. MsbHLH covered 23 subfamilies and lacked two subfamily genes of Arabidopsis thaliana based on the widely used classification method. Moreover, MsbHLH exon-intron structures matched subfamily classification, as evidenced by the analysis of their protein motifs. The analysis of cis-acting elements revealed that many MsbHLH genes share stress- and hormone-related cis-regulatory elements. These MsbHLH transcription factors were found to be involved in plant defense responses based on the protein-protein interactions among the differentially expressed MsbHLHs. Furthermore, 94 MsbHLH genes were differentially expressed in response to pathogenic bacteria. The qRT-PCR results also showed differential expression of MsbHLH genes. To further verify the gene function of bHLH, our study used the transient transformation method to obtain the overexpressed MsbHLH155.1 transgenic plants and inoculated them. Under Valsa canker infection, the lesion phenotype and physiological and biochemical indexes indicated that the antioxidant capacity of plants could increase and reduce the damage caused by membrane peroxidation. This study provides detailed insights into the classification, gene structure, motifs, chromosome distribution, and gene expression of bHLH genes in M. sieversii and lays a foundation for a better understanding disease resistance in plants, as well as providing candidate genes for the development of M. sieversii resistance breeding.
Collapse
Affiliation(s)
- Shanshan Jia
- National Key Laboratory of Ecological Security and Sustainable Development in Arid Areas, Urumqi 830000, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100000, China
| | - Xiaojie Liu
- National Key Laboratory of Ecological Security and Sustainable Development in Arid Areas, Urumqi 830000, China
- Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830000, China
- Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan 838000, China
| | - Xuejing Wen
- National Key Laboratory of Ecological Security and Sustainable Development in Arid Areas, Urumqi 830000, China
- Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830000, China
- Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan 838000, China
| | - Abdul Waheed
- National Key Laboratory of Ecological Security and Sustainable Development in Arid Areas, Urumqi 830000, China
- Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830000, China
- Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan 838000, China
| | - Yu Ding
- National Key Laboratory of Ecological Security and Sustainable Development in Arid Areas, Urumqi 830000, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100000, China
| | - Gulnaz Kahar
- National Key Laboratory of Ecological Security and Sustainable Development in Arid Areas, Urumqi 830000, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100000, China
| | - Xiaoshuang Li
- National Key Laboratory of Ecological Security and Sustainable Development in Arid Areas, Urumqi 830000, China
- Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830000, China
- Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan 838000, China
| | - Daoyuan Zhang
- National Key Laboratory of Ecological Security and Sustainable Development in Arid Areas, Urumqi 830000, China
- Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830000, China
- Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan 838000, China
| |
Collapse
|
6
|
Zhang P, Zhu H. Anthocyanins in Plant Food: Current Status, Genetic Modification, and Future Perspectives. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020866. [PMID: 36677927 PMCID: PMC9863750 DOI: 10.3390/molecules28020866] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023]
Abstract
Anthocyanins are naturally occurring polyphenolic pigments that give food varied colors. Because of their high antioxidant activities, the consumption of anthocyanins has been associated with the benefit of preventing various chronic diseases. However, due to natural evolution or human selection, anthocyanins are found only in certain species. Additionally, the insufficient levels of anthocyanins in the most common foods also limit the optimal benefits. To solve this problem, considerable work has been done on germplasm improvement of common species using novel gene editing or transgenic techniques. This review summarized the recent advances in the molecular mechanism of anthocyanin biosynthesis and focused on the progress in using the CRISPR/Cas gene editing or multigene overexpression methods to improve plant food anthocyanins content. In response to the concerns of genome modified food, the future trends in developing anthocyanin-enriched plant food by using novel transgene or marker-free genome modified technologies are discussed. We hope to provide new insights and ideas for better using natural products like anthocyanins to promote human health.
Collapse
|
7
|
Tang M, Xue W, Li X, Wang L, Wang M, Wang W, Yin X, Chen B, Qu X, Li J, Wu Y, Gao X, Wei X, Bu F, Zhang L, Sui Z, Ding B, Wang Y, Zhang Q, Li Y, Zhang Y. Mitotically heritable epigenetic modifications of CmMYB6 control anthocyanin biosynthesis in chrysanthemum. THE NEW PHYTOLOGIST 2022; 236:1075-1088. [PMID: 35842781 DOI: 10.1111/nph.18389] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
Flower color, which is determined by various chemical pigments, is a vital trait for ornamental plants, in which anthocyanin is a major component. However, the epigenetic regulation of anthocyanin biosynthesis remains poorly understood. During chrysanthemum cultivation, we found a heterochromatic chrysanthemum accession (YP) whose progeny generated by asexual reproduction contained both yellow-flowered (YP-Y) and pink-flowered (YP-P) plants. In this study, we aimed to elucidate the epigenetic mechanisms of different flower colors in the YP plant progeny. Metabolome and transcriptome analyses revealed that the difference in flower color between YP-Y and YP-P was caused by expression variation of the anthocyanin biosynthesis gene CmMYB6. Bisulfite sequencing revealed that methylation at the CmMYB6 promoter, especially in the CHH context, was higher in YP-Y than YP-P. After demethylation of the CmMYB6 promoter using the dCas9-TET1cd system, the flower color returned from yellow to pink. Furthermore, the methylation status of the CmMYB6 promoter was higher in YP-Y over three consecutive generations, indicating that this methylation status was heritable mitotically. Finally, investigation of other chrysanthemum cultivars showed that the methylation of CmMYB6 decreased gradually with the increase in anthocyanin content. These results lay an epigenetic foundation for the improvement of flower color in horticultural plants.
Collapse
Affiliation(s)
- Mingwei Tang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, 150040, China
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Wanjie Xue
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, 150040, China
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Xueqi Li
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, 150040, China
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Lishan Wang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, 150040, China
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Min Wang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, 150040, China
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Wanpeng Wang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, 150040, China
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Xue Yin
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, 150040, China
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Bowei Chen
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, 150040, China
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Xueting Qu
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, 150040, China
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Jingyao Li
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, 150040, China
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Yi Wu
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, 150040, China
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Xinyu Gao
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, 150040, China
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Xiaofeng Wei
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, 150040, China
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Fanqi Bu
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, 150040, China
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Lingyu Zhang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, 150040, China
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Zhuoran Sui
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, 150040, China
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Bing Ding
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, 150040, China
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Yu Wang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, 150040, China
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Qingzhu Zhang
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Yuhua Li
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, 150040, China
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Yang Zhang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, 150040, China
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| |
Collapse
|
8
|
Gudynaitė-Franckevičienė V, Pliūra A. Performance and Genetic Parameters of Poplar Hybrids and Clones in a Field Trial Are Modified by Contrasting Environmental Conditions during the Vegetative Propagation Phase. PLANTS (BASEL, SWITZERLAND) 2022; 11:2401. [PMID: 36145802 PMCID: PMC9505758 DOI: 10.3390/plants11182401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/30/2022] [Accepted: 09/12/2022] [Indexed: 11/16/2022]
Abstract
This study investigates epigenetics-like phenomena: how performance phenotypic plasticity, genotypic variation, and the heritability of growth traits and total phenolic compounds of Populus hybrids and clones in field trials may be modified by contrasting temperature conditions at their vegetation propagation phase. The significant effect of rooting-growing conditions on further tree performance in field trials was found for height increment in 2020, although the interaction hybrid by rooting-growing conditions was highly significant for phenolic compounds, tree height, and diameter, meaning that the performance of some hybrids was affected by rooting-growing conditions, thus demonstrating epigenetic-like effects. For phenolic compounds, interactions were also significant at the clonal level. High estimates of ecovalency indicate that some hybrids are ecologically sensitive, and epigenetic-like phenomena might occur. Hybrid P. balsamifera × P. trichocarpa is characterized by high ecovalency and specific adaptations according to mean tree height when vegetatively propagated under different rooting-growing conditions. Low estimates of P. deltoides × P. trichocarpa ecovalency demonstrate a general adaptation according to mean tree height in a field trial. Vegetative propagation conditions have also altered the genetic variation of traits in trees being planted in field trials.
Collapse
|
9
|
D'Amelia V, Staiti A, D'Orso F, Maisto M, Piccolo V, Aversano R, Carputo D. Targeted mutagenesis of StISAC stabilizes the production of anthocyanins in potato cell culture. PLANT DIRECT 2022; 6:e433. [PMID: 35949953 PMCID: PMC9352536 DOI: 10.1002/pld3.433] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 07/15/2022] [Indexed: 05/31/2023]
Abstract
To increase the production of decorated anthocyanins in potato cell cultures, we knocked out a novel potato gene, named Inducer Silencing of Anthocyanins in Cell culture (StISAC), using CRISPR-Cas9 editing. Our results provided evidence that mutant cell lines doubled the accumulation level of anthocyanins biosynthesized. Moreover, the production of these important pigments was stabilized over time. Our study overcame important challenges in the efficient biotechnological production of these valuable pigments and reported the function of a novel anthocyanin biosynthesis repressor gene.
Collapse
Affiliation(s)
- Vincenzo D'Amelia
- Institute of Biosciences and Bioresources (IBBR)National Research Council of ItalyPorticiItaly
| | - Annalisa Staiti
- Department of Agricultural SciencesUniversity of Naples Federico IIPorticiItaly
| | - Fabio D'Orso
- Research Centre for Genomics and Bioinformatics (CREA‐GB)Council for Agricultural Research and EconomicsRomeItaly
| | - Maria Maisto
- Department of PharmacyUniversity of Naples Federico IINaplesItaly
| | - Vincenzo Piccolo
- Department of PharmacyUniversity of Naples Federico IINaplesItaly
| | - Riccardo Aversano
- Department of Agricultural SciencesUniversity of Naples Federico IIPorticiItaly
| | - Domenico Carputo
- Department of Agricultural SciencesUniversity of Naples Federico IIPorticiItaly
| |
Collapse
|
10
|
Ma Y, Ma X, Gao X, Wu W, Zhou B. Light Induced Regulation Pathway of Anthocyanin Biosynthesis in Plants. Int J Mol Sci 2021; 22:ijms222011116. [PMID: 34681776 PMCID: PMC8538450 DOI: 10.3390/ijms222011116] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/09/2021] [Accepted: 10/10/2021] [Indexed: 01/05/2023] Open
Abstract
Anthocyanins are natural pigments with antioxidant effects that exist in various fruits and vegetables. The accumulation of anthocyanins is induced by environmental signals and regulated by transcription factors in plants. Numerous evidence has indicated that among the environmental factors, light is one of the most signal regulatory factors involved in the anthocyanin biosynthesis pathway. However, the signal transduction of light and molecular regulation of anthocyanin synthesis remains to be explored. Here, we focus on the research progress of signal transduction factors for positive and negative regulation in light-dependent and light-independent anthocyanin biosynthesis. In particular, we will discuss light-induced regulatory pathways and related specific regulators of anthocyanin biosynthesis in plants. In addition, an integrated regulatory network of anthocyanin biosynthesis controlled by transcription factors is discussed based on the significant progress.
Collapse
Affiliation(s)
- Yanyun Ma
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Northeast Forestry University, Ministry of Education, Harbin 150040, China; (Y.M.); (X.M.)
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Xu Ma
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Northeast Forestry University, Ministry of Education, Harbin 150040, China; (Y.M.); (X.M.)
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Xiang Gao
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun 130024, China;
| | - Weilin Wu
- Agricultural College, Yanbian University, Yanji 133002, China
- Correspondence: (W.W.); (B.Z.); Tel.: +86-183-4338-8262 (W.W.); +86-0451-8219-1738 (B.Z.)
| | - Bo Zhou
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Northeast Forestry University, Ministry of Education, Harbin 150040, China; (Y.M.); (X.M.)
- College of Life Science, Northeast Forestry University, Harbin 150040, China
- Correspondence: (W.W.); (B.Z.); Tel.: +86-183-4338-8262 (W.W.); +86-0451-8219-1738 (B.Z.)
| |
Collapse
|
11
|
Li LX, Wei ZZ, Zhou ZL, Zhao DL, Tang J, Yang F, Li YH, Chen XY, Han Z, Yao GF, Hu KD, Zhang H. A single amino acid mutant in the EAR motif of IbMYB44.2 reduced the inhibition of anthocyanin accumulation in the purple-fleshed sweetpotato. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 167:410-419. [PMID: 34411780 DOI: 10.1016/j.plaphy.2021.08.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 07/31/2021] [Accepted: 08/08/2021] [Indexed: 06/13/2023]
Abstract
Purple-fleshed sweetpotato (Ipomoea batatas(L.)Lam.) is rich in anthocyanins. R2R3-type MYB transcription factors(TFs)with EAR motifs inhibiting anthocyanin biosynthesis have been reported, and there is still a lack of information on how mutations in the EAR motifs of MYBs affect anthocyanin accumulation. In this study, we obtained three IbMYB44 TFs by bioinformatics. Among these TFs, IbMYB44.1, IbMYB44.3 with a complete EAR motif and IbMYB44.2 with a single amino acid mutant in the EAR motif caused an amino acid substitution from leucine to valine. RT-qPCR analysis showed that IbMYB44s was expressed at lower levels in the purple-fleshed sweetpotato than in nonpurple-fleshed sweetpotato (P < 0.01). Transient expression assays showed that the inhibitory effect of IbMYB44.1/3 was stronger than IbMYB44.2 in tobacco leaves and red-skinned pears. RT-qPCR analysis further proved that IbMYB44.1/3 significantly inhibited the expression of anthocyanin biosynthesis-related genes compared with IbMYB44.2 in tobacco leaves and red-skinned pears. A dual luciferase reporter assay showed that IbMYB44s cannot directly activate the IbANS promoter, and the result was also verified by yeast one-hybrid (Y1H) experiments. Moreover, we identified the interaction of IbMYB340 with IbMYB44.1, IbMYB44.2 and IbMYB44.3 via yeast two-hybrid (Y2H) assays. Thus, IbMYB44.1/3 could interact with IbMYB340 to negatively regulate anthocyanin biosynthesis. This study enriched the regulatory network of anthocyanins and also provided a theoretical basis for a single amino acid mutant from leucine to valine in the EAR motif of IbMYB44.2 affecting anthocyanin biosynthesis in the purple-fleshed sweetpotato.
Collapse
Affiliation(s)
- Li-Xia Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, PR China
| | - Zeng-Zheng Wei
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, PR China
| | - Zhi-Lin Zhou
- Xuzhou Institute of Agricultural Sciences of the Xuhuai District of Jiangsu Province, Xuzhou, Jiangsu, 221131, PR China
| | - Dong-Lan Zhao
- Xuzhou Institute of Agricultural Sciences of the Xuhuai District of Jiangsu Province, Xuzhou, Jiangsu, 221131, PR China
| | - Jun Tang
- Xuzhou Institute of Agricultural Sciences of the Xuhuai District of Jiangsu Province, Xuzhou, Jiangsu, 221131, PR China
| | - Feng Yang
- Xuzhou Institute of Agricultural Sciences of the Xuhuai District of Jiangsu Province, Xuzhou, Jiangsu, 221131, PR China
| | - Yan-Hong Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, PR China
| | - Xiao-Yan Chen
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, PR China
| | - Zhuo Han
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, PR China
| | - Gai-Fang Yao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, PR China.
| | - Kang-Di Hu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, PR China.
| | - Hua Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, PR China.
| |
Collapse
|
12
|
Cirillo V, D’Amelia V, Esposito M, Amitrano C, Carillo P, Carputo D, Maggio A. Anthocyanins are Key Regulators of Drought Stress Tolerance in Tobacco. BIOLOGY 2021; 10:139. [PMID: 33578910 PMCID: PMC7916658 DOI: 10.3390/biology10020139] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/06/2021] [Accepted: 02/08/2021] [Indexed: 02/06/2023]
Abstract
Abiotic stresses will be one of the major challenges for worldwide food supply in the near future. Therefore, it is important to understand the physiological mechanisms that mediate plant responses to abiotic stresses. When subjected to UV, salinity or drought stress, plants accumulate specialized metabolites that are often correlated with their ability to cope with the stress. Among them, anthocyanins are the most studied intermediates of the phenylpropanoid pathway. However, their role in plant response to abiotic stresses is still under discussion. To better understand the effects of anthocyanins on plant physiology and morphogenesis, and their implications on drought stress tolerance, we used transgenic tobacco plants (AN1), which over-accumulated anthocyanins in all tissues. AN1 plants showed an altered phenotype in terms of leaf gas exchanges, leaf morphology, anatomy and metabolic profile, which conferred them with a higher drought tolerance compared to the wild-type plants. These results provide important insights for understanding the functional reason for anthocyanin accumulation in plants under stress.
Collapse
Affiliation(s)
- Valerio Cirillo
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Italy; (V.C.); (M.E.); (C.A.); (D.C.)
| | - Vincenzo D’Amelia
- National Research Council of Italy, Institute of Biosciences and Bioresources (CNR-IBBR), Via Università 133, 80055 Portici, Italy;
| | - Marco Esposito
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Italy; (V.C.); (M.E.); (C.A.); (D.C.)
| | - Chiara Amitrano
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Italy; (V.C.); (M.E.); (C.A.); (D.C.)
| | - Petronia Carillo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy;
| | - Domenico Carputo
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Italy; (V.C.); (M.E.); (C.A.); (D.C.)
| | - Albino Maggio
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Italy; (V.C.); (M.E.); (C.A.); (D.C.)
| |
Collapse
|
13
|
Plant Volatile Organic Compounds Evolution: Transcriptional Regulation, Epigenetics and Polyploidy. Int J Mol Sci 2020; 21:ijms21238956. [PMID: 33255749 PMCID: PMC7728353 DOI: 10.3390/ijms21238956] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/18/2020] [Accepted: 11/23/2020] [Indexed: 12/15/2022] Open
Abstract
Volatile organic compounds (VOCs) are emitted by plants as a consequence of their interaction with biotic and abiotic factors, and have a very important role in plant evolution. Floral VOCs are often involved in defense and pollinator attraction. These interactions often change rapidly over time, so a quick response to those changes is required. Epigenetic factors, such as DNA methylation and histone modification, which regulate both genes and transcription factors, might trigger adaptive responses to these evolutionary pressures as well as regulating the rhythmic emission of VOCs through circadian clock regulation. In addition, transgenerational epigenetic effects and whole genome polyploidy could modify the generation of VOCs’ profiles of offspring, contributing to long-term evolutionary shifts. In this article, we review the available knowledge about the mechanisms that may act as epigenetic regulators of the main VOC biosynthetic pathways, and their importance in plant evolution.
Collapse
|